Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (601)

Search Parameters:
Keywords = feces analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 758 KiB  
Article
Effect of Multi-Species Probiotic Supplementation on Fecal Microbiota in Pre-Weaned Holstein Dairy Calves in California
by Yoonsuk Lee, Heidi A. Rossow, Deniece R. Williams, Sejin Cheong, Hedmon Okella, Logan Widmer and Emmanuel Okello
Microorganisms 2025, 13(8), 1810; https://doi.org/10.3390/microorganisms13081810 (registering DOI) - 2 Aug 2025
Abstract
The gross benefit of feeding multi-species probiotics has been reported, but the effect on the gut microbiota in pre-weaned dairy calves has not been elucidated. To address this gap, a randomized controlled trial was conducted in California, USA, to investigate the effect of [...] Read more.
The gross benefit of feeding multi-species probiotics has been reported, but the effect on the gut microbiota in pre-weaned dairy calves has not been elucidated. To address this gap, a randomized controlled trial was conducted in California, USA, to investigate the effect of feeding probiotics on the fecal microbiota of pre-weaned dairy calves. A total of 30 neonatal calves were randomly assigned to either the probiotic (PRO) or control (CON) treatment. Fecal samples were collected at four age timepoints: days 7, 14, 21, and 42. Fecal bacterial population was analyzed using 16S rRNA amplicon sequencing. Differential abundance analysis was conducted to investigate the difference between the PRO and CON treatments, and diarrheic and non-diarrheic calves in each PRO and CON group. The PRO group had decreased Clostridium perfringens and Fusobacterium varium compared to the CON at 7 days of age. At 7 days of age, diarrheic calves in CON had more abundant F. varium compared to non-diarrheic calves, but there was no difference between diarrheic and non-diarrheic calves in the PRO group. In conclusion, probiotics administration decreased the population of pathogenic bacteria in feces from pre-weaned dairy calves on Day 7 of age. However, the treatment did not have an impact on bacterial diversity. These results suggest that the administration of probiotics has the potential to control gastrointestinal pathogens. Full article
(This article belongs to the Special Issue Gut Microbiota of Food Animal)
12 pages, 1279 KiB  
Article
Study on the Excretion of a New Antihypertensive Drug 221s (2,9) in Rats
by Yunmei Chen, Kuan Yang, Shaojing Liu, Lili Yu, Rong Wang and Bei Qin
Pharmaceuticals 2025, 18(8), 1138; https://doi.org/10.3390/ph18081138 - 30 Jul 2025
Viewed by 177
Abstract
Background/Objectives: The novel compound 221s (2,9), derived from danshensu and ACEI-active proline, exhibits antihypertensive effects (50/35 mmHg SBP/DBP reduction in SHRs) with potential cough mitigation. However, its excretion kinetics remain unstudied. This study investigates 221s (2,9) elimination in rats to bridge this [...] Read more.
Background/Objectives: The novel compound 221s (2,9), derived from danshensu and ACEI-active proline, exhibits antihypertensive effects (50/35 mmHg SBP/DBP reduction in SHRs) with potential cough mitigation. However, its excretion kinetics remain unstudied. This study investigates 221s (2,9) elimination in rats to bridge this knowledge gap. Methods: Excretion of unchanged 221s (2,9) was quantified in urine, feces, and bile of Sprague-Dawley rats after oral administration (30 mg/kg). Concentrations of unchanged 221s (2,9) in all matrices were quantified using developed UPLC-MS/MS that underwent methodological validation. Excretion amount, excretion velocity, and accumulative excretion rate of 221s (2,9) were calculated. Results: Urinary excretion exhibited rapid elimination kinetics, reaching peak cumulative excretion rates (138.81 ± 15.56 ng/h) at 8 h post-dosing and plateauing by 48 h (cumulative excretion: 1479.81 ± 155.7 ng). Fecal excretion displayed an accelerated elimination phase between 4 and 8 h (excretion rate: 7994.29 ± 953.75 ng/h), followed by a sustained slow-release phase, culminating in a cumulative output of 36,726.31 ± 5507 ng at 48 h. Biliary excretion was minimal and ceased entirely by 24 h. Notably, total recovery of unchanged drug across all matrices remained below 1% (urine: 0.020 ± 0.021%; feces: 0.73 ± 0.069%; bile: 0.00044 ± 0.00002%) at 72 h. Conclusions: This study provides the first definitive excretion data for 221s (2,9). Quantitative analysis via a validated UPLC-MS/MS method revealed that fecal excretion is the principal elimination pathway for unchanged 221s (2,9) in rats, with direct excretion of the parent compound accounting for <1% of the administered dose over 72 h. Future studies will employ extended pharmacokinetic monitoring and concurrent UPLC-MS/MS analysis of the parent drug and phase II conjugates to resolve the observed mass imbalance and elucidate contributions to total elimination. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

21 pages, 3499 KiB  
Article
Auricularia auricula’s Exopolysaccharide Mitigates DSS-Induced Colitis Through Dectin–1-Mediated Immunomodulation and Microbiota Remodeling
by Luísa Coutinho Coelho, Luísa Dan Favilla, Thais Bergmann de Castro, Maria Carolina B. Di Medeiros Leal, Christian Hoffmann and Anamélia Lorenzetti Bocca
Pharmaceuticals 2025, 18(8), 1085; https://doi.org/10.3390/ph18081085 - 22 Jul 2025
Viewed by 211
Abstract
Background/Objectives: Ulcerative colitis (UC) is characterized by the interplay between immune responses and dysbiosis in disease development. Aiming to provide additional insights into disease development and potential treatment strategies, the present study investigates the local effect of oral treatment with polysaccharides obtained from [...] Read more.
Background/Objectives: Ulcerative colitis (UC) is characterized by the interplay between immune responses and dysbiosis in disease development. Aiming to provide additional insights into disease development and potential treatment strategies, the present study investigates the local effect of oral treatment with polysaccharides obtained from Auricularia auricula’s submerged culture in an experimental model of DSS-induced colitis and its impact on lesion resolution. Methods: The structure and monosaccharide composition of Auricularia polysaccharides were characterized through Nuclear Magnetic Resonance (NMR). To evaluate the effect of this polysaccharide on the murine model, wild-type and Dectin-1 knockout mice were treated or not with the exopolysaccharide (EPS) while under DSS consumption. During the experimental period, feces samples were collected to evaluate microbial shifts during disease development, and, finally, the colonic tissue was analyzed to assess the inflammatory process and cytokine production. Results: The EPS composition showed a polymeric mixture of glucans and fucogalactomannans. The treatment of the wild-type DSS-induced colitis group improved the inflammatory response by increasing gut–homeostatic cytokines, such as interleukin-10 (IL-10) and tumor necrosis factor-alpha (TNF-α). The Dectin-1 KO mice group did not show the same enhancement after EPS treatment. The microbiome analysis revealed a difference in the genotype, and the treatment modified the DSS microbiome modulation, with nine and four ASVs in WT and Dectin-1 KO mice, respectively. Conclusions: The EPS treatment demonstrated therapeutic potential in treating inflammatory intestinal diseases by modulating cytokine secretion and microbiota composition, which is dependent on the Dectin-1 receptor’s carbohydrate recognition. Full article
(This article belongs to the Special Issue Natural Products Derived from Fungi and Their Biological Activities)
Show Figures

Figure 1

9 pages, 1359 KiB  
Article
Clay Attenuates Diarrhea Induced by Fat in a Mouse Model
by Shalom Emmanuel, Nyma Siddiqui, Ting Du, Eric Asare, Yuan Chen, Huan Xie, Dong Liang and Song Gao
Metabolites 2025, 15(7), 483; https://doi.org/10.3390/metabo15070483 - 17 Jul 2025
Viewed by 308
Abstract
Background: Diarrhea induced by an excessive amount of fat is a prevalent gastrointestinal disorder. Currently, there are limited animal models and treatment options for diarrhea associated with fat. This study aims to develop a mouse model of high-fat-associated diarrhea using glyceryl-trioleate (GTO) and [...] Read more.
Background: Diarrhea induced by an excessive amount of fat is a prevalent gastrointestinal disorder. Currently, there are limited animal models and treatment options for diarrhea associated with fat. This study aims to develop a mouse model of high-fat-associated diarrhea using glyceryl-trioleate (GTO) and evaluate the potential of montmorillonite clay (MMT) in mitigating this condition. Methods: GTO was administered to mice at different doses through oral gavage to induce diarrhea. Clay was treated through oral gavage to evaluate its anti-diarrhea effect. Fecal conditions were monitored. Intestinal tissues were subjected to histological examination to assess structural integrity. The total fecal bile acids were evaluated using a bile acid assay kit to determine the mechanism of action. Results: The results showed that a diarrhea model was established by administering GTO at 2000 mg/kg. When the animals were treated with clay, diarrhea incidence and severity were decreased significantly in a dose-dependent manner. Compared to the untreated group receiving GTO alone, clay co-administration at 2000 mg/kg reduced diarrhea scores by approximately 48%, while the higher dose of 4000 mg/kg achieved an 83% reduction. Fecal bile acid analysis showed that diarrhea is associated with total bile acid levels in the feces. Histological exams showed that diarrhea is associated with tissue inflammation in the colon. Conclusions: This study showed that GTO administration induced diarrhea in mice, and clay effectively alleviates fat-induced diarrhea through modulation of fecal bile acid composition. These findings suggest that this model can be used to evaluate diarrhea associated with excessive amounts of fat and clay that can be further tested for diarrhea attenuation. Full article
Show Figures

Figure 1

18 pages, 4199 KiB  
Article
Effects of Antibiotic Residues on Fecal Microbiota Composition and Antimicrobial Resistance Gene Profiles in Cattle from Northwestern China
by Wei He, Xiaoming Wang, Yuying Cao, Cong Liu, Zihui Qin, Yang Zuo, Yiming Li, Fang Tang, Jianjun Dai, Shaolin Wang and Feng Xue
Microorganisms 2025, 13(7), 1658; https://doi.org/10.3390/microorganisms13071658 - 14 Jul 2025
Viewed by 314
Abstract
Grazing is a free-range farming model commonly practiced in low-external-input agricultural systems. The widespread use of veterinary antibiotics in livestock farming has led to significant environmental accumulation of antibiotic residues and antibiotic resistance genes (ARGs), posing global health risks. This study investigated the [...] Read more.
Grazing is a free-range farming model commonly practiced in low-external-input agricultural systems. The widespread use of veterinary antibiotics in livestock farming has led to significant environmental accumulation of antibiotic residues and antibiotic resistance genes (ARGs), posing global health risks. This study investigated the antibiotic residues, bacterial community, ARG profiles, and mobile genetic elements (MGEs) in cattle feces from three provinces in western China (Ningxia, Xinjiang, and Inner Mongolia) under grazing modes. The HPLC-MS detection showed that the concentration of tetracycline antibiotics was the highest in all three provinces. Correlation analysis revealed a significant negative correlation between antibiotic residues and the diversity and population abundance of intestinal microbiota. However, the abundance of ARGs was directly proportional to antibiotic residues. Then, the Sankey analysis revealed that the ARGs in the cattle fecal samples were concentrated in 15 human pathogenic bacteria (HPB) species, with 9 of these species harboring multiple drug resistance genes. Metagenomic sequencing revealed that carbapenemase-resistant genes (blaKPC and blaVIM) were also present in considerable abundance, accounting for about 10% of the total ARGs detected in three provinces. Notably, Klebsiella pneumoniae strains carrying blaCTX-M-55 were detected, which had a possibility of IncFII plasmids harboring transposons and IS19, indicating the risk of horizontal transfer of ARGs. This study significantly advances the understanding of the impact of antibiotic residues on the fecal microbiota composition and ARG profiles in grazing cattle from northwestern China. Furthermore, it provides critical insights for the development of rational antibiotic usage strategies and comprehensive public health risk assessments. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

13 pages, 2293 KiB  
Article
Mytilus galloprovincialis as a Natural Reservoir of Vibrio harveyi: Insights from GFP-Tagged Strain Tracking
by Arkaitz Almaraz, Flor O. Uriarte, María González-Rivacoba, Inés Arana, Itziar Arranz-Veiga, Beñat Zaldibar and Maite Orruño
Pathogens 2025, 14(7), 687; https://doi.org/10.3390/pathogens14070687 - 13 Jul 2025
Viewed by 307
Abstract
Vibrios are widespread in marine environments, and their persistence is often linked to natural reservoirs such as filter-feeding bivalves. This study investigated the capacity of the Mediterranean mussel, Mytilus galloprovincialis, to act as a reservoir of Vibrio harveyi using a GFP-tagged strain [...] Read more.
Vibrios are widespread in marine environments, and their persistence is often linked to natural reservoirs such as filter-feeding bivalves. This study investigated the capacity of the Mediterranean mussel, Mytilus galloprovincialis, to act as a reservoir of Vibrio harveyi using a GFP-tagged strain in controlled experiments. Mussels (shell length 4–6 cm) were exposed to V. harveyi gfp in estuarine and seawater at 12 °C and 20 °C over six days. Bacterial accumulation in gills, digestive gland, and gonads, as well as in feces and pseudofeces, was quantified, and the immune response following microbial challenge was assessed by histopathological analysis. Mussels actively removed V. harveyi from the water, but not completely. Vibrios were rapidly accumulated in organs, with the highest densities in the digestive gland (up to 107–108 CFU g−1), and substantial bacterial loads detected in biodeposits (1.55–3.77 × 107 CFU g−1). Salinity had a greater effect than temperature on bacterial accumulation, with consistently higher counts in seawater assays. Concurrently with bacterial accumulation, mussels activated their immune system, as evidenced by the detection of granulocytomas and hemocytic infiltrations. Overall, these results demonstrate that M. galloprovincialis accumulates V. harveyi in tissues and biodeposits, serving as a natural reservoir for this bacterium. Full article
Show Figures

Figure 1

11 pages, 1632 KiB  
Article
Genomic Characterization of Two Bovine Enterovirus Strains Isolated from Newly Transported Cattle
by Cuilan Wu, Shuhong Zhong, Shiwen Feng, Huili He, Shuai Hu, Zhongwei Chen, Changting Li, Xiongbiao Xuan, Hao Peng, Zuzhang Wei and Jun Li
Vet. Sci. 2025, 12(7), 660; https://doi.org/10.3390/vetsci12070660 - 11 Jul 2025
Viewed by 343
Abstract
This study isolated and identified two novel Chinese bovine enterovirus (BEV) strains, designated as BEV-GX1901 and BEV-GX1902, from newly transported cattle with the diarrheal feces symptom. We also determined their complete genome sequences (7408 and 7405 nucleotides, respectively) and found both strains have [...] Read more.
This study isolated and identified two novel Chinese bovine enterovirus (BEV) strains, designated as BEV-GX1901 and BEV-GX1902, from newly transported cattle with the diarrheal feces symptom. We also determined their complete genome sequences (7408 and 7405 nucleotides, respectively) and found both strains have a genome organization analogous to that of picornaviruses. To better understand these two novel strains, a detailed analysis was applied to both strains, including the time of the cytopathic effect (CPE) production, TCID50 measurement, trypsin sensitivity test, ether sensitivity test, chioroform sensitivity test, acid and alkali resistance test, and heat resistance test. Our results showed that these two strains are different in physical and chemical properties. Our study also characterized that BEV-GX1901 and BEV-GX1902, both belonging to the BEV-E4 subtype, were closely related to the Australian strains K2577 and SL305, and the Japanese strain IS1 based on their genome sequences and VP1 region characterizations. It is speculated that this may be related to cattle trade and transportation. Additionally, the gene-by-gene or amino acid-by-amino acid comparison of the two strains found they have differences between their 5′UTR, 3′UTR, VP2, VP1, 2A, 3C, and 3D regions. Our results provide an important update of the virus’s presence in China and contribute to a better understanding of the distribution and characterization of BEVs in cattle. Full article
Show Figures

Figure 1

35 pages, 2830 KiB  
Article
The Safety of FeedKind Pet® (Methylococcus capsulatus, Bath) as a Cultured Protein Source in the Diet of Adult Dogs and Its Effect on Feed Digestibility, Fecal Microbiome, and Health Status
by Matt Longshaw, Bradley Quest, Walt Miller, Patricia M. Oba, Olivia R. Swanson, Kelly S. Swanson and Kathryn Miller
Animals 2025, 15(13), 1975; https://doi.org/10.3390/ani15131975 - 4 Jul 2025
Viewed by 604
Abstract
Thirty-two healthy adult dogs (16 males and 16 females) were fed control kibble diets for one month, followed by six months (Weeks 0 to 25) of diets containing either 0, 4, 6, or 8% cultured protein derived from Methylococcus capsulatus (FeedKind Pet® [...] Read more.
Thirty-two healthy adult dogs (16 males and 16 females) were fed control kibble diets for one month, followed by six months (Weeks 0 to 25) of diets containing either 0, 4, 6, or 8% cultured protein derived from Methylococcus capsulatus (FeedKind Pet®, FK), then they were fed control diets (0% FK) for a further two months (Weeks 25 to 34). The diets were isonitrogenous, isolipidic, and isocaloric and stage- and age-specific. The dogs were assessed for overall health, weight gain, and body condition score (BCS). Blood samples were collected 1 week prior to randomization, during acclimation, then in Weeks 5, 13, 25, 30, 32, and 34 for hematology, coagulation, and clinical chemistry; urine was collected according to the same time schedule for urinalysis. Feces were assessed for parasite load and presence of occult blood during Weeks 5, 9, 13, 17, 21, and 25. Fecal samples were collected during acclimation and Weeks 25 and 34 for fecal microbiome analysis and in Week 25 for apparent total gastrointestinal tract digestibility (ATTD). All dogs maintained a healthy weight and BCS throughout the study. Hematology parameters were within normal limits at the end of each phase of the study. With the exception of a decrease in serum phosphorus level and in urine pH in all groups at the end of the study, urine and serum chemistry results were within normal limits at the end of each phase. ATTD values for organic matter, protein, and energy exceeded 80%, whilst digestibility values for copper were around 20%. The fecal microbiome was dominated by Firmicutes. Alpha diversity increased during the safety phase before returning to baseline levels during the washout phase. The dominant genera in all groups were Megamonas, Peptoclostridium, Turicibacter, Catenibacterium, Fusobacterium, Romboutsia, and Blautia. The study has shown that the inclusion of cultured protein at up to 8% of the total diet of adult dogs can provide sufficient nutrition and is safe with no long-term effects on a range of health parameters. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

18 pages, 3219 KiB  
Article
Mobilome of Environmental Isolates of Clostridioides difficile
by Khald Blau and Claudia Gallert
Antibiotics 2025, 14(7), 678; https://doi.org/10.3390/antibiotics14070678 - 4 Jul 2025
Viewed by 417
Abstract
Background/Objectives: Clostridioides difficile is a “One Health” pathogen and a cause of antibiotics-associated diarrhea and pseudomembranous colitis. Mobile genetic elements (MGEs) have been documented in the genomes of clinical C. difficile strains; however, the presence of MGEs in environmental strains remains poorly characterized. [...] Read more.
Background/Objectives: Clostridioides difficile is a “One Health” pathogen and a cause of antibiotics-associated diarrhea and pseudomembranous colitis. Mobile genetic elements (MGEs) have been documented in the genomes of clinical C. difficile strains; however, the presence of MGEs in environmental strains remains poorly characterized. Thus, the present study was conducted with the objective of identifying the prevalence of MGEs, including mobilizable transposons (MTns), conjugative transposons (CTns), plasmids, and insertion sequences, in whole genome sequences (WGSs) of environmental C. difficile isolates. Methods: The analysis of MGEs was conducted using 166 WGSs obtained from C. difficile strains isolated from various environmental sources contaminated with feces. The MGEs were identified using bioinformatic tools. Results: A total of 48.2% (80/166) of the studied genomes were identified to harbor nine transposons, including Tn916, Tn6194-like, Tn5397, Tn6215, Tn4001, Tn6073, Tn6110, Tn6107, or Tn5801-like. The majority of MTns and CTns could be found within C. difficile sequence types ST11, ST3, and ST35. The results demonstrated close genetic relatedness among the studied genomes, the array of antimicrobial resistance (AMR) genes, such as tetM, ermB, and aac(6′)-aph(2″), and the presence of CTns. Furthermore, the analysis revealed that 24.7% (41/166) of the genome sequences of isolates were associated with various predominant plasmid groups, including pCD6, pCD-ECE4-6, pCD-WTSI1-4, pCDBI1, and pCd1_3, which belonged to 16 different sequence types. Furthermore, several plasmids were identified as harboring the prophage phiCDHM19. Conclusions: The results of the current study suggest that the identified plasmids are abundant and may encode functions that are relevant to C. difficile physiology. The genomes of C. difficile strains examined contain closely related CTns, suggesting that horizontal transfer of AMR is important in this species or other bacterial species. Further research is required to ascertain the effect of these genetic elements and their transferability on the biology of C. difficile. Full article
Show Figures

Figure 1

13 pages, 915 KiB  
Article
Relationship of SCFAs to Maternal and Child Anthropometric Measurements
by Małgorzata Szczuko, Natalia Szabunia, Julia Radkiewicz, Dominika Jamioł-Milc, Tomasz Machałowski and Maciej Ziętek
Int. J. Mol. Sci. 2025, 26(13), 6424; https://doi.org/10.3390/ijms26136424 - 3 Jul 2025
Viewed by 328
Abstract
Short-chain fatty acids (SCFAs) are involved in metabolism and physiological processes. We decided to investigate whether SCFAs are engaged in the metabolic programming of the offspring by the mother’s microbiota, which interact during pregnancy, delivery, and breastfeeding. We decided to determine whether there [...] Read more.
Short-chain fatty acids (SCFAs) are involved in metabolism and physiological processes. We decided to investigate whether SCFAs are engaged in the metabolic programming of the offspring by the mother’s microbiota, which interact during pregnancy, delivery, and breastfeeding. We decided to determine whether there are correlations between 4-week-old infant feces SCFA concentrations, their weight at birth, and mothers’ anthropometric measurements. The study included 82 women with four-week-old newborns from whom stools were collected. SCFAs were determined using gas chromatography with a flame ionization detector. Correlations were observed between SCFA content in newborns’ feces and mothers’ weight and body mass index (BMI) before delivery and at the time of delivery. In addition, associations were identified between weight gain of pregnant women and SCFAs. Analysis of neonatal data showed associations between fatty acid content and infants’ weight and diet, including breastfeeding. We provide indirect evidence for the association of infant SCFA levels with metabolic programming by maternal gut microbiota metabolites. At the same time, we confirm the influence of increased SCFA levels on higher maternal and neonatal body weight and branched-chain short-chain fatty acids (BCFAs) on neonatal body weight. We provide new preventive and intervention directions for future efforts to improve the health care of pregnant women and their offspring. Full article
(This article belongs to the Special Issue Inflammation in Pregnancy and Childbirth)
Show Figures

Figure 1

11 pages, 1669 KiB  
Article
Isolation, Identification, and Drug Sensitivity Test of Pseudomonas aeruginosa from Cynomolgus Monkey (Macaca fascicularis)
by Heling Li, Ziyao Qian, Yulin Yan and Hong Wang
Vet. Sci. 2025, 12(7), 636; https://doi.org/10.3390/vetsci12070636 - 3 Jul 2025
Viewed by 445
Abstract
In this study, we isolated and identified bacteria from the feces of a diarrheal cynomolgus monkey. The results showed that the isolated strain was P. aeruginosa, named PA/CM-101101. Morphological observations indicated that when cultured on Luria–Bertani (LB) nutrient agar at 37 °C [...] Read more.
In this study, we isolated and identified bacteria from the feces of a diarrheal cynomolgus monkey. The results showed that the isolated strain was P. aeruginosa, named PA/CM-101101. Morphological observations indicated that when cultured on Luria–Bertani (LB) nutrient agar at 37 °C for 24 h, the strain formed smooth, slightly elevated colonies with neat and wavy edges. On acetamide agar at the same temperature and duration, the colonies appeared flat with irregular edges and a faint pink periphery, while the medium changed to rose-red; in LB broth at 37 °C for 24 h, the medium became turbid and yellowish-green. Gram staining revealed that it was negative and rod-shaped, without sporulation characteristics. The 16S rRNA gene sequence analysis showed that the sequence identity of the strain shared more than 98.4% similarity with 11 strains of P. aeruginosa from various sources in GenBank. The animal toxicity test showed that it had a strong pathogenic effect on mice. The results of drug sensitivity tests showed that strain PA/CM-101101 was sensitive to amikacin, azithromycin, cefoperazone, ceftazidime, ceftriaxone, ciprofloxacin, gentamicin, imipenem, levofloxacin, meropenem, norfloxacin, ofloxacin, and polymyxin B; however, it displayed resistance to ampicillin, cefadroxil, cefazolin, erythromycin, and vancomycin. The research findings provide valuable insights for diagnosis and treatment strategies for cynomolgus monkeys. It also provides a reference for molecular epidemiological studies. To our knowledge, this is the first time P. aeruginosa isolated from the diarrhea feces of cynomolgus monkey has been reported. Full article
Show Figures

Figure 1

21 pages, 3896 KiB  
Article
Dietary Glyceryl Monolaurate Supplementation During Pregnancy Enhances Fetal Intrauterine Development and Antioxidant Capacity in Sows via Microbiota Modulation
by Zhichao Fu, Jun Wang, Yueqi Zhao, Tanyi Deng, Ziwei Ma, Wutai Guan, Xiangfang Zeng and Fang Chen
Antioxidants 2025, 14(7), 783; https://doi.org/10.3390/antiox14070783 - 25 Jun 2025
Viewed by 356
Abstract
This study elucidates the mechanisms underlying the positive effect of glyceryl monolaurate (GML) on fetal intrauterine development via maternal gut-microbiota modulating effects using a sow model. Addition of GML (1000 mg/kg) improved neonatal intestinal conditions (jejunal villus height, VH/CD ratio and tight junctions) [...] Read more.
This study elucidates the mechanisms underlying the positive effect of glyceryl monolaurate (GML) on fetal intrauterine development via maternal gut-microbiota modulating effects using a sow model. Addition of GML (1000 mg/kg) improved neonatal intestinal conditions (jejunal villus height, VH/CD ratio and tight junctions) and dorsal longissimus muscle (MyoD, MyoG and MSTN) development in the GML-treated group. Furthermore, GML improved maternal gut microbiota composition by enriching short-chain fatty acid (SCFA)-producing bacteria Lactobacillus and Akkermansia. Meanwhile, SCFA concentrations in sow feces and newborn plasma, as well as their receptors (GPR41/43) in intestine and muscle were upregulated with GML, corresponding with enhanced antioxidative and anti-inflammatory capacity. Further correlation analysis revealed Akkermansia and Lactobacillus positively correlated with SCFAs, antioxidative indicators, and anti-inflammatory capacity markers. Moreover, GML inhibited the activation of the MAPK/NF-κB inflammatory signaling pathway. In summary, GML enhanced fetal intrauterine development by modulating sow intestinal SCFA-producing bacteria. Full article
(This article belongs to the Special Issue Oxidative Stress in Animal Reproduction and Nutrition)
Show Figures

Figure 1

15 pages, 1426 KiB  
Article
Contributions to Knowledge of the Dictyocaulus Infection of the Red Deer
by M. González-Velo, A. Espinosa-Sánchez, A. Ripa, M. A. Hurtado-Preciado, M. A. Habela Martínez-Estéllez, J. L. Fernández-García and C. Bazo-Pérez
Vet. Sci. 2025, 12(6), 595; https://doi.org/10.3390/vetsci12060595 - 17 Jun 2025
Viewed by 527
Abstract
Dictyocaulosis is a parasitic disease that affects ungulate species, including red deer (Cervus elaphus). The genus Dictyocaulus comprises eighteen species, but only four have been reported to infect red deer. The disease is characterized by respiratory tract infection, particularly in the [...] Read more.
Dictyocaulosis is a parasitic disease that affects ungulate species, including red deer (Cervus elaphus). The genus Dictyocaulus comprises eighteen species, but only four have been reported to infect red deer. The disease is characterized by respiratory tract infection, particularly in the lungs, bronchi, and bronchioles, leading to inflammatory and hemorrhagic microscopic lesions, as well as emphysema and edema. The biological cycle involves a female ovipositing larvated eggs in the bronchi and trachea, which are expelled to the exterior through coughing or feces, releasing L1 into the environment. In this study, 106 adult red deer were collected from seven locations in Extremadura (Spain). Eight positive lungs were initially assessed by morphological identification, revealing a mean intensity of 13.3 adult worms per infected lung, with a global decrease to an average of 1.8 adult worms per sampled lung. The presence of adult worms in the upper and middle respiratory tract was confirmed through anatomopathological analysis. Molecular identification was performed by sequencing the COI gene. The results indicated the presence of three genetic groups, supported by significant subdivision using the ɸST measure. D. cervi and D. viviparus exhibited their respective matrilineal ancestry, while D. eckerti and D. cervi demonstrated matrilineal sharing. Consequently, the possibility of introgression between these two species was suggested. Although D. viviparus had previously been identified in the same Spanish region based on morphological characteristics, D. cervi and D. eckerti were reported for the first time in the explored geographic area. Full article
Show Figures

Figure 1

22 pages, 3511 KiB  
Article
Genomic Characterization and Safety Evaluation of Enterococcus lactis RB10 Isolated from Goat Feces
by Nattarika Chaichana, Sirikan Suwannasin, Jirasa Boonsan, Thunchanok Yaikhan, Chollachai Klaysubun, Kamonnut Singkhamanan, Monwadee Wonglapsuwan, Rattanaruji Pomwised, Siriwimon Konglue, Rusneeta Chema, Manaschanan Saivaew and Komwit Surachat
Antibiotics 2025, 14(6), 612; https://doi.org/10.3390/antibiotics14060612 - 16 Jun 2025
Viewed by 568
Abstract
Background: The genus Enterococcus includes a diverse group of bacteria that are commonly found in the gastrointestinal tracts of humans and animals, as well as in various environmental habitats. Methods: In this study, Enterococcus lactis RB10, isolated from goat feces, was subjected to [...] Read more.
Background: The genus Enterococcus includes a diverse group of bacteria that are commonly found in the gastrointestinal tracts of humans and animals, as well as in various environmental habitats. Methods: In this study, Enterococcus lactis RB10, isolated from goat feces, was subjected to comprehensive genomic and functional analysis to assess its safety and potential as a probiotic strain. Results: The genome of E. lactis RB10, with a size of 2,713,772 bp and a GC content of 38.3%, was assembled using Oxford Nanopore Technologies (ONT). Genome annotation revealed 3375 coding sequences (CDSs) and highlighted key metabolic pathways involved in carbohydrate, protein, and amino acid metabolism. The strain was susceptible to important antibiotics, including ampicillin, chloramphenicol, tetracycline, and vancomycin, but exhibited resistance to aminoglycosides, a common trait in Enterococcus species with non-hemolytic activity. Genomic analysis further identified two intrinsic antimicrobial resistance genes (ARGs). The strain also demonstrated antimicrobial activity against Bacillus cereus DMST 11098 and Salmonella Typhi DMST 22842, indicating pathogen-specific effects. Key genes for adhesion, biofilm formation, and stress tolerance were also identified, suggesting that RB10 could potentially colonize the gut and compete with pathogens. Moreover, the presence of bacteriocin and secondary metabolite biosynthetic gene clusters suggests its potential for further evaluation as a biocontrol agent and gut health promoter. Conclusions: However, it is important to note that E. lactis RB10 was isolated from goat feces, a source that may harbor both commensal and opportunistic bacteria, and therefore additional safety assessments are necessary. While further validation is needed, E. lactis RB10 exhibits promising probiotic properties with low pathogenic risk, supporting its potential use in food and health applications. Full article
Show Figures

Figure 1

16 pages, 3629 KiB  
Article
Ten Previously Unassigned Human Cosavirus Genotypes Detected in Feces of Children with Non-Polio Acute Flaccid Paralysis in Nigeria in 2020
by Toluwani Goodnews Ajileye, Toluwanimi Emmanuel Akinleye, Temitope O. C. Faleye, Lander De Coninck, Uwem Etop George, Anyebe Bernard Onoja, Sheriff Tunde Agbaje, Ijeoma Maryjoy Ifeorah, Oluseyi Adebowale Olayinka, Elijah Igbekele Oni, Arthur Obinna Oragwa, Bolutife Olubukola Popoola, Olaitan Titilola Olayinka, Oluwadamilola Gideon Osasona, Oluwadamilola Adefunke George, Philip G. Ajayi, Adedolapo A. Suleiman, Ahmed Iluoreh Muhammad, Isaac Komolafe, Adekunle Johnson Adeniji, Jelle Matthijnssens and Moses Olubusuyi Adewumiadd Show full author list remove Hide full author list
Viruses 2025, 17(6), 844; https://doi.org/10.3390/v17060844 - 12 Jun 2025
Viewed by 662
Abstract
Since its discovery via metagenomics in 2008, human cosavirus (HCoSV) has been detected in the cerebrospinal fluid (CSF) and feces of humans with meningitis, acute flaccid paralysis (AFP), and acute gastroenteritis. To date, 34 HCoSV genotypes have been documented by the Picornaviridae study [...] Read more.
Since its discovery via metagenomics in 2008, human cosavirus (HCoSV) has been detected in the cerebrospinal fluid (CSF) and feces of humans with meningitis, acute flaccid paralysis (AFP), and acute gastroenteritis. To date, 34 HCoSV genotypes have been documented by the Picornaviridae study group. However, the documented genetic diversity of HCoSV in Nigeria is limited. Here we describe the genetic diversity of HCoSV in Nigeria using a metagenomics approach. Archived and anonymized fecal specimens from children (under 15 years old) diagnosed with non-polio AFP from five states in Nigeria were analyzed. Virus-like particles were purified from 55 pools (made from 254 samples) using the NetoVIR protocol. Pools were subjected to nucleic acid extraction and metagenomic sequencing. Reads were trimmed and assembled, and contigs classified as HCoSV were subjected to phylogenetic, pairwise identity, recombination analysis, and, when necessary, immuno-informatics and capsid structure prediction. Fifteen pools yielded 23 genomes of HCoSV. Phylogenetic and pairwise identity analysis showed that all belonged to four species (eleven, three, three, and six members of Cosavirus asiani, Cosavirus bepakis, Cosavirus depakis, and Cosavirus eaustrali, respectively) and seventeen genotypes. Ten genomes belong to seven (HCoSV-A3/A10, A15, A17, A19, A24, D3, and E1) previously assigned genotypes, while the remaining thirteen genomes belonged to ten newly proposed genotypes across the four HCoSV species, based on the near-complete VP1 region (VP1*) of the cosavirus genome. Our analysis suggests the existence of at least seven and eight Cosavirus bepakis and Cosavirus eaustrali genotypes, respectively (including those described here). We report the first near-complete genomes of Cosavirus bepakis and Cosavirus depakis from Nigeria, which contributes to the increasing knowledge of the diversity of HCoSV, raising the number of tentative genotypes from 34 to over 40. Our findings suggest that the genetic diversity of HCoSV might be broader than is currently documented, highlighting the need for enhanced surveillance. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

Back to TopTop