Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (464)

Search Parameters:
Keywords = fatty acid transport protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3258 KiB  
Article
Loss of SVIP Results in Metabolic Reprograming and Increased Retention of Very-Low-Density Lipoproteins in Hepatocytes
by Vandana Sekhar, Thomas Andl and Shadab A. Siddiqi
Int. J. Mol. Sci. 2025, 26(15), 7465; https://doi.org/10.3390/ijms26157465 - 1 Aug 2025
Viewed by 219
Abstract
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance [...] Read more.
Perturbations in the tightly regulated processes of VLDL biosynthesis and secretion can directly impact both liver and cardiovascular health. Patients with metabolic disorders have an increased risk of developing hepatic steatosis, which can lead to cirrhosis. These associated metabolic risks underscore the importance of discerning the role of different cellular proteins involved in VLDL biogenesis, transport, and secretion. Small VCP-Interacting Protein (SVIP) has been identified as a component of VLDL transport vesicles and VLDL secretion. This study evaluates the cellular effects stemming from the CRISPR-Cas9-mediated depletion of SVIP in rat hepatocytes. The SVIP-knockout (KO) cells display an increased VLDL retention with elevated intracellular levels of ApoB100 and neutral lipid staining. RNA sequencing studies reveal an impaired PPARα and Nrf2 signaling in the SVIP KO cells, implying a state of metabolic reprograming, with a shift from fatty acid uptake, synthesis, and oxidation to cells favoring the activation of glucose by impaired glycogen storage and increased glucose release. Additionally, SVIP KO cells exhibit a transcriptional profile indicative of acute phase response (APR) in hepatocytes. Many inflammatory markers and genes associated with APR are upregulated in the SVIP KO hepatocytes. In accordance with an APR-like response, the cells also demonstrate an increase in mRNA expression of genes associated with protein synthesis. Together, our data demonstrate that SVIP is critical in maintaining hepatic lipid homeostasis and metabolic balance by regulating key pathways such as PPARα, Nrf2, and APR. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

29 pages, 3958 KiB  
Article
Impact of Manganese on Neuronal Function: An Exploratory Multi-Omics Study on Ferroalloy Workers in Brescia, Italy
by Somaiyeh Azmoun, Freeman C. Lewis, Daniel Shoieb, Yan Jin, Elena Colicino, Isha Mhatre-Winters, Haiwei Gu, Hari Krishnamurthy, Jason R. Richardson, Donatella Placidi, Luca Lambertini and Roberto G. Lucchini
Brain Sci. 2025, 15(8), 829; https://doi.org/10.3390/brainsci15080829 - 31 Jul 2025
Viewed by 328
Abstract
Background: There is growing interest in the potential role of manganese (Mn) in the development of Alzheimer’s Disease and related dementias (ADRD). Methods: In this nested pilot study of a ferroalloy worker cohort, we investigated the impact of chronic occupational Mn exposure on [...] Read more.
Background: There is growing interest in the potential role of manganese (Mn) in the development of Alzheimer’s Disease and related dementias (ADRD). Methods: In this nested pilot study of a ferroalloy worker cohort, we investigated the impact of chronic occupational Mn exposure on cognitive function through β-amyloid (Aβ) deposition and multi-omics profiling. We evaluated six male Mn-exposed workers (median age 63, exposure duration 31 years) and five historical controls (median age: 60 years), all of whom had undergone brain PET scans. Exposed individuals showed significantly higher Aβ deposition in exposed individuals (p < 0.05). The average annual cumulative respirable Mn was 329.23 ± 516.39 µg/m3 (geometric mean 118.59), and plasma Mn levels were significantly elevated in the exposed group (0.704 ± 0.2 ng/mL) compared to controls (0.397 ± 0.18 in controls). Results: LC-MS/MS-based pathway analyses revealed disruptions in olfactory signaling, mitochondrial fatty acid β-oxidation, biogenic amine synthesis, transmembrane transport, and choline metabolism. Simoa analysis showed notable alterations in ADRD-related plasma biomarkers. Protein microarray revealed significant differences (p < 0.05) in antibodies targeting neuronal and autoimmune proteins, including Aβ (25–35), GFAP, serotonin, NOVA1, and Siglec-1/CD169. Conclusion: These findings suggest Mn exposure is associated with neurodegenerative biomarker alterations and disrupted biological pathways relevant to cognitive decline. Full article
(This article belongs to the Special Issue From Bench to Bedside: Motor–Cognitive Interactions—2nd Edition)
Show Figures

Figure 1

27 pages, 3394 KiB  
Article
Integrative Multi-Omics Profiling of Rhabdomyosarcoma Subtypes Reveals Distinct Molecular Pathways and Biomarker Signatures
by Aya Osama, Ahmed Karam, Abdelrahman Atef, Menna Arafat, Rahma W. Afifi, Maha Mokhtar, Taghreed Khaled Abdelmoneim, Asmaa Ramzy, Enas El Nadi, Asmaa Salama, Emad Elzayat and Sameh Magdeldin
Cells 2025, 14(14), 1115; https://doi.org/10.3390/cells14141115 - 20 Jul 2025
Viewed by 843
Abstract
Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, comprises embryonal (ERMS) and alveolar (ARMS) subtypes with distinct histopathological features, clinical outcomes, and therapeutic responses. To better characterize their molecular distinctions, we performed untargeted plasma proteomics and metabolomics profiling in children with ERMS [...] Read more.
Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, comprises embryonal (ERMS) and alveolar (ARMS) subtypes with distinct histopathological features, clinical outcomes, and therapeutic responses. To better characterize their molecular distinctions, we performed untargeted plasma proteomics and metabolomics profiling in children with ERMS (n = 18), ARMS (n = 17), and matched healthy controls (n = 18). Differential expression, functional enrichment (GO, KEGG, RaMP-DB), co-expression network analysis (WGCNA/WMCNA), and multi-omics integration (DIABLO, MOFA) revealed distinct molecular signatures for each subtype. ARMS displayed elevated oncogenic and stemness-associated proteins (e.g., cyclin E1, FAP, myotrophin) and metabolites involved in lipid transport, fatty acid metabolism, and polyamine biosynthesis. In contrast, ERMS was enriched in immune-related and myogenic proteins (e.g., myosin-9, SAA2, S100A11) and metabolites linked to glutamate/glycine metabolism and redox homeostasis. Pathway analyses highlighted subtype-specific activation of PI3K-Akt and Hippo signaling in ARMS and immune and coagulation pathways in ERMS. Additionally, the proteomics and metabolomics datasets showed association with clinical parameters, including disease stage, lymph node involvement, and age, demonstrating clear molecular discrimination consistent with clinical observation. Co-expression networks and integrative analyses further reinforced these distinctions, uncovering coordinated protein–metabolite modules. Our findings reveal novel, subtype-specific molecular programs in RMS and propose candidate biomarkers and pathways that may guide precision diagnostics and therapeutic targeting in pediatric sarcomas. Full article
Show Figures

Figure 1

41 pages, 1524 KiB  
Review
Metabolic Adaptations in Cancer Progression: Optimization Strategies and Therapeutic Targets
by Agnieszka Dominiak, Beata Chełstowska and Grażyna Nowicka
Cancers 2025, 17(14), 2341; https://doi.org/10.3390/cancers17142341 - 15 Jul 2025
Viewed by 803
Abstract
As tumor research has deepened, the deregulation of cellular metabolism has emerged as yet another recognized hallmark of cancer. Tumor cells adapt different biochemical pathways to support their rapid growth, proliferation, and invasion, resulting in distinct anabolic and catabolic activities compared with healthy [...] Read more.
As tumor research has deepened, the deregulation of cellular metabolism has emerged as yet another recognized hallmark of cancer. Tumor cells adapt different biochemical pathways to support their rapid growth, proliferation, and invasion, resulting in distinct anabolic and catabolic activities compared with healthy tissues. Certain metabolic shifts, such as altered glucose and glutamine utilization and increased de novo fatty acid synthesis, are critical early on, while others may become essential only during metastasis. These metabolic adaptations are closely shaped by, and in turn remodel, the tumor microenvironment, creating favorable conditions for their spread. Anticancer metabolic strategies should integrate pharmacological approaches aimed at inhibiting specific biochemical pathways with well-defined dietary interventions as adjunctive therapies, considering also the role of gut microbiota in modulating diet and treatment responses. Given the established link between the consumption of foods rich in saturated fatty acids and sugars and an increased cancer risk, the effects of diet cannot be ignored. However, current evidence from controlled and multicenter clinical trials remains insufficient to provide definitive clinical recommendations. Further research using modern omics methods, such as metabolomics, proteomics, and lipidomics, is necessary to understand the changes in the metabolic profiles of various cancers at different stages of their development and to determine the potential for modifying these profiles through pharmacological agents and dietary modifications. Therefore, clinical trials should combine standard treatments with novel approaches targeting metabolic reprogramming, such as inhibition of specific enzymes and transporters or binding proteins, alongside the implementation of dietary restrictions that limit nutrient availability for tumor growth. However, to optimize therapeutic efficacy, a precision medicine approach should be adopted that balances the destruction of cancer cells with the protection of healthy ones. This approach, among others, should be based on cell type-specific metabolic profiling, which is crucial for personalizing oncology treatment. Full article
(This article belongs to the Special Issue Cancer Cells Fostered Microenvironment in Metastasis)
Show Figures

Graphical abstract

19 pages, 47429 KiB  
Article
Overexpression of (P)RR in SHR and Renin-Induced HepG2 Cells Leads to Spontaneous Hypertension Combined with Metabolic Dysfunction-Associated Fatty Liver Disease
by Chen Gao, Xinyi Guo, Lingzhi Zhang, Xueman Lin and Hua Sun
Int. J. Mol. Sci. 2025, 26(13), 6541; https://doi.org/10.3390/ijms26136541 - 7 Jul 2025
Viewed by 525
Abstract
Hypertension and metabolic dysfunction-associated fatty liver disease (MAFLD) are both common chronic diseases globally. Nearly half of patients with hypertension are complicated by MAFLD. The mechanisms of the bidirectional promotion between the two remain unclear. The (pro) renin receptor ((P)RR) is one of [...] Read more.
Hypertension and metabolic dysfunction-associated fatty liver disease (MAFLD) are both common chronic diseases globally. Nearly half of patients with hypertension are complicated by MAFLD. The mechanisms of the bidirectional promotion between the two remain unclear. The (pro) renin receptor ((P)RR) is one of the classic members of the renin–angiotensin system (RAS) and serves as the receptor for prorenin. Although the role of (P)RR in the induction and progression of hypertension has been extensively studied, its role and underlying mechanisms in MAFLD remain underreported. In this study, we aim to investigate the role of (P)RR in the pathogenesis of hypertension combined with MAFLD. In this study, SHRs were used for the model for hypertension combined with MAFLD. Liver lipid content analysis, liver H&E staining, the detection of (P)RR, ERK and downstream proteins related to fatty acid synthesis and transport, and RNA sequencing and data analysis were performed. In the in vitro experiments, we activated (P)RR using renin and established the lipid deposition model of HepG2 cells induced by renin for the first time. (P)RR was specifically blocked using handle region peptide (HRP), and Nile red fluorescence staining, (P)RR/ERK/PPARγ protein expression analysis, and immunofluorescence were performed to further verify the role of (P)RR in the pathogenesis of hypertension combined with MAFLD. Our results demonstrate that (P)RR plays a role in the development and progression of hypertension combined with MAFLD. The hepatic TG and FFA levels in the SHRs were increased, and the protein expression of the (P)RR/ERK/PPARγ pathway and downstream proteins related to fatty acid synthesis and transport were upregulated. HRP reversed the activation of these proteins and reduced intracellular lipid accumulation. In conclusion, our study first reveals that (P)RR is a potential therapeutic target for hypertension combined with MAFLD. And we found the (P)RR/ERK/PPARγ axis for the first time, which plays an important role in the progression of spontaneous hypertension combined with MAFLD. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

26 pages, 5282 KiB  
Article
Unraveling the Regulatory Impact of LncRNA Hnf1aos1 on Hepatic Homeostasis in Mice
by Beshoy Armanios, Jing Jin, Holly Kolmel, Ankit P. Laddha, Neha Mishra, Jose E. Manautou and Xiao-Bo Zhong
Non-Coding RNA 2025, 11(4), 52; https://doi.org/10.3390/ncrna11040052 - 4 Jul 2025
Viewed by 488
Abstract
Background/Objectives: Long non-coding RNAs (lncRNAs) play significant roles in tissue development and disease progression and have emerged as crucial regulators of gene expression. The hepatocyte nuclear factor alpha antisense RNA 1 (HNF1A-AS1) lncRNA is a particularly intriguing regulatory molecule in liver biology that [...] Read more.
Background/Objectives: Long non-coding RNAs (lncRNAs) play significant roles in tissue development and disease progression and have emerged as crucial regulators of gene expression. The hepatocyte nuclear factor alpha antisense RNA 1 (HNF1A-AS1) lncRNA is a particularly intriguing regulatory molecule in liver biology that is involved in the regulation of cytochrome P450 enzymes via epigenetic mechanisms. Despite the growing recognition of lncRNAs in liver disease, the comprehensive role of HNF1A-AS1 in liver function remains unclear. This study aimed to investigate the roles of the mouse homolog of the human HNF1A-AS1 lncRNA HNF1A opposite strand 1 (Hnf1aos1) in liver function, gene expression, and cellular processes using a mouse model to identify potential therapeutic targets for liver disorders. Methods: The knockdown of Hnf1aos1 was performed in in vitro mouse liver cell lines using siRNA and in vivo livers of AAV-shRNA complexes. Changes in the global expression landscapes of mRNA and proteins were revealed using RNA-seq and proteomics, respectively. Changes in the selected genes were further validated via real-time quantitative polymerase chain reaction (RT-qPCR). Phenotypic changes were assessed via histological and absorbance-based assays. Results: After the knockdown of Hnf1aos1, RNA-seq and proteomics analysis revealed the differential gene expression of the mRNAs and proteins involved in the processes of molecular transport, liver regeneration, and immune signaling pathways. The downregulation of ABCA1 and SREBF1 indicates their role in cholesterol transport and fatty acid and triglyceride synthesis. Additionally, significant reductions in hepatic triglyceride levels were observed in the Hnf1aos1-knockdown group, underscoring the impact on lipid regulation. Notably, the knockdown of Hnf1aos1 also led to an almost complete depletion of CYP7A1, the rate-limiting enzyme in bile acid synthesis, highlighting its role in cholesterol homeostasis and hepatotoxicity. Histological assessments confirmed these molecular findings, with increased hepatic inflammation, hepatocyte swelling, and disrupted liver architecture observed in the Hnf1aos1-knockdown mice. Conclusions: This study illustrated that Hnf1aos1 is a critical regulator of liver health, influencing both lipid metabolism and immune pathways. It maintains hepatic lipid homeostasis, modulates lipid-induced inflammatory responses, and contributes to viral immunity, indirectly affecting glucose and lipid metabolic balance. Full article
(This article belongs to the Section Long Non-Coding RNA)
Show Figures

Figure 1

30 pages, 5339 KiB  
Article
Short-Term Incubation of H9c2 Cardiomyocytes with Cannabigerol Attenuates Diacylglycerol Accumulation in Lipid Overload Conditions
by Sylwia Dziemitko, Adrian Chabowski and Ewa Harasim-Symbor
Cells 2025, 14(13), 998; https://doi.org/10.3390/cells14130998 - 30 Jun 2025
Viewed by 411
Abstract
Fatty acids (FAs) play a crucial role in human physiology, including energy production and serving as signaling molecules. However, a dysregulation in their balance can lead to multiple disorders, such as obesity and metabolic syndrome. These pathological conditions alter the balance between the [...] Read more.
Fatty acids (FAs) play a crucial role in human physiology, including energy production and serving as signaling molecules. However, a dysregulation in their balance can lead to multiple disorders, such as obesity and metabolic syndrome. These pathological conditions alter the balance between the heart’s energetic substrates, promoting an increased reliance on FAs and decreased cardiac efficiency. A therapeutic application of a non-psychotropic phytocannabinoid, cannabigerol (CBG), seems to be a promising target since it interacts with different receptors and ion channels, including cannabinoid receptors—CB1 and CB2, α2 adrenoceptor, or 5-hydroxytryptamine receptor. Therefore, in the current study, we evaluated a concentration-dependent effect of CBG (2.5 µM, 5 µM, and 10 µM) on H9c2 cardiomyocytes in lipid overload conditions. Gas–liquid chromatography and Western blotting techniques were used to determine the cellular lipid content and the level of selected proteins involved in FA metabolism, glucose transport, and the insulin signaling pathway. The glucose uptake assay was performed using a colorimetric method. Eighteen-hour CBG treatment in the highest concentration (10 µM) significantly diminished the accumulation of diacylglycerols (DAGs) and the saturation status of this lipid fraction. Moreover, the same concentration of CBG markedly decreased the level of FA transporters, namely fatty acid translocase (CD36) and plasma membrane fatty acid-binding protein (FABPpm), in the presence of palmitate (PA) in the culture medium. The results of our experiment suggest that CBG can significantly modulate lipid storage and composition in cardiomyocytes, thereby protecting against lipid-induced cellular dysfunction. Full article
(This article belongs to the Special Issue Advancements in Cardiac Metabolism)
Show Figures

Graphical abstract

17 pages, 982 KiB  
Article
Growth Performance, Carcass Quality and Gut Microbiome of Finishing Stage Pigs Fed Formulated Protein-Energy Nutrients Balanced Diet with Banana Agro-Waste Silage
by Lan-Szu Chou, Chih-Yu Lo, Chien-Jui Huang, Hsien-Juang Huang, Shen-Chang Chang, Brian Bor-Chun Weng and Chia-Wen Hsieh
Life 2025, 15(7), 1033; https://doi.org/10.3390/life15071033 - 28 Jun 2025
Viewed by 428
Abstract
This study evaluated the effects of fermented banana agro-waste silage (BAWS) in finishing diets for KHAPS pigs (Duroc × MeiShan hybrid). BAWS was produced via 30 days of anaerobic fermentation of disqualified banana fruit, pseudostem, and wheat bran, doubling crude protein content and [...] Read more.
This study evaluated the effects of fermented banana agro-waste silage (BAWS) in finishing diets for KHAPS pigs (Duroc × MeiShan hybrid). BAWS was produced via 30 days of anaerobic fermentation of disqualified banana fruit, pseudostem, and wheat bran, doubling crude protein content and generating short-chain fatty acids, as indicated by a satisfactory Flieg’s score. Thirty-six pigs were assigned to control (0%), 5%, or 10% BAWS diets formulated to meet NRC nutritional guidelines. Over a 70-day period, BAWS inclusion caused no detrimental effects on growth performance, carcass traits, or meat quality; a transient decline in early-stage weight gain and feed efficiency occurred in the 10% group, while BAWS-fed pigs demonstrated reduced backfat thickness and increased lean area. Fore gut microbiome analysis revealed reduced Lactobacillus and elevated Clostridium sensu stricto 1, Terrisporobacter, Streptococcus, and Prevotella, suggesting enhanced fiber and carbohydrate fermentation capacity. Predictive COG (clusters of orthologous groups)-based functional profiling showed increased abundance of proteins associated with carbohydrate transport (COG2814, COG0561, COG0765) and stress-response regulation (COG2207). These results support BAWS as a sustainable feed ingredient that maintains production performance and promotes fore gut microbial adaptation, with implications for microbiota-informed nutrition and stress resilience in swine. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

15 pages, 270 KiB  
Article
Performance, Metabolism, and Economic Implications of Replacing Soybean Meal with Dried Distillers Grains with Solubles in Feedlot Cattle Diets
by Andrei L. R. Brunetto, Guilherme L. Deolindo, Ana Luiza de F. dos Santos, Luisa Nora, Maksuel Gatto de Vitt, Renato S. de Jesus, Bruna Klein, Luiz Eduardo Lobo e Silva, Roger Wagner, Gilberto V. Kozloski and Aleksandro S. da Silva
Fermentation 2025, 11(7), 363; https://doi.org/10.3390/fermentation11070363 - 23 Jun 2025
Viewed by 617
Abstract
The growing demand for biofuels, especially ethanol produced from corn, has driven the production of co-products such as dried distillers grains with solubles (DDGS). With a high protein content (around 30%), fiber, and minerals, DDGS presents an economical alternative for animal nutrition, replacing [...] Read more.
The growing demand for biofuels, especially ethanol produced from corn, has driven the production of co-products such as dried distillers grains with solubles (DDGS). With a high protein content (around 30%), fiber, and minerals, DDGS presents an economical alternative for animal nutrition, replacing traditional sources like soybean meal while maintaining productive performance and reducing costs. This study evaluated the total replacement of soybean meal with DDGS in the diet of confined Holstein cattle, focusing on weight gain, feed intake, digestibility, feed efficiency, animal health, meat quality, and economic viability. The 24 animals received diets with 80% concentrate, containing either DDGS or soybean meal, and no significant differences were observed in terms of body weight (p = 0.92), feed intake (p = 0.98), or feed efficiency (p = 0.97) between the two treatments. The average daily gain was 1.25 and 1.28 kg for cattle in the DDGS and soybean meal groups, respectively (p = 0.92). Regarding metabolic and digestive parameters, no relevant changes were found in blood levels, except for higher serum cholesterol (p = 0.03) levels in animals fed DDGS. The digestibility of neutral detergent fiber (NDF) (p = 0.03) and acid detergent fiber (ADF) (p = 0.05) was lower in the DDGS group, while the digestibility of ether extract was higher (p = 0.02). Rumen fluid analysis revealed an increase in the production of short-chain fatty acids (p = 0.01), such as acetic and butyric acids (p = 0.01), in the DDG-fed animals. In terms of meat quality, animals fed DDGS produced meat with lower levels of saturated fatty acids (SFA) (p = 0.05) and higher levels of unsaturated fatty acids (UFA) (p = 0.02), especially oleic acid (p = 0.05). This resulted in a healthier lipid profile, with a higher UFA/SFA ratio (p = 0.01). In terms of economic viability, DDGS-based diets were 10.5% cheaper, reducing the cost of production per animal by 7.67%. Profitability increased by 110% with DDGS compared to soybean meal, despite the high transportation costs. Therefore, replacing soybean meal with DDGS is an efficient and economical alternative for feeding confined cattle, maintaining zootechnical performance, increasing meat lipid content and improving fatty acid profile, and promoting higher profitability. This alternative is particularly advantageous in regions with easy access to the product. Full article
13 pages, 619 KiB  
Article
Exploring the Association Between CD36 rs1761667 Polymorphism and Susceptibility to Non-Contact Tissue Injuries in Moroccan Elite Cyclists and Field Hockey Players: A Pilot Study
by El Mokhtar El Ouali, Jihan Kartibou, Juan Del Coso, Badreddine El Makhzen, Laila Bouguenouch, Ramzi El Akbir, Abdelmoujoud El Haboussi, Omar Akhouayri, Azeddine Ibrahimi, Abdelhalem Mesfioui and Hassane Zouhal
Genes 2025, 16(6), 651; https://doi.org/10.3390/genes16060651 - 28 May 2025
Viewed by 960
Abstract
Background: Non-contact tissue injury in elite athletes is influenced by multiple factors, including genetic predisposition. Although previous research has identified several genetic markers associated with injury susceptibility, the role of the CD36 (cluster of differentiation 36) gene, a key regulator of fatty [...] Read more.
Background: Non-contact tissue injury in elite athletes is influenced by multiple factors, including genetic predisposition. Although previous research has identified several genetic markers associated with injury susceptibility, the role of the CD36 (cluster of differentiation 36) gene, a key regulator of fatty acid transport into skeletal muscle and other vital tissues, remains unexplored in this context. A single-nucleotide polymorphism in the CD36 gene (rs1761667) involves an A-to-G substitution (with three genotypes = AA and GG homozygotes and AG heterozygotes), and previous data have reported that individuals carrying the AA genotype of the CD36 gene show reduced expression of the CD36 protein and poorer lipid metabolism. Additionally, it has been recently found that the frequency of the AA genotype is significantly lower in elite cyclists compared to field hockey players. No previous study has examined the association between the CD36 rs1761667 polymorphism and athlete injury risk. Therefore, the aim of this study was to investigate the potential association between the CD36 rs1761667 polymorphism and non-contact tissue injury susceptibility in elite Moroccan cyclists and field hockey players. Methods: Forty-three elite Moroccan male athletes, including 19 cyclists and 24 national team field hockey players, volunteered for this study. Non-contact tissue injuries during the 2022/2023 sports season have been recorded. Genotyping of the CD36 rs1761667 polymorphism was carried out using Sanger sequencing. Chi-square tests were used to analyze the Hardy–Weinberg equilibrium and compare the genotypes and characteristics of athletes with and without non-contact injuries. Results: During the 2022/2023 sports season, 21.05% of cyclists (4 out of 19) and 33.33% of field hockey players (8 out of 24) experienced non-contact tissue injuries. The genotypic frequency was similar in the injured and non-injured groups among cyclists (χ2 and p not calculated because “AA = 0” in both groups), field hockey players (χ2 = 3.30, p = 0.19), and all athletes (χ2 = 1.73, p = 0.41). Additionally, the dominant model of the CD36 rs1761667 polymorphism (AA+AG vs. GG) did not reveal a significant risk of non-contact injuries among cyclists (OR: 1.20, 95% CI: 0.13–19.09, p > 0.9999), field hockey players (OR: infinity, 95% CI: 0.23-infinity, p = 0.53), and all athletes (OR: 2.75, 95% CI: 0.32–34.12, p = 0.65). Furthermore, the recessive model (AA vs. AG+GG) did not demonstrate any effect on the risk of non-contact injuries in cyclists (OR and 95% CI not calculated, p > 0.9999), field hockey players (OR: 0.33, 95% CI: 0.05–2.40, p = 0.38), and all athletes (OR: 0.55, 95% CI: 0.10–2.60, p = 0.69). Conclusions: This study suggests that the association between specific genotypes (AA, AG, and GG) or alleles (A and G) of the CD36 gene and susceptibility to non-contact tissue injuries in Moroccan cycling and field hockey players is uncertain. Given the small sample size, further studies will be needed to explore and confirm these findings. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 1767 KiB  
Brief Report
β-Hydroxybutyrate Reduces Body Weight by Modulating Fatty Acid Oxidation and Beiging in the Subcutaneous Adipose Tissue of DIO Mice
by Violeta Heras, Virginia Mela, Pallavi Kompella, Elena Rojano, Guillermo Paz-López, Lucia Hurtado-García, Almudena Ortega-Gomez, Maria José García-López, María Luisa García-Martín, Juan A. G. Ranea, Francisco J. Tinahones and Isabel Moreno-Indias
Int. J. Mol. Sci. 2025, 26(11), 5064; https://doi.org/10.3390/ijms26115064 - 24 May 2025
Viewed by 756
Abstract
β-hydroxybutyrate (BHB) serves as an alternative cellular fuel during states of low glucose availability, such as fasting or carbohydrate restriction, when the body shifts to using fats and ketone bodies for energy. While BHB has shown potential metabolic benefits, its mechanisms of action [...] Read more.
β-hydroxybutyrate (BHB) serves as an alternative cellular fuel during states of low glucose availability, such as fasting or carbohydrate restriction, when the body shifts to using fats and ketone bodies for energy. While BHB has shown potential metabolic benefits, its mechanisms of action in the context of obesity are not fully understood. In this study, we examined the effects of BHB supplementation on subcutaneous adipose tissue (SAT) metabolism in a diet-induced obesity (DIO) mouse model. Adult male mice were first fed a high-fat diet for six weeks, followed by a standard diet with or without BHB supplementation for an additional six weeks. BHB supplementation led to significant body weight loss independent of food intake. This weight reduction was associated with decreased adipocyte differentiation, reflected by reduced peroxisome proliferator-activated receptor gamma (PPARγ) protein levels and lower uncoupling protein 1 (UCP1) expression, indicating altered SAT function. Transcriptomic analysis of SAT revealed upregulation of genes involved in fatty acid activation and transport (e.g., Slc27a2, Plin5, Acot4, Acsm3, Rik). Functional enrichment highlighted the activation of the PPAR signaling pathway and enrichment of peroxisomal components in the BHB group. Together, these results suggest that BHB promotes lipid remodeling in SAT, enhancing fatty acid metabolism while suppressing thermogenic pathways, and thus may represent a novel mechanism contributing to adiposity reduction and metabolic improvement. Full article
Show Figures

Graphical abstract

13 pages, 5120 KiB  
Article
Hepcidin Deficiency Disrupts Iron Homeostasis and Induces Ferroptosis in Zebrafish Liver
by Mingli Liu, Mingjian Peng, Jingwen Ma, Ruiqin Hu, Qianghua Xu, Peng Hu and Liangbiao Chen
Fishes 2025, 10(5), 243; https://doi.org/10.3390/fishes10050243 - 21 May 2025
Viewed by 559
Abstract
Hepcidin is a key regulator of systemic iron homeostasis, which is essential for maintaining iron balance and cellular health. To investigate its role in zebrafish, we empolyed a hepcidin knockout model. Morphological and histological analyses revealed pale livers and significant iron accumulation in [...] Read more.
Hepcidin is a key regulator of systemic iron homeostasis, which is essential for maintaining iron balance and cellular health. To investigate its role in zebrafish, we empolyed a hepcidin knockout model. Morphological and histological analyses revealed pale livers and significant iron accumulation in hep−/− zebrafish, particularly in liver, skin, and egg tissues. RNA sequencing identified 1,424 differentially expressed genes (DEGs) between wild-type (WT) and hep−/− zebrafish, with significant enrichment in pathways related to ferroptosis, fatty acid degradation, and heme binding. Western blot analysis showed reduced levels of key iron-related proteins, including GPX4, Fth1, and ferroportin (FPN), indicating impaired iron transport and increased oxidative stress. Gene Ontology (GO) and KEGG analyses highlighted disruptions in iron metabolism and lipid oxidation, linking iron overload to ferroptosis in the absence of hepcidin. These findings demonstrate that hepcidin deficiency leads to profound dysregulation of iron homeostasis, driving lipid peroxidation and ferroptosis in the zebrafish liver. Our study provides mechanistic insights into the molecular consequences of hepcidin loss, advancing our understanding of iron-related oxidative damage and its physiological impacts. Full article
(This article belongs to the Special Issue Genomics Applied to Fish Health)
Show Figures

Figure 1

18 pages, 5042 KiB  
Article
The Overexpression of an EnvZ-like Protein Improves the Symbiotic Performance of Mesorhizobia
by José Rodrigo da-Silva, Esther Menéndez, Solange Oliveira and Ana Alexandre
Agronomy 2025, 15(5), 1235; https://doi.org/10.3390/agronomy15051235 - 19 May 2025
Viewed by 492
Abstract
The two-component signal transduction system EnvZ/OmpR is described to mediate response to osmotic stress, although it regulates genes involved in other processes such as virulence, fatty acid uptake, exopolysaccharide production, peptide transportation, and flagella production. Considering that some of these processes [...] Read more.
The two-component signal transduction system EnvZ/OmpR is described to mediate response to osmotic stress, although it regulates genes involved in other processes such as virulence, fatty acid uptake, exopolysaccharide production, peptide transportation, and flagella production. Considering that some of these processes are known to be important for a successful symbiosis, the present study addresses the effects of extra envZ-like gene copies in the Mesorhizobium–chickpea symbiosis. Five Mesorhizobium-transformed strains, expressing the envZ-like gene from M. mediterraneum UPM-Ca36T, were evaluated in terms of symbiotic performance. Chickpea plants inoculated with envZ-transformed strains (PMI6envZ+ and EE7envZ+) showed a significantly higher symbiotic effectiveness as compared to the corresponding control. In plants inoculated with PMI6envZ+, a higher number of infection threads was observed, and nodules were visible 4 days earlier. Overall, our results showed that the overexpression of Env-like protein may influence the symbiotic process at different stages, leading to strain-dependent effects. This study contributes to elucidating the role of an EnvZ-like protein in the rhizobia–legume symbioses. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

15 pages, 4942 KiB  
Article
3,3′-Diindolylmethane Ameliorates Metabolism Dysfunction-Associated Fatty Liver Disease via AhR/p38 MAPK Signaling
by Jiewen Su, Heng Fang, Yunfeng Lin, Yilu Yao, Yanxi Liu, Yuquan Zhong, Xudong Li, Siyu Sun, Bing Huang, Guangyu Yang, Wenxue Li, Yan Zhang, Juntao Li, Jinyin Wu, Weiwen Liu, Qiansheng Hu and Wei Zhu
Nutrients 2025, 17(10), 1681; https://doi.org/10.3390/nu17101681 - 15 May 2025
Viewed by 939
Abstract
Background/Objectives: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a chronic hepatic condition marked by lipid buildup, lipotoxicity, and inflammation. Prior research indicates that 3,3′-Diindolemethane (DIM), a natural indole-type phytochemical that is abundant in brassicaceae vegetables, has been reported to reduce body weight [...] Read more.
Background/Objectives: Metabolic dysfunction-associated fatty liver disease (MAFLD) is a chronic hepatic condition marked by lipid buildup, lipotoxicity, and inflammation. Prior research indicates that 3,3′-Diindolemethane (DIM), a natural indole-type phytochemical that is abundant in brassicaceae vegetables, has been reported to reduce body weight and improve lipid metabolism in mice subjected to a high-fat diet (HFD). The aryl hydrocarbon receptor (AhR), a nuclear receptor implicated in lipid metabolism and immune regulation, serves as a functional receptor for DIM. However, the underlying signaling pathways that regulate MAFLD remain elusive. Our objective is to ascertain the beneficial impact of DIM on MAFLD and the associated mechanisms. Methods: Hematoxylin and eosin staining, together with Oil Red O staining, were utilized to assess the pathological changes and lipid deposition in the liver. Biochemical analysis was employed to measure levels of triglyceride (TG), total cholesterol (TC), free fatty acid (FFA), aspartate transaminase (AST), alanine transaminase (ALT), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C). The cell survival rate of HepG2 cells treated with palmitic acid (PA) and DIM was assessed using the CCK-8 assay. Flow cytometry was employed to measure the fluorescence intensity emitted by lipid droplets within cells. Western blotting analysis was performed to assess AhR pathway and fatty acid transporter expression levels in hepatic tissue. Results: Our results showed that DIM significantly attenuated body weight gain and hepatic injury brought on by HFD, decreased lipid droplet accumulation in HepG2 cells, and effectively suppressed the phosphorylation of p38 MAPK and the protein expression levels of fatty acid transporters CD36 and FATP4. Conclusions: DIM reduced lipid accumulation by activating AhR and suppressing p38 MAPK phosphorylation, thereby inhibiting fatty acid transport and inflammatory responses. These findings suggest that DIM may represent a promising therapeutic candidate for MAFLD, warranting further exploration for clinical applications. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

21 pages, 5818 KiB  
Article
Coix Seed Oil Alleviates Hyperuricemia in Mice by Ameliorating Oxidative Stress and Intestinal Microbial Composition
by Guozhen Wu, Xinming Wang, Hongjing Dong, Jinqian Yu, Tao Li and Xiao Wang
Nutrients 2025, 17(10), 1679; https://doi.org/10.3390/nu17101679 - 15 May 2025
Viewed by 893
Abstract
Background: Coix seed oil (YRO), rich in unsaturated fatty acids, has emerged as a promising intervention for hyperuricemia (HUA) due to its potential to alleviate oxidative damage and support organ health. Methods: The fatty acid composition of YRO was determined by [...] Read more.
Background: Coix seed oil (YRO), rich in unsaturated fatty acids, has emerged as a promising intervention for hyperuricemia (HUA) due to its potential to alleviate oxidative damage and support organ health. Methods: The fatty acid composition of YRO was determined by gas chromatography–mass spectrometry (GC-MS). A HUA mouse model was established, and serum markers and hepatic enzymes were evaluated. Renal mitochondrial function was assessed using immunohistochemistry and immunofluorescence, and urate transporter expression, along with key signaling proteins, was quantified by Western blot analysis. Additionally, gut microbiota composition was analyzed, and non-targeted metabolomics was performed to observe alterations in serum lipid metabolites. Results: YRO significantly reduced serum uric acid (UA) levels and normalized hepatic enzyme activities. Histological evaluation revealed less tissue damage in both the kidney and the intestine. In the kidney, YRO improved mitochondrial function and supported antioxidant defenses via regulation of Keap1/Nrf2 signaling. In the intestine, YRO enhanced barrier integrity by increasing ZO-1, Occludin, and Claudin-1 expression. Moreover, YRO modulated gut microbiota by increasing beneficial bacteria (Muribaculaceae, Prevotellaceae UCG-001, Lachnospiraceae_ NK4A136_group, Akkermansia) while suppressing harmful species (Bacteroides, Dubosiella). Lipid metabolomics indicated a restoration of phospholipid balance through modulation of the PI3K/AKT/mTOR pathway. Conclusions: YRO supported metabolic health by promoting UA homeostasis, enhancing mitochondrial function, reinforcing antioxidant capacity, and maintaining gut integrity. These findings suggest that coix seed oil could serve as a nutritional supplement in managing HUA and related metabolic disturbances. Full article
(This article belongs to the Special Issue Food Functional Factors and Nutritional Health)
Show Figures

Graphical abstract

Back to TopTop