Genomic Characterization and Safety Evaluation of Enterococcus lactis RB10 Isolated from Goat Feces
Abstract
:1. Introduction
2. Results
2.1. Antibiotic Susceptibility of E. lactis RB10
2.2. Hemolysis Activity
2.3. Overview Features of the E. lactis RB10 Genome
2.4. Antibiotic Resistance Genes and Virulence Factor Profile of RB10
2.5. Plasmid and MGE Identification
2.6. Bacteriocin and Secondary Metabolite-Associated Genes Found in RB10 Genome
2.7. Phylogenetic Tree Construction
2.8. Comparative Genomic Analysis
2.9. Antibacterial Ability Against Foodborne Pathogens
2.10. Auto- and Co-Aggregation
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Culture Conditions
4.2. Antimicrobial Susceptibility Test
4.3. Hemolysis Assay
4.4. DNA Extraction and Whole-Genome Sequencing
4.5. Genome Assembly and Functional Annotation
4.6. In Silico Safety Assessment
4.7. Identification of Bacteriocin and Secondary Metabolite-Associated Genes
4.8. Pan-Genome and Comparative Analysis
4.9. Auto and Co-Aggregation Ability of RB10
4.10. Antibacterial Activity Against Foodborne Pathogens
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krawczyk, B.; Wityk, P.; Gałęcka, M.; Michalik, M. The many faces of Enterococcus spp.—Commensal, probiotic and opportunistic pathogen. Microorganisms 2021, 9, 1900. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, F.; Willems, R.J.; Gilmore, M.S. Enterococcus diversity, origins in nature, and gut colonization. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection [Internet]; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Huang, S.; Rong, X.; Liu, M.; Liang, Z.; Geng, Y.; Wang, X.; Zhang, J.; Ji, C.; Zhao, L.; Ma, Q. Intestinal mucosal immunity-mediated modulation of the gut microbiome by oral delivery of Enterococcus faecium against Salmonella enteritidis pathogenesis in a laying hen model. Front. Immunol. 2022, 13, 853954. [Google Scholar] [CrossRef] [PubMed]
- Shehata, A.; Tarabees, R.; Basiouni, S.; ElSayed, M.; Gaballah, A.; Krueger, M. Effect of a potential probiotic candidate Enterococcus faecalis-1 on growth performance, intestinal microbiota, and immune response of commercial broiler chickens. Probiotics Antimicrob. Proteins 2020, 12, 451–460. [Google Scholar] [CrossRef]
- Adesida, S.A.; Ezenta, C.C.; Adagbada, A.O.; Aladesokan, A.A.; Coker, A.O. Carriage of multidrug resistant Enterococcus faecium and Enterococcus faecalis among apparently healthy humans. Afr. J. Infect. Dis. 2017, 11, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Asfaw, T. Biofilm formation by Enterococcus faecalis and Enterococcus faecium. Int. J. Res. 2019, 7, 5–10. [Google Scholar]
- Georges, M.; Odoyo, E.; Matano, D.; Tiria, F.; Kyany’a, C.; Mbwika, D.; Mutai, W.C.; Musila, L. Determination of Enterococcus faecalis and Enterococcus faecium antimicrobial resistance and virulence factors and their association with clinical and demographic factors in Kenya. J. Pathog. 2022, 2022, 3129439. [Google Scholar] [CrossRef]
- Braïek, O.B.; Morandi, S.; Cremonesi, P.; Smaoui, S.; Hani, K.; Ghrairi, T. Biotechnological potential, probiotic and safety properties of newly isolated enterocin-producing Enterococcus lactis strains. LWT 2018, 92, 361–370. [Google Scholar] [CrossRef]
- Fu, X.; Lyu, L.; Wang, Y.; Zhang, Y.; Guo, X.; Chen, Q.; Liu, C. Safety assessment and probiotic characteristics of Enterococcus lactis JDM1. Microb. Pathog. 2022, 163, 105380. [Google Scholar] [CrossRef]
- Ahmed, N.A.; Khattab, R.A.; Ragab, Y.M.; Hassan, M. Safety assessment of Enterococcus lactis strains complemented with comparative genomics analysis reveals probiotic and safety characteristics of the entire species. BMC Genom. 2023, 24, 667. [Google Scholar] [CrossRef]
- Almeida-Santos, A.C.; Duarte, B.; Tedim, A.P.; Teixeira, M.J.; Prata, J.C.; Azevedo, R.M.; Novais, C.; Peixe, L.; Freitas, A.R. The healthy human gut can take it all: Vancomycin-variable, linezolid-resistant strains and specific bacteriocin-species interplay in Enterococcus spp. Appl. Environ. Microbiol. 2025, 91, e01699-01624. [Google Scholar] [CrossRef]
- Araya, M.; Morelli, L.; Reid, G.; Sanders, M.E.; Stanton, C.; Pineiro, M.; Ben Embarek, P. Guidelines for the evaluation of probiotics in food. In Proceedings of the Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food, London, ON, Canada, 30 April–1 May 2002; pp. 1–11. [Google Scholar]
- Almeida-Santos, A.C.; Novais, C.; Peixe, L.; Freitas, A.R. Enterococcus spp. as a producer and target of bacteriocins: A double-edged sword in the antimicrobial resistance crisis context. Antibiotics 2021, 10, 1215. [Google Scholar] [CrossRef] [PubMed]
- Zaghloul, H.A.H.; El Halfawy, N.M. Genomic insights into antibiotic-resistance and virulence genes of Enterococcus faecium strains from the gut of Apis mellifera. Microb. Genom. 2022, 8, mgen000896. [Google Scholar] [CrossRef]
- Ye, M.; Jiang, Y.; Han, Q.; Li, X.; Meng, C.; Ji, C.; Ji, F.; Zhou, B. Probiotic potential of Enterococcus lactis GL3 strain isolated from honeybee (Apis mellifera L.) larvae: Insights into its antimicrobial activity against Paenibacillus larvae. Vet. Sci. 2025, 12, 165. [Google Scholar] [CrossRef]
- Ghatani, K.; Thapa, S.; Sha, S.P.; Sarkar, S.; Modak, D.; Bhattacharjee, S. Revealing probiotic potential of Enterococcus strains isolated from traditionally fermented Chhurpi and healthy human gut. Front. Microbiol. 2022, 13, 909987. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Shen, T.; Zhang, Y.; Ma, X.; Xu, S.; Awad, S.; Du, M.; Zhong, Z. Safety assessment of Enterococcus lactis based on comparative genomics and phenotypic analysis. Front. Microbiol. 2023, 14, 1196558. [Google Scholar] [CrossRef]
- AlJindan, R.; Mahmoud, N.; AlEraky, D.M.; Almandil, N.B.; AbdulAzeez, S.; Borgio, J.F. Phenomics and genomic features of Enterococcus avium IRMC1622a isolated from a clinical sample of hospitalized patient. J. Infect. Public Health 2024, 17, 102463. [Google Scholar] [CrossRef]
- Bryan, N.C.; Lebreton, F.; Gilmore, M.; Ruvkun, G.; Zuber, M.T.; Carr, C.E. Genomic and functional characterization of Enterococcus faecalis isolates recovered from the international space station and their potential for pathogenicity. Front. Microbiol. 2021, 11, 515319. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in Enterococci. Expert Rev. Anti Infect. Ther. 2014, 12, 1221–1236. [Google Scholar] [CrossRef]
- Sirichoat, A.; Flórez, A.B.; Vázquez, L.; Buppasiri, P.; Panya, M.; Lulitanond, V.; Mayo, B. Antibiotic Resistance-Susceptibility Profiles of Enterococcus faecalis and Streptococcus spp. From the Human Vagina, and Genome Analysis of the Genetic Basis of Intrinsic and Acquired Resistances. Front. Microbiol. 2020, 11, 1438. [Google Scholar] [CrossRef]
- Lavilla Lerma, L.; Benomar, N.; Sánchez Valenzuela, A.; Casado Muñoz, M.d.C.; Gálvez, A.; Abriouel, H. Role of EfrAB efflux pump in biocide tolerance and antibiotic resistance of Enterococcus faecalis and Enterococcus faecium isolated from traditional fermented foods and the effect of EDTA as EfrAB inhibitor. Food Microbiol. 2014, 44, 249–257. [Google Scholar] [CrossRef]
- Geniş, B.; Öztürk, H.; Özden Tuncer, B.; Tuncer, Y. Safety assessment of enterocin-producing Enterococcus strains isolated from sheep and goat colostrum. BMC Microbiol. 2024, 24, 391. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, R.; Hendrickx, A.P.A.; Ponnuraj, K. The crystal structure of the ligand-binding region of serine-glutamate repeat containing protein A (SgrA) of Enterococcus faecium reveals a new protein fold: Functional characterization and insights into its adhesion function. FEBS J. 2016, 283, 3039–3055. [Google Scholar] [CrossRef] [PubMed]
- Kopit Lauren, M.; Kim Eun, B.; Siezen Roland, J.; Harris Linda, J.; Marco Maria, L. Safety of the surrogate microorganism Enterococcus faecium NRRL B-2354 for use in thermal process validation. Appl. Environ. Microbiol. 2014, 80, 1899–1909. [Google Scholar] [CrossRef]
- Șchiopu, P.; Toc, D.A.; Colosi, I.A.; Costache, C.; Ruospo, G.; Berar, G.; Gălbău, Ș.-G.; Ghilea, A.C.; Botan, A.; Pană, A.-G.; et al. An overview of the factors involved in biofilm production by the Enterococcus genus. Int. J. Mol. Sci. 2023, 24, 11577. [Google Scholar] [CrossRef] [PubMed]
- Najm, A.A.; Flayyih, M.T. The correlation between expression of endocarditis associated Pili genes (ebpA and ebpC) and biofilm producing in enterococcus faecalis isolates. AIP Conf. Proc. 2024, 3097, 020007. [Google Scholar] [CrossRef]
- García, G.; Soto, J.; Díaz, A.; Barreto, J.; Soto, C.; Pérez, A.B.; Boffill, S.; Cano, R.D.J. Randomized clinical trials demonstrate the safety assessment of Alkalihalobacillus clausii AO1125 for use as a probiotic in humans. Microorganisms 2024, 12, 2299. [Google Scholar] [CrossRef]
- Rungsirivanich, P.; Parlindungan, E.; Mahony, J.; Supandee, W.; Thongwai, N.; van Sinderen, D. Functional genomic insights into Floricoccus penangensis ML061-4 isolated from leaf surface of Assam tea. Sci. Rep. 2025, 15, 2951. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhang, Q.; Fan, H.; Wang, X.; Wang, J.; Zhou, Y.; Chen, Z.; Sun, F.; Cui, X. Saline-alkali soil property improved by the synergistic effects of Priestia aryabhattai JL-5, Staphylococcus pseudoxylosus XW-4, Leymus chinensis and soil microbiota. Int. J. Mol. Sci. 2023, 24, 7737. [Google Scholar] [CrossRef]
- Kohler, V.; Vaishampayan, A.; Grohmann, E. Broad-host-range Inc18 plasmids: Occurrence, spread and transfer mechanisms. Plasmid 2018, 99, 11–21. [Google Scholar] [CrossRef]
- Bell, J.C.; Kowalczykowski, S.C. RecA: Regulation and Mechanism of a Molecular Search Engine. Trends Biochem. Sci. 2016, 41, 491–507. [Google Scholar] [CrossRef]
- Leonard, A.C.; Grimwade, J.E. Regulation of DnaA assembly and activity: Taking directions from the genome. Annu. Rev. Microbiol. 2011, 65, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Vasu, K.; Nagaraja, V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol. Mol. Biol. Rev. 2013, 77, 53–72. [Google Scholar] [CrossRef]
- Fugaban, J.I.I.; Vazquez Bucheli, J.E.; Holzapfel, W.H.; Todorov, S.D. Characterization of Partially Purified Bacteriocins Produced by Enterococcus faecium Strains Isolated from Soybean Paste Active Against Listeria spp. and Vancomycin-Resistant Enterococci. Microorganisms 2021, 9, 1085. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.-A.; Jo, N.G.; Bae, J.-H.; Nguyen, M.T.; Jo, Y.M.; Han, N.S. Phenotypic and genomic analyses of bacteriocin-producing probiotic Enterococcus faecium EFEL8600 isolated from Korean soy-meju. Front. Microbiol. 2023, 14, 1237442. [Google Scholar] [CrossRef] [PubMed]
- Mihaylova-Garnizova, R.; Davidova, S.; Hodzhev, Y.; Satchanska, G. Antimicrobial peptides derived from bacteria: Classification, sources, and mechanism of action against multidrug-resistant bacteria. Int. J. Mol. Sci. 2024, 25, 10788. [Google Scholar] [CrossRef]
- Ahadaf, S.; Azzouz, S.; Galiou, O.E.; Errahmouni, M.A.; Mentag, R.; Arakrak, A.; Laglaoui, A. Genomic insights into Enterococcus mundtii 203: A promising probiotic candidate isolated from camel feces. Probiotics Antimicrob. Proteins, 2024; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, T.; Nes Ingolf, F.; Holo, H. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl. Environ. Microbiol. 2003, 69, 2975–2984. [Google Scholar] [CrossRef]
- Prichula, J.; Primon-Barros, M.; Luz, R.C.Z.; Castro, Í.M.S.; Paim, T.G.S.; Tavares, M.; Ligabue-Braun, R.; d’Azevedo, P.A.; Frazzon, J.; Frazzon, A.P.G.; et al. Genome mining for antimicrobial compounds in wild marine animals-associated Enterococci. Mar. Drugs 2021, 19, 328. [Google Scholar] [CrossRef]
- Kaktcham, P.M.; Kujawska, M.; Kouam, E.M.F.; Piame, L.T.; Tientcheu, M.L.T.; Mueller, J.; Felsl, A.; Truppel, B.-A.; Ngoufack, F.Z.; Hall, L.J. Genomic insights into the beneficial potential of Bifidobacterium and Enterococcus strains isolated from Cameroonian infants. Microb. Genom. 2025, 11, 001354. [Google Scholar] [CrossRef]
- Palmer, C.M.; Alper, H.S. Expanding the chemical palette of industrial microbes: Metabolic engineering for type III PKS-derived polyketides. Biotechnol. J. 2019, 14, 1700463. [Google Scholar] [CrossRef]
- Yin, Q.; da Silva, A.C.; Zorrilla, F.; Almeida, A.S.; Patil, K.R.; Almeida, A. Ecological dynamics of Enterobacteriaceae in the human gut microbiome across global populations. Nat. Microbiol. 2025, 10, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bian, Z.; Wang, Y. Biofilm formation and inhibition mediated by bacterial quorum sensing. Appl. Microbiol. Biotechnol. 2022, 106, 6365–6381. [Google Scholar] [CrossRef] [PubMed]
- de Mattos D’Avila, D.G.; Ferrari, R.G.; de Almeida Rodrigues, P.; Neves, G.L.; Ramos Filho, A.M.; Baptista Mano, R.F.; Conte Junior, C.A. Bacterial Resistance to Mercury: A Mini-Review. Appl. Microbiol. 2024, 4, 1630–1641. [Google Scholar] [CrossRef]
- Jeyachandran, S.; Chellapandian, H.; Park, K.; Kwak, I.-S. A review on the involvement of heat shock proteins (extrinsic chaperones) in response to stress conditions in aquatic organisms. Antioxidants 2023, 12, 1444. [Google Scholar] [CrossRef]
- Wu, J.-J.; Zhou, Q.-Y.; Liu, D.-M.; Xiong, J.; Liang, M.-H.; Tang, J.; Xu, Y.-Q. Evaluation of the safety and probiotic properties of Lactobacillus gasseri LGZ1029 based on whole genome analysis. LWT 2023, 184, 114759. [Google Scholar] [CrossRef]
- Wang, G.; Maier Robert, J. Critical Role of RecN in Recombinational DNA Repair and Survival of Helicobacter pylori. Infect. Immun. 2008, 76, 153–160. [Google Scholar] [CrossRef]
- Ben Braïek, O.; Cremonesi, P.; Morandi, S.; Smaoui, S.; Hani, K.; Ghrairi, T. Safety characterisation and inhibition of fungi and bacteria by a novel multiple enterocin-producing Enterococcus lactis 4CP3 strain. Microb. Pathog. 2018, 118, 32–38. [Google Scholar] [CrossRef]
- Hernandez-Mendoza, E.; Peña-Ramos, E.A.; Juneja, V.K.; Martínez-Téllez, M.Á.; González-Ríos, H.; Paredes-Aguilar, M.d.l.C.; Valenzuela-Melendres, M.; Aispuro-Hernández, E. Antagonistic Activity of Bacteriocin-like Inhibitory Substances from Enterococcus lactis Isolated from the Surface of Jalapeno Pepper against Foodborne Pathogens. Microbiol. Res. 2024, 15, 889–899. [Google Scholar] [CrossRef]
- Uymaz Tezel, B. Preliminary in vitro evaluation of the probiotic potential of the bacteriocinogenic strain Enterococcus lactis PMD74 isolated from Ezine cheese. J. Food Qual. 2019, 2019, 4693513. [Google Scholar] [CrossRef]
- El-Ghaish, S.; Khalifa, M.; Elmahdy, A. Antimicrobial Impact for Lactococcus lactis subsp. lactis A15 and Enterococcus faecium A15 Isolated from some traditional Egyptian dairy products on some pathogenic bacteria. J. Food Biochem. 2017, 41, e12279. [Google Scholar] [CrossRef]
- Petit, R.A., III; Read, T.D. Bactopia: A Flexible pipeline for complete analysis of bacterial genomes. mSystems 2020, 5, e00190-20. [Google Scholar] [CrossRef] [PubMed]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Galperin, M.Y.; Vera Alvarez, R.; Karamycheva, S.; Makarova, K.S.; Wolf, Y.I.; Landsman, D.; Koonin, E.V. COG database update 2024. Nucleic Acids Res. 2025, 53, D356–D363. [Google Scholar] [CrossRef]
- Starikova, E.V.; Tikhonova, P.O.; Prianichnikov, N.A.; Rands, C.M.; Zdobnov, E.M.; Ilina, E.N.; Govorun, V.M. Phigaro: High-throughput prophage sequence annotation. Bioinformatics 2020, 36, 3882–3884. [Google Scholar] [CrossRef] [PubMed]
- Grissa, I.; Vergnaud, G.; Pourcel, C. CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007, 35, W52–W57. [Google Scholar] [CrossRef]
- Florensa, A.F.; Kaas, R.S.; Clausen, P.; Aytan-Aktug, D.; Aarestrup, F.M. ResFinder—An open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb. Genom. 2022, 8, 000748. [Google Scholar] [CrossRef]
- McArthur, A.G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M.A.; Baylay, A.J.; Bhullar, K.; Canova, M.J.; De Pascale, G.; Ejim, L.; et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 2013, 57, 3348–3357. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.L.; Mullet, J.; Hindi, F.; Stoll, J.E.; Gupta, S.; Choi, M.; Keenum, I.; Vikesland, P.; Pruden, A.; Zhang, L. mobileOG-db: A Manually Curated Database of Protein Families Mediating the Life Cycle of Bacterial Mobile Genetic Elements. Appl. Environ. Microbiol. 2022, 88, e0099122. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- van Heel, A.J.; de Jong, A.; Song, C.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 2018, 46, W278–W281. [Google Scholar] [CrossRef]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef] [PubMed]
- Zawistowska-Rojek, A.; Kośmider, A.; Stępień, K.; Tyski, S. Adhesion and aggregation properties of Lactobacillaceae strains as protection ways against enteropathogenic bacteria. Arch. Microbiol. 2022, 204, 285. [Google Scholar] [CrossRef]
- Yazgan, H.; Kuley, E.; Güven Gökmen, T.; Regenstein, J.M.; Özogul, F. The antimicrobial properties and biogenic amine production of lactic acid bacteria isolated from various fermented food products. J. Food Process. Preserv. 2021, 45, e15085. [Google Scholar] [CrossRef]
Antibiotics | Inhibition Zone (mm) | Interpretation |
---|---|---|
Ampicillin (10 μg) | 19.00 ± 0.50 | S |
Chloramphenicol (30 μg) | 21.92 ± 1.18 | S |
Clindamycin (2 μg) | 7.83 ± 1.04 | R |
Erythromycin (15 μg) | 11.00 ± 0.66 | R |
Gentamycin (10 μg) | 9.42 ± 0.88 | R |
Kanamycin (30 μg) | 0.00 ± 0.00 | R |
Streptomycin (10 μg) | 0.00 ± 0.00 | R |
Tetracycline (30 μg) | 28.58 ± 2.16 | S |
Vancomycin (30 μg) | 21.92 ± 0.76 | S |
Genome Features | RB10 |
---|---|
Genome size (bp) | 2,713,772 |
GC content (%) | 38.3 |
Number of contigs | 8 |
N50 | 1,148,270 |
L50 | 1 |
Number of CDSs | 3375 |
Repeat region | 1 |
tRNA | 66 |
rRNA | 12 |
tmRNA | 1 |
Number of subsystems | 233 |
Probability of being a human pathogen (%) | 40 |
Classification | Enterococcus lactis |
Closest placement reference | E. lactis (CCM 8412) |
Average nucleotide identity (ANI) | 98.06% |
Pathogens | Inhibition Zone (mm) |
---|---|
B. cereus DMST 11098 | 12.33 ± 0.94 |
E. coli O157:H7 | 0.00 ± 0.00 |
E. faecalis DMST 4736 | 0.00 ± 0.00 |
L. monocytogenes DMST 17303 | 0.00 ± 0.00 |
S. Typhi DMST 22842 | 14.58 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaichana, N.; Suwannasin, S.; Boonsan, J.; Yaikhan, T.; Klaysubun, C.; Singkhamanan, K.; Wonglapsuwan, M.; Pomwised, R.; Konglue, S.; Chema, R.; et al. Genomic Characterization and Safety Evaluation of Enterococcus lactis RB10 Isolated from Goat Feces. Antibiotics 2025, 14, 612. https://doi.org/10.3390/antibiotics14060612
Chaichana N, Suwannasin S, Boonsan J, Yaikhan T, Klaysubun C, Singkhamanan K, Wonglapsuwan M, Pomwised R, Konglue S, Chema R, et al. Genomic Characterization and Safety Evaluation of Enterococcus lactis RB10 Isolated from Goat Feces. Antibiotics. 2025; 14(6):612. https://doi.org/10.3390/antibiotics14060612
Chicago/Turabian StyleChaichana, Nattarika, Sirikan Suwannasin, Jirasa Boonsan, Thunchanok Yaikhan, Chollachai Klaysubun, Kamonnut Singkhamanan, Monwadee Wonglapsuwan, Rattanaruji Pomwised, Siriwimon Konglue, Rusneeta Chema, and et al. 2025. "Genomic Characterization and Safety Evaluation of Enterococcus lactis RB10 Isolated from Goat Feces" Antibiotics 14, no. 6: 612. https://doi.org/10.3390/antibiotics14060612
APA StyleChaichana, N., Suwannasin, S., Boonsan, J., Yaikhan, T., Klaysubun, C., Singkhamanan, K., Wonglapsuwan, M., Pomwised, R., Konglue, S., Chema, R., Saivaew, M., & Surachat, K. (2025). Genomic Characterization and Safety Evaluation of Enterococcus lactis RB10 Isolated from Goat Feces. Antibiotics, 14(6), 612. https://doi.org/10.3390/antibiotics14060612