Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,410)

Search Parameters:
Keywords = fast-foods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 346 KiB  
Review
Dietary Strategies in the Prevention of MASLD: A Comprehensive Review of Dietary Patterns Against Fatty Liver
by Barbara Janota, Karolina Janion, Aneta Buzek and Ewa Janczewska
Metabolites 2025, 15(8), 528; https://doi.org/10.3390/metabo15080528 - 4 Aug 2025
Viewed by 298
Abstract
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. [...] Read more.
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. This review highlights the importance of including antioxidant nutrients in the diet, such as vitamins C and E, CoQ10, and polyphenolic compounds. It also emphasizes substances that support lipid metabolism, including choline, alpha-lipoic acid, and berberine. Among food groups, it is crucial to choose those that help prevent metabolic disturbances. Among carbohydrate-rich foods, vegetables, fruits, and high-fiber products are recommended. For protein sources, eggs, fish, and white meat are preferred. Among fat sources, plant oils and fatty fish are advised due to their content of omega-3 and omega-6 fatty acids. Various dietary strategies aimed at preventing MASLD should include elements of the Mediterranean diet or be personalized to provide anti-inflammatory compounds and substances that inhibit fat accumulation in liver cells. Other recommended dietary models include the DASH diet, the flexitarian diet, intermittent fasting, and diets that limit fructose and simple sugars. Additionally, supplementing the diet with spirulina or chlorella, berberine, probiotics, or omega-3 fatty acids, as well as drinking several cups of coffee per day, may be beneficial. Full article
(This article belongs to the Special Issue Metabolic Dysregulation in Fatty Liver Disease)
Show Figures

Graphical abstract

9 pages, 805 KiB  
Article
Feasibility and Safety of Liberal Fluid Fasting in an Orthogeriatric Department: A Prospective Before-and-After Cohort Study
by Thomas Saller, Janine Allmendinger, Patricia Knabe, Max Knabe, Lina Lenninger, Anne-Marie Just, Denise Seidenspinner, Boris Holzapfel, Carl Neuerburg and Roland Tomasi
J. Clin. Med. 2025, 14(15), 5477; https://doi.org/10.3390/jcm14155477 - 4 Aug 2025
Viewed by 127
Abstract
Background: The rationale for strict fluid fasting for pediatric and adult patients has been questioned recently. Point-of-care tools for the evaluation of gastric content have evolved over time, often using gastric ultrasound. Usually, the gastric antral cross-sectional area (CSA) is determined. A liberal [...] Read more.
Background: The rationale for strict fluid fasting for pediatric and adult patients has been questioned recently. Point-of-care tools for the evaluation of gastric content have evolved over time, often using gastric ultrasound. Usually, the gastric antral cross-sectional area (CSA) is determined. A liberal fluid fasting regimen, that is, ingestion of liquid fluids until the call for theatre, does not delay gastric emptying compared to midnight fasting, as evaluated with gastric ultrasound. Anesthesia is safe, and no adverse events result from a liberal regimen. Methods: The ethics committee of LMU Munich approved the study (21-0903). Liberal fluid fasting in a geriatric orthopedic surgery department (LFFgertrud) is a sub-study within a project investigating perioperative neurocognitive disorders (Study Registration: DRKS00026801). After obtaining informed consent from 134 geriatric patients 70 years or older, we investigated the gastric antral cross-sectional area (CSA) prior to and postimplementation of liberal fluid management, respectively. Results: After the implementation of liberal fluid fasting, fasting times for solid food and liquids decreased from 8.8 (±5.5) to 1.8 (±1.8) hours (p < 0.0001). In 39 patients where CSA was obtained, a slight increase in fluid was encountered. No critical amount of gastric content was observed, and no adverse events occurred. Conclusions: A liberal fluid fasting concept was safe even for comorbid elderly patients in orthopedic surgery. Applying a gastric ultrasound may be helpful to increase safety. According to the incidence of complications encountered in our study, it seems indispensable. Full article
(This article belongs to the Section Anesthesiology)
Show Figures

Figure 1

13 pages, 1944 KiB  
Article
A Sliding Microfluidic Chip-Integrated Colorimetric Biosensor Using MnO2 Nanoflowers for Rapid Salmonella Detection
by Yidan Niu, Juntao Jiang, Xin Zhi, Jiahui An and Yuhe Wang
Micromachines 2025, 16(8), 904; https://doi.org/10.3390/mi16080904 - 31 Jul 2025
Viewed by 183
Abstract
Rapid screening of foodborne pathogens is critical for food safety, yet current detection techniques often suffer from low efficiency and complexity. In this study, we developed a sliding microfluidic colorimetric biosensor for the fast, sensitive, and multiplex detection of Salmonella. First, the [...] Read more.
Rapid screening of foodborne pathogens is critical for food safety, yet current detection techniques often suffer from low efficiency and complexity. In this study, we developed a sliding microfluidic colorimetric biosensor for the fast, sensitive, and multiplex detection of Salmonella. First, the target bacteria were specifically captured by antibody-functionalized magnetic nanoparticles in the microfluidic chip, forming magnetic bead–bacteria complexes. Then, through motor-assisted sliding of the chip, manganese dioxide (MnO2) nanoflowers conjugated with secondary antibodies were introduced to bind the captured bacteria, generating a dual-antibody sandwich structure. Finally, a second sliding step brought the complexes into contact with a chromogenic substrate, where the MnO2 nanoflowers catalyzed a colorimetric reaction, and the resulting signal was used to quantify the Salmonella concentration. Under optimized conditions, the biosensor achieved a detection limit of 10 CFU/mL within 20 min. In spiked pork samples, the average recovery rate of Salmonella ranged from 94.9% to 125.4%, with a coefficient of variation between 4.0% and 6.8%. By integrating mixing, separation, washing, catalysis, and detection into a single chip, this microfluidic biosensor offers a user-friendly, time-efficient, and highly sensitive platform, showing great potential for the on-site detection of foodborne pathogens. Full article
(This article belongs to the Section B1: Biosensors)
Show Figures

Figure 1

15 pages, 288 KiB  
Article
Association of Dietary Sodium-to-Potassium Ratio with Nutritional Composition, Micronutrient Intake, and Diet Quality in Brazilian Industrial Workers
by Anissa Melo Souza, Ingrid Wilza Leal Bezerra, Karina Gomes Torres, Gabriela Santana Pereira, Raiane Medeiros Costa and Antonio Gouveia Oliveira
Nutrients 2025, 17(15), 2483; https://doi.org/10.3390/nu17152483 - 29 Jul 2025
Viewed by 249
Abstract
Introduction: The sodium-to-potassium (Na:K) ratio in the diet is a critical biomarker for cardiovascular and metabolic health, yet global adherence to recommended levels remains poor. Objectives: The objective of this study was to identify dietary determinants of the dietary Na:K ratio and its [...] Read more.
Introduction: The sodium-to-potassium (Na:K) ratio in the diet is a critical biomarker for cardiovascular and metabolic health, yet global adherence to recommended levels remains poor. Objectives: The objective of this study was to identify dietary determinants of the dietary Na:K ratio and its associations with micronutrient intake and diet quality. Methods: An observational cross-sectional survey was conducted in a representative sample of manufacturing workers through a combined stratified proportional and two-stage probability sampling plan, with strata defined by company size and industrial sector from the state of Rio Grande do Norte, Brazil. Dietary intake was assessed using 24 h recalls via the Multiple Pass Method, with Na:K ratios calculated from quantified food composition data. Diet quality was assessed with the Diet Quality Index-International (DQI-I). Multiple linear regression was used to analyze associations of Na:K ratio with the study variables. Results: The survey was conducted in the state of Rio Grande do Norte, Brazil, in 921 randomly selected manufacturing workers. The sample mean age was 38.2 ± 10.7 years, 55.9% males, mean BMI 27.2 ± 4.80 kg/m2. The mean Na:K ratio was 1.97 ± 0.86, with only 0.54% of participants meeting the WHO recommended target (<0.57). Fast food (+3.29 mg/mg per serving, p < 0.001), rice, bread, and red meat significantly increased the ratio, while fruits (−0.16 mg/mg), dairy, white meat, and coffee were protective. Higher Na:K ratios were associated with lower intake of calcium, magnesium, phosphorus, and vitamins C, D, and E, as well as poorer diet quality (DQI-I score: −0.026 per 1 mg/mg increase, p < 0.001). Conclusions: These findings highlight the critical role of processed foods in elevating Na:K ratios and the potential for dietary modifications to improve both electrolyte balance and micronutrient adequacy in industrial workers. The study underscores the need for workplace interventions that simultaneously address sodium reduction, potassium enhancement, and overall diet quality improvement tailored to socioeconomic and cultural contexts, a triple approach not previously tested in intervention studies. Future studies should further investigate nutritional consequences of imbalanced Na:K intake. Full article
(This article belongs to the Special Issue Mineral Nutrition on Human Health and Disease)
16 pages, 1920 KiB  
Review
Time-Restricted Eating Improves Glycemic Control in Patients with Type 2 Diabetes: A Meta-Analysis and Systematic Review
by Taegwang Nam, Hyeongbin Oh, Anna Kim and Yongtaek Oh
Int. J. Mol. Sci. 2025, 26(15), 7310; https://doi.org/10.3390/ijms26157310 - 29 Jul 2025
Viewed by 634
Abstract
Time-restricted eating (TRE), a dietary strategy that aligns food intake with circadian rhythms, has emerged as a promising non-pharmacological approach for improving glycemic control in patients with type 2 diabetes. This systematic review and meta-analysis evaluated the effects of TRE on glycemic outcomes [...] Read more.
Time-restricted eating (TRE), a dietary strategy that aligns food intake with circadian rhythms, has emerged as a promising non-pharmacological approach for improving glycemic control in patients with type 2 diabetes. This systematic review and meta-analysis evaluated the effects of TRE on glycemic outcomes by analyzing eight randomized controlled trials involving 312 participants with type 2 diabetes or impaired fasting glucose. Meta-analyses of six eligible studies demonstrated that TRE significantly reduced fasting glucose (mean difference [MD]: −0.74 mmol/L; 95% CI: −1.13 to −0.36) and glycated hemoglobin (ΔHbA1c) (MD: −0.11%; 95% CI: −0.15 to −0.07) and increased time in range (TIR) for blood glucose (MD: +10.51%; 95% CI: 6.81 to 14.21). Improvements in fasting glucose and HbA1c were modest but consistent, while the increase in TIR showed no between-study heterogeneity, suggesting a robust and reproducible benefit of TRE on glycemic stability. These findings support the clinical feasibility and effectiveness of TRE as a dietary intervention in diabetes management. However, further high-quality trials with standardized protocols and longer follow-up are needed to confirm long-term efficacy and inform guidelines. Full article
Show Figures

Figure 1

22 pages, 786 KiB  
Article
Diet to Data: Validation of a Bias-Mitigating Nutritional Screener Using Assembly Theory
by O’Connell C. Penrose, Phillip J. Gross, Hardeep Singh, Ania Izabela Rynarzewska, Crystal Ayazo and Louise Jones
Nutrients 2025, 17(15), 2459; https://doi.org/10.3390/nu17152459 - 28 Jul 2025
Viewed by 219
Abstract
Background/Objectives: Traditional dietary screeners face significant limitations: they rely on subjective self-reporting, average intake estimates, and are influenced by a participant’s awareness of being observed—each of which can distort results. These factors reduce both accuracy and reproducibility. The Guide Against Age-Related Disease (GARD) [...] Read more.
Background/Objectives: Traditional dietary screeners face significant limitations: they rely on subjective self-reporting, average intake estimates, and are influenced by a participant’s awareness of being observed—each of which can distort results. These factors reduce both accuracy and reproducibility. The Guide Against Age-Related Disease (GARD) addresses these issues by applying Assembly Theory to objectively quantify food and food behavior (FFB) complexity. This study aims to validate the GARD as a structured, bias-resistant tool for dietary assessment in clinical and research settings. Methods: The GARD survey was administered in an internal medicine clinic within a suburban hospital system in the southeastern U.S. The tool assessed six daily eating windows, scoring high-complexity FFBs (e.g., fresh plants, social eating, fasting) as +1 and low-complexity FFBs (e.g., ultra-processed foods, refined ingredients, distracted eating) as –1. To minimize bias, patients were unaware of scoring criteria and reported only what they ate the previous day, avoiding broad averages. A computer algorithm then scored responses based on complexity, independent of dietary guidelines. Internal (face, convergent, and discriminant) validity was assessed using Spearman rho correlations. Results: Face validation showed high inter-rater agreement using predefined Assembly Index (Ai) and Copy Number (Ni) thresholds. Positive correlations were found between high-complexity diets and behaviors (rho = 0.533–0.565, p < 0.001), while opposing constructs showed moderate negative correlations (rho = –0.363 to −0.425, p < 0.05). GARD scores aligned with established diet patterns: Mediterranean diets averaged +22; Standard American Diet averaged −10. Full article
(This article belongs to the Section Nutrition Methodology & Assessment)
Show Figures

Figure 1

14 pages, 927 KiB  
Article
Health Literacy and Nutrition of Adolescent Patients with Inflammatory Bowel Disease
by Hajnalka Krisztina Pintér, Viola Anna Nagy, Éva Csajbókné Csobod, Áron Cseh, Nóra Judit Béres, Bence Prehoda, Antal Dezsőfi-Gottl, Dániel Sándor Veres and Erzsébet Pálfi
Nutrients 2025, 17(15), 2458; https://doi.org/10.3390/nu17152458 - 28 Jul 2025
Viewed by 911
Abstract
Background/Objectives: Nutrition in inflammatory bowel disease (IBD) is a central concern for both patients and healthcare professionals, as it plays a key role not only in daily life but also in disease outcomes. The Mediterranean diet represents a healthy dietary pattern that [...] Read more.
Background/Objectives: Nutrition in inflammatory bowel disease (IBD) is a central concern for both patients and healthcare professionals, as it plays a key role not only in daily life but also in disease outcomes. The Mediterranean diet represents a healthy dietary pattern that may be suitable in many cases of IBD. Among other factors, health literacy (HL) influences patients’ dietary habits and their ability to follow nutritional recommendations. The aim of this study was to assess HL and dietary patterns in adolescent and pediatric patients with IBD. Methods: We conducted a cross-sectional study that included a total of 99 participants (36 patients with IBD receiving biological therapy recruited from a single center and 63 healthy controls). HL was assessed using the Newest Vital Sign (NVS) tool regardless of disease activity, whereas diet quality was evaluated by the KIDMED questionnaire exclusively in patients in remission. Linear regression models were used to evaluate the effects of sex, age and group (patients vs. control) on NVS and KIDMED scores. Results: Most participants (87.9%) had an adequate HL, which was positively associated with age. While the most harmful dietary habits (such as frequent fast-food consumption) were largely absent in the patient group, KIDMED scores indicated an overall poor diet quality. Conclusions: Although HL increased with age and was generally adequate in this cohort, it did not translate into healthier dietary patterns as measured by the KIDMED score. Further research with larger, more diverse samples is needed to clarify the relationship between HL and dietary adherence in adolescents with IBD. Full article
(This article belongs to the Section Pediatric Nutrition)
Show Figures

Figure 1

17 pages, 2625 KiB  
Article
Monitoring and Diagnostics of Non-Thermal Plasmas in the Food Sector Using Optical Emission Spectroscopy
by Sanda Pleslić and Franko Katalenić
Appl. Sci. 2025, 15(15), 8325; https://doi.org/10.3390/app15158325 - 26 Jul 2025
Viewed by 118
Abstract
Non-thermal plasma technology is used in the food sector due to its many advantages such as low operating costs, fast and efficient processing at low temperatures, minimal environmental impact, and preservation of sensory and nutritional properties. In this article, the plasma was generated [...] Read more.
Non-thermal plasma technology is used in the food sector due to its many advantages such as low operating costs, fast and efficient processing at low temperatures, minimal environmental impact, and preservation of sensory and nutritional properties. In this article, the plasma was generated using a high-voltage electrical discharge (HVED) with argon at a voltage of 35 kV and a frequency of 60 Hz. Plasma monitoring and diagnostics were performed using optical emission spectroscopy (OES) to optimise the process parameters and for quality control. OES was used as a non-invasive sensor to collect useful information about the properties of the plasma and to identify excited species. The values obtained for electron temperature and electron density (up to 2.3 eV and up to 1023 m3) confirmed that the generated plasma is a non-thermal plasma. Therefore, the use of OES is recommended in the daily control of food processing, as this is necessary to confirm that the processes are non-thermal and suitable for the food sector. Full article
(This article belongs to the Special Issue Innovative Technology in Food Analysis and Processing)
Show Figures

Figure 1

15 pages, 933 KiB  
Article
A Prospective Interventional Study on the Beneficial Effect of Fish Oil-Enriched High-Protein Oral Nutritional Supplement (FOHP-ONS) on Malnourished Older Cancer Patients
by Hui-Fang Chiu, Shu Ru Zhuang, You-Cheng Shen, Subramanian Thangaleela and Chin-Kun Wang
Nutrients 2025, 17(15), 2433; https://doi.org/10.3390/nu17152433 - 25 Jul 2025
Viewed by 387
Abstract
Background: Malnutrition and cancer-related fatigue (CRF) are prevalent in cancer patients, significantly impacting prognosis and quality of life. Oral nutritional supplements (ONSs) enriched with protein and ω-3 fatty acids may improve nutritional status and mitigate CRF. This study evaluates the effects of a [...] Read more.
Background: Malnutrition and cancer-related fatigue (CRF) are prevalent in cancer patients, significantly impacting prognosis and quality of life. Oral nutritional supplements (ONSs) enriched with protein and ω-3 fatty acids may improve nutritional status and mitigate CRF. This study evaluates the effects of a high-protein, fish oil-enriched ONS (FOHP-ONS) on nutritional intake, body composition, fatigue, and quality of life in malnourished cancer patients. Methods: Cancer patients with malnutrition or inadequate food intake received 8 weeks of FOHP-ONS (2 cans/day, providing 4.2 g/day of ω-3 fatty acids). Dietary intake, body weight, handgrip strength, serum biochemical markers, nutritional status (PG-SGA), fatigue (BFI-T), and quality of life (EORTC QLQ-C30) were assessed at baseline, week 4, and week 8. Results: Of the 33 enrolled patients, 30 completed the study. Energy and protein intake significantly increased (p < 0.05), and body BMI and handgrip strength showed significant improvements (p < 0.05), while muscle mass did not change significantly. Nutritional status, assessed by PG-SGA, improved, with the proportion of severely malnourished patients (Stage C) decreasing from 46.7% to 13.3%, and moderately malnourished patients (Stage B) improving to well-nourished status (Stage A) from 10.0% to 30.0% (p < 0.001). Serum albumin levels increased significantly (p < 0.05), while fasting blood glucose significantly decreased (p < 0.05). Additionally, triglyceride levels significantly decreased (p < 0.05), while total cholesterol and LDL-C showed a downward trend. Cancer-related fatigue scores improved across all domains (p < 0.05), and quality of life significantly increased, particularly in physical and role functioning (p < 0.05). Conclusions: FOHP-ONS supplementation improved nutritional intake, body composition, and muscle strength while alleviating CRF and enhancing quality of life in malnourished cancer patients. These findings support its potential role in nutritional intervention for malnourished cancer patients. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

15 pages, 939 KiB  
Article
Fermentation to Increase the Value of Roasted Coffee Silverskin as a Functional Food Ingredient
by Nadia Guzińska, Maria Dolores del Castillo and Edyta Kordialik-Bogacka
Foods 2025, 14(15), 2608; https://doi.org/10.3390/foods14152608 - 25 Jul 2025
Viewed by 378
Abstract
Roasted coffee silverskin (RCSS) is a by-product of coffee production characterized by its content of phenolic compounds, both free and bound to macromolecules. In this study, RCSS was fermented to release these compounds and consequently increase its value as a functional food ingredient. [...] Read more.
Roasted coffee silverskin (RCSS) is a by-product of coffee production characterized by its content of phenolic compounds, both free and bound to macromolecules. In this study, RCSS was fermented to release these compounds and consequently increase its value as a functional food ingredient. Fermentation was carried out using yeast, acetic acid bacteria, and lactic acid bacteria, either as single strains or as a designed microbial consortium. The latter included Saccharomycodes ludwigii, Gluconobacter oxydans, and Levilactobacillus brevis, mimicking a symbiotic culture of bacteria and yeast commonly used in kombucha fermentation (SCOBY). This symbiotic microbial culture consortium demonstrated notable efficacy, significantly enhancing the total phenolic content in RCSS, with values reaching 14.15 mg GAE/g as determined by the Folin–Ciocalteu assay and 7.12 mg GAE/g according to the Fast Blue BB method. Antioxidant capacity improved by approximately 28% (ABTS) and 20% (DPPH). Moreover, the fermented RCSS supported the viability of probiotic strains (Saccharomyces boulardii SB01 and Levilactobacillus brevis ŁOCK 1152) under simulated intestinal conditions. These results suggest that RCSS, particularly after fermentation with a full symbiotic microbial culture consortium, has strong potential as a clean label, zero-waste functional food ingredient. Full article
Show Figures

Figure 1

14 pages, 4243 KiB  
Article
Evaluation of the Effects of Food and Fasting on Signal Intensities from the Gut Region in Mice During Magnetic Particle Imaging (MPI)
by Saeed Shanehsazzadeh and Andre Bongers
Magnetochemistry 2025, 11(8), 63; https://doi.org/10.3390/magnetochemistry11080063 - 25 Jul 2025
Viewed by 296
Abstract
Gastrointestinal signals present a major challenge in magnetic particle imaging (MPI) because of their strong background interference. This study aimed to evaluate and compare the gut MPI signal in mice fed six commercially available diets in Australia, including Gordon’s Specialty Stock Feeds (normal [...] Read more.
Gastrointestinal signals present a major challenge in magnetic particle imaging (MPI) because of their strong background interference. This study aimed to evaluate and compare the gut MPI signal in mice fed six commercially available diets in Australia, including Gordon’s Specialty Stock Feeds (normal and low iron), Specialty Feeds (normal and low iron), a Western diet, and Gubra-Amylin NASH (GAN diet). We also assessed the impact of 24 h fasting on gut signal reduction. Each diet group included three mice, and the gut signal intensity was monitored over seven days. The results indicated that the standard diet produced signal intensities approximately eight times greater than those of the low-iron diet from specialty feeds and over eleven times greater than those of the GAN or Western diets. Notably, switching to GAN or Western diets led to a tenfold reduction in the gut signal within 24 h, a decrease comparable to that achieved by fasting. These findings suggest that dietary modification—particularly the use of low-iron diets—can effectively minimize gastrointestinal signals in MPI, reducing background interference by up to 90%. This simple dietary adjustment offers a practical and noninvasive method for improving image clarity and experimental reliability in preclinical MPI studies. Full article
Show Figures

Figure 1

11 pages, 3393 KiB  
Article
Aryl Hydrocarbon Receptor Is Required for Fasting-Induced Improvement of Gut Barrier Integrity in Caenorhabditis elegans
by Junjie Sun and Yuseok Moon
Antioxidants 2025, 14(8), 905; https://doi.org/10.3390/antiox14080905 - 24 Jul 2025
Viewed by 296
Abstract
The intestinal barrier governs organismal health through nutrient absorption, microbial homeostasis, and immune surveillance. While calorie restriction (CR) enhances metabolic health, the molecular mechanisms underlying its beneficial effects on gut integrity remain unclear. Here, we demonstrate that the aryl hydrocarbon receptor (AHR), a [...] Read more.
The intestinal barrier governs organismal health through nutrient absorption, microbial homeostasis, and immune surveillance. While calorie restriction (CR) enhances metabolic health, the molecular mechanisms underlying its beneficial effects on gut integrity remain unclear. Here, we demonstrate that the aryl hydrocarbon receptor (AHR), a conserved xenobiotic sensor and metabolic regulator, is essential for CR-mediated improvements in intestinal function. Using Caenorhabditis elegans (C. elegans), we subjected wild-type (N2) and AHR-deficient strains (CZ2485 and ZG24) to ad libitum feeding (AL), intermittent fasting (IF), or complete food deprivation (FD). In wild-type animals, intermittent fasting markedly reduced intestinal permeability and bacterial burden while enhancing mitochondrial function and reducing reactive oxygen species. Complete food deprivation conferred modest benefits. Remarkably, these protective effects were severely compromised in AHR mutants, which exhibited increased gut leakage, bacterial colonization, and mitochondrial oxidative stress under fasting conditions. These findings establish AHR as a critical mediator of fasting-induced intestinal resilience, revealing a previously unrecognized regulatory axis linking metabolic sensing to gut barrier homeostasis. Our work illuminates fundamental mechanisms through which calorie restriction promotes gastrointestinal health and identifies AHR-dependent pathways as promising therapeutic targets for metabolic and inflammatory distress affecting the gut–systemic interface. Full article
Show Figures

Figure 1

12 pages, 1202 KiB  
Article
From Overweight to Severe Obesity: Physical Activity and Behavioural Profiles in a Large Clinical Cohort
by Francesca Campoli, Elvira Padua, Lucio Caprioli, Saeid Edriss, Giuseppe Annino, Vincenzo Bonaiuto and Mauro Lombardo
J. Funct. Morphol. Kinesiol. 2025, 10(3), 283; https://doi.org/10.3390/jfmk10030283 - 24 Jul 2025
Viewed by 254
Abstract
Background: Behavioural heterogeneity in obesity is increasingly recognised, but how specific dietary patterns, food preferences and physical activity vary between obesity classes remains poorly characterised. Methods: We analysed behavioural, dietary, and lifestyle data from 1366 adults attending a tertiary obesity clinic in Italy. [...] Read more.
Background: Behavioural heterogeneity in obesity is increasingly recognised, but how specific dietary patterns, food preferences and physical activity vary between obesity classes remains poorly characterised. Methods: We analysed behavioural, dietary, and lifestyle data from 1366 adults attending a tertiary obesity clinic in Italy. Participants were stratified into five obesity classes defined by BMI. Age-adjusted regression models and chi-square tests with Bonferroni correction were used to examine associations between obesity severity and key behavioural outcomes, including food preferences, eating behaviours, physical activity, and self-reported sleep quality. Results: The prevalence of uncontrolled eating, skipping meals, and fast eating significantly increased with obesity severity after adjusting for age (all p < 0.05). Preference for yoghurt and legumes declined with increasing BMI, whereas preferences for meat and dairy remained stable. Age-adjusted sport participation decreased progressively, with significantly lower odds in Obesity I, II, and IIIA compared to the Overweight group. Sleep quality was highest among overweight participants and declined with obesity severity; night-time awakenings were most frequent in Obesity IIIB. Conclusions: Distinct behavioural and lifestyle traits, including lower sport participation, reduced preference for fibre-rich foods, and greater frequency of uncontrolled, fast, and irregular eating, showed overall trends across obesity classes. While these findings suggest the presence of behavioural phenotypes, their interpretation is limited by the cross-sectional design and the use of self-reported, non-validated measures. Future studies should incorporate objective assessments to inform targeted obesity interventions. Full article
Show Figures

Figure 1

63 pages, 4971 KiB  
Review
Electrochemical Nanosensors Applied to the Assay of Some Food Components—A Review
by Aurelia Magdalena Pisoschi, Florin Iordache, Loredana Stanca, Petronela Mihaela Rosu, Nicoleta Ciocirlie, Ovidiu Ionut Geicu, Liviu Bilteanu and Andreea Iren Serban
Chemosensors 2025, 13(8), 272; https://doi.org/10.3390/chemosensors13080272 - 23 Jul 2025
Viewed by 600
Abstract
Nanomaterials’ special features enable their extensive application in chemical and biochemical nanosensors for food assays; food packaging; environmental, medicinal, and pharmaceutical applications; and photoelectronics. The analytical strategies based on novel nanomaterials have proved their pivotal role and increasing interest in the assay of [...] Read more.
Nanomaterials’ special features enable their extensive application in chemical and biochemical nanosensors for food assays; food packaging; environmental, medicinal, and pharmaceutical applications; and photoelectronics. The analytical strategies based on novel nanomaterials have proved their pivotal role and increasing interest in the assay of key food components. The choice of transducer is pivotal for promoting the performance of electrochemical sensors. Electrochemical nano-transducers provide a large active surface area, enabling improved sensitivity, specificity, fast assay, precision, accuracy, and reproducibility, over the analytical range of interest, when compared to traditional sensors. Synthetic routes encompass physical techniques in general based on top–down approaches, chemical methods mainly relying on bottom–up approaches, or green technologies. Hybrid techniques such as electrochemical pathways or photochemical reduction are also applied. Electrochemical nanocomposite sensors relying on conducting polymers are amenable to performance improvement, achieved by integrating redox mediators, conductive hydrogels, and molecular imprinting polymers. Carbon-based or metal-based nanoparticles are used in combination with ionic liquids, enhancing conductivity and electron transfer. The composites may be prepared using a plethora of combinations of carbon-based, metal-based, or organic-based nanomaterials, promoting a high electrocatalytic response, and can accommodate biorecognition elements for increased specificity. Nanomaterials can function as pivotal components in electrochemical (bio)sensors applied to food assays, aiming at the analysis of bioactives, nutrients, food additives, and contaminants. Given the broad range of transducer types, detection modes, and targeted analytes, it is important to discuss the analytical performance and applicability of such nanosensors. Full article
(This article belongs to the Special Issue Electrochemical Sensor for Food Analysis)
Show Figures

Graphical abstract

58 pages, 6017 KiB  
Review
Electrochemical (Bio)Sensors for Toxins, Foodborne Pathogens, Pesticides, and Antibiotics Detection: Recent Advances and Challenges in Food Analysis
by Marta Feroci, Gerardo Grasso, Roberto Dragone and Antonella Curulli
Biosensors 2025, 15(7), 468; https://doi.org/10.3390/bios15070468 - 21 Jul 2025
Viewed by 463
Abstract
Food safety plays an important and fundamental role, primarily for human health and certainly for the food industry. In this context, developing efficient, highly sensitive, safe, inexpensive, and fast analytical methods for determining chemical and biological contaminants, such as electrochemical (bio)sensors, is crucial. [...] Read more.
Food safety plays an important and fundamental role, primarily for human health and certainly for the food industry. In this context, developing efficient, highly sensitive, safe, inexpensive, and fast analytical methods for determining chemical and biological contaminants, such as electrochemical (bio)sensors, is crucial. The development of innovative and high-performance electrochemical (bio)sensors can significantly support food chain monitoring. In this review, we have surveyed and analyzed the latest examples of electrochemical (bio)sensors for the analysis of some common biological contaminants, such as toxins and pathogenic bacteria and chemical contaminants, such as pesticides, and antibiotics. Full article
(This article belongs to the Special Issue Biosensors for Food Safety)
Show Figures

Graphical abstract

Back to TopTop