Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = farnesyl diphosphate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3611 KB  
Review
Smart Secondary Metabolites in Marine Environments: The Case of Elatol
by Angélica R. Soares, Nathalia Nocchi, Ana R. Díaz-Marrero, Renato C. Pereira and José J. Fernández
Mar. Drugs 2026, 24(2), 61; https://doi.org/10.3390/md24020061 - 1 Feb 2026
Viewed by 48
Abstract
The concept of “Smart Secondary Metabolites” is introduced here to describe a privileged class of natural products defined by structural originality, biosynthetic adaptability, and broad interaction potential with biological systems. Elatol, a halogenated sesquiterpene chiefly produced by Laurencia red seaweeds and [...] Read more.
The concept of “Smart Secondary Metabolites” is introduced here to describe a privileged class of natural products defined by structural originality, biosynthetic adaptability, and broad interaction potential with biological systems. Elatol, a halogenated sesquiterpene chiefly produced by Laurencia red seaweeds and occasionally accumulated by their consumers, exemplifies this concept with remarkable clarity. Its biosynthesis unfolds from farnesyl diphosphate via γ-bisabolane cations, bromochlorination, and stereoselective cyclization to chamigrene scaffolds, generating both (+)- and (–)-enantiomers, two metabolites with clearly distinct potential ecological roles and pharmacological profiles. This review synthesizes the current state of knowledge on elatol’s distribution, biosynthetic origins, ecological relevance, and therapeutic potential. Elatol serves as a multifunctional chemical mediator, fulfilling defensive, communicative, and regulatory roles whose intensity shifts in response to herbivory, biofouling, temperature, and salinity. In parallel, its potent activities against infectious, metabolic, and neoplastic diseases highlight its growing value as a drug lead, reflected in a rising number of patent claims. Altogether, elatol emerges as a model Smart Secondary Metabolite whose ecological sophistication and biochemical versatility position it as a promising scaffold for marine-derived drug discovery. Full article
(This article belongs to the Special Issue Pharmacognostic Potential of Seaweed Extracts and Metabolites)
Show Figures

Graphical abstract

23 pages, 6313 KB  
Article
Four Petal-Specific TPS Drive Nocturnal Terpene Scent in Jasminum sambac
by Yuan Yuan, Li Hu, Xian He, Jinan Li, Chao Wan, Yue Zhang, Yuting Wang, Wei Wang and Binghua Wu
Horticulturae 2026, 12(1), 10; https://doi.org/10.3390/horticulturae12010010 - 23 Dec 2025
Viewed by 824
Abstract
Floral volatile terpenoids are known to play important roles in plant pollination biology by attracting animal pollinators, repelling antagonists, and enhancing resistance to potential microbial pathogens. The terpenoid blend emitted by a flower is usually plant-lineage specific and is primarily determined by a [...] Read more.
Floral volatile terpenoids are known to play important roles in plant pollination biology by attracting animal pollinators, repelling antagonists, and enhancing resistance to potential microbial pathogens. The terpenoid blend emitted by a flower is usually plant-lineage specific and is primarily determined by a set of versatile terpene synthases (TPSs), which catalyze the final step of diverse terpenoid synthesis. The strongly scented flower of Jasminum sambac (L.) Aiton emits linalool and α-farnesene, which dominate the nocturnal floral VOCs, yet the corresponding TPSs have not been identified. Here, we show that four TPS enzymes are responsible for the synthesis of a mixture of volatile terpenoids in the flower, based on their highly correlated and almost exclusive expression in the petal, as well as their enzymatic characterizations in vitro and in Nicotiana benthamiana Domin. JsTPS01 (TPS-a) acts as a sesquiterpene synthase, producing τ-cadinol in yeast at levels that mirror its rhythmic expression in petals. JsTPS02 (TPS-b) carries a plastid-targeting transit peptide, localizes to chloroplasts/plastids, and converts geranyl diphosphate (GPP) to linalool with high affinity (Km = 28.2 ± 3.4 µM). JsTPS03 is a TPS-b clade member that can convert farnesyl diphosphate (FPP) to farnesol with a Km of 14.4 ± 5.9 μM in an in vitro assay using isolated yeast vehicles. JsTPS04 (TPS-e/f) exhibits dual targeting—cytosolic in protoplasts of Arabidopsis thaliana (L.) Heynh, but plastidic in J. sambac petals—and functions as a bifunctional mono-/sesqui-TPS, forming linalool from GPP (Km = 2.5 ± 0.3 µM) and trans-nerolidol from FPP (Km = 7.6 ± 0.6 µM). Transient expression in N. benthamiana leaves further confirmed its in-planta linalool production. Collectively, we identified four preferentially expressed terpene synthases that contribute to the production of linalool, τ-cadinol, trans-nerolidol, and farnesol in J. sambac. Full article
(This article belongs to the Special Issue Molecular Biology for Stress Management in Horticultural Plants)
Show Figures

Figure 1

15 pages, 2702 KB  
Article
Proteome Insights into the Watercore Disorder on Pineapple Discovered Resistant Germplasm-Specific Accumulation of Cell Wall-Modifying and Defense Proteins
by Dan Wang, Yanli Yao, Qian Yang, Cunzhi Peng, Lili Chang, Qingsong Wu, Xiaoqin Mo, Bingqiang Xu and Zheng Tong
Horticulturae 2025, 11(12), 1540; https://doi.org/10.3390/horticulturae11121540 - 18 Dec 2025
Viewed by 455
Abstract
Watercore disease, a physiological disorder in pineapple (Ananas comosus), manifests during late fruit development. Affected fruits develop water-soaked flesh and reduced storability. (1) Background: To explore underlying molecular mechanisms, comparative proteomic profiling was conducted in this study. (2) Methods: Data-independent acquisition [...] Read more.
Watercore disease, a physiological disorder in pineapple (Ananas comosus), manifests during late fruit development. Affected fruits develop water-soaked flesh and reduced storability. (1) Background: To explore underlying molecular mechanisms, comparative proteomic profiling was conducted in this study. (2) Methods: Data-independent acquisition (DIA) strategy was employed for comparative analysis between the resistant germplasm “35-1” and the susceptible germplasm “29-3”, as well as between the healthy and diseased “Paris”. (3) Results: Resistant (“35-1”) versus susceptible (“29-3”) germplasm analysis revealed differentially expressed proteins (DEPs) and unique proteins (SEPs) enriched in cell walls, secretory vesicles, and apoplast, functioning in cell wall loosening, hormone response, isoflavonoid biosynthesis, and farnesyl diphosphate biosynthesis. Healthy versus diseased “Paris” pulp analysis showed DEPs/SEPs enrichment in ribosomal small subunit biogenesis. These proteins form a central regulatory network potentially orchestrating tRNA synthesis, tubulin biosynthesis, and other carbohydrate metabolism. Partial protein overlap occurred in germplasm- and disease-derived differences. Resistant germplasm (“35-1”) and healthy “Paris” accumulated stress-responsive/resistant proteins and cell wall-modifying enzymes (e.g., phenylalanine ammonia-lyase, raffinose synthase, expansins, and mannan hydrolase). Susceptible germplasm (“29-3”) and diseased “Paris” exhibited prominent stress-responsive protein accumulation, such as alcohol dehydrogenase, 1-aminocyclopropane-1-carboxylate oxidase, and hypoxia-induced protein. (4) Conclusions: This comparative proteomics study identifies pineapple watercore resistance/susceptibility-associated proteins, providing a molecular basis for resistant germplasm development and disorder control. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

31 pages, 3366 KB  
Review
Protein Prenylation Makeovers in Plants: Insights into Substrate Diversification
by Quentin Chevalier, Pauline Debié, Alexandre Huchelmann and Andréa Hemmerlin
Int. J. Mol. Sci. 2025, 26(21), 10638; https://doi.org/10.3390/ijms262110638 - 31 Oct 2025
Cited by 1 | Viewed by 852
Abstract
Type-I protein prenylation, the post-translational modification of CaaX motif-containing proteins, relies on two substrates: the target protein and a mevalonate-derived prenyl diphosphate co-substrate, either farnesyl diphosphate (FPP) or geranylgeranyl diphosphate (GGPP). Two enzymes, protein farnesyltransferase and type-I geranylgeranyltransferase, recognize and bind both co-substrates. [...] Read more.
Type-I protein prenylation, the post-translational modification of CaaX motif-containing proteins, relies on two substrates: the target protein and a mevalonate-derived prenyl diphosphate co-substrate, either farnesyl diphosphate (FPP) or geranylgeranyl diphosphate (GGPP). Two enzymes, protein farnesyltransferase and type-I geranylgeranyltransferase, recognize and bind both co-substrates. Modifying potentially hundreds of distinct protein targets within a constrained timeframe poses a major regulatory challenge for the cell. However, the mechanisms controlling prenyltransferase activity, including substrate availability, enzyme specificity, and catalytic efficiency, remain poorly understood, particularly in plants. Plant prenylation systems exhibit distinctive features. The diversity of prenyl diphosphate donors is expanded by the plastidial methylerythritol phosphate pathway, which supplements the mevalonate pathway and may provide alternative prenyl groups beyond the canonical FPP and GGPP. Additionally, many CaaX-containing proteins are plant-specific, and post-transcriptional modifications generate multiple prenylatable isoforms, increasing substrate complexity. In this review, we examine the diversification of both prenyl diphosphate donors and protein substrates in plants, hypothesizing that such diversification may illuminate key mechanisms underlying the cellular regulation of protein prenylation. Full article
(This article belongs to the Collection Feature Papers Collection in Biochemistry)
Show Figures

Graphical abstract

17 pages, 3096 KB  
Article
Integrating Structural Bioinformatics and Functional Mechanisms of Sesquiterpene Synthases CARS and CADS in Lavandula angustifolia (Lavender)
by Dafeng Liu, Na Li, Huashui Deng, Daoqi Song and Hongjun Song
Int. J. Mol. Sci. 2025, 26(19), 9568; https://doi.org/10.3390/ijms26199568 - 30 Sep 2025
Cited by 1 | Viewed by 776
Abstract
Lavender species are economically valuable plants, widely cultivated for their essential oils (EOs), which include sesquiterpenes. The sesquiterpenes caryophyllene and cadinol are major constituents, contributing woody and balsamic notes. However, the specific enzymes catalyzing their formation in lavender have not been elucidated. This [...] Read more.
Lavender species are economically valuable plants, widely cultivated for their essential oils (EOs), which include sesquiterpenes. The sesquiterpenes caryophyllene and cadinol are major constituents, contributing woody and balsamic notes. However, the specific enzymes catalyzing their formation in lavender have not been elucidated. This study reports the comprehensive functional and structural characterization of two pivotal sesquiterpene synthases from Lavandula angustifolia (lavender): caryophyllene synthase (CARS) and cadinol synthase (CADS). Mutation experiments were performed based on molecular docking predictions, revealing that negatively charged residues interact electrostatically with magnesium ions (Mg2+). Both deletion of 1–226 and 1–228 (∆1–226 and ∆1–228) display activity levels equivalent to their corresponding wild-type proteins, while deletions at positions 522–548 and 529–555 significantly enhanced enzyme activity. Additionally, the highest expression levels of CARS were in the flowers under white light for 8 h, while CADS exhibited peak expression in the leaves under white light for 12 h. These findings deepen our understanding of the regulatory mechanisms involved in sesquiterpene biosynthesis in lavender and provide insights for genetic engineering strategies aimed at enhancing EO production. Such advances could also inform the development of cosmetic, personal care, and medicinal products. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

23 pages, 5807 KB  
Article
Integrated Analysis of the Metabolome and Transcriptome During Apple Ripening to Highlight Aroma Determinants in Ningqiu Apples
by Jun Ma, Guangzong Li, Yannan Chu, Haiying Yue, Zehua Xu, Jiaqi Wu, Xiaolong Li and Yonghua Jia
Plants 2025, 14(8), 1165; https://doi.org/10.3390/plants14081165 - 9 Apr 2025
Cited by 3 | Viewed by 1484
Abstract
We investigated the dynamic changes in volatile aroma compound profiles (types and concentrations) and associated gene expression patterns in both the peel and pulp tissues of apples during fruit maturation. This study aimed to elucidate the metabolic regulatory mechanisms underlying volatile aroma biosynthesis [...] Read more.
We investigated the dynamic changes in volatile aroma compound profiles (types and concentrations) and associated gene expression patterns in both the peel and pulp tissues of apples during fruit maturation. This study aimed to elucidate the metabolic regulatory mechanisms underlying volatile aroma biosynthesis in Malus domestica “Ningqiu” apples, thereby providing theoretical support for the comprehensive utilization of aroma resources. Our methodological framework integrated headspace solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC-MS), ultra-high-performance liquid chromatography–orbitrap mass spectrometry (UHPLC-OE-MS), and Illumina high-throughput sequencing to generate comprehensive metabolomic and transcriptomic profiles of peel and pulp tissues. Critical differential aroma compound classes were identified, including esters, aldehydes, alcohols, terpenoids, and ketones, with their metabolic pathways systematically mapped through KEGG functional annotation. Our findings revealed substantial transcriptomic and metabolomic divergence across carotenoid, terpenoid, and fatty acid metabolic pathways. Integrative analysis of multi-omics data revealed 26 and 31 putative biologically significant hub genes in peel and pulp tissues, respectively, putatively associated with the observed metabolic signatures. Among these, five core genes—farnesyl diphosphate synthase (FDPS1.X1), alcohol acyltransferases (AAT1 and AAT3), alcohol dehydrogenase (ADH3), and carotenoid cleavage dioxygenase (CCD3)—were recognized as shared regulatory determinants between both tissue types. Furthermore, terpene synthase (TPS7) emerged as a peel-specific regulatory factor, while hydroperoxide lyase (HPL2), alcohol dehydrogenases (ADH2 and ADH4), and alcohol acyltransferase (AAT2) were identified as pulp-exclusive modulators of metabolic differentiation. The experimental findings provide foundational insights into the molecular basis of aroma profile variation in Malus domestica “Ningqiu” and establish a functional genomics framework for precision breeding initiatives targeting fruit quality optimization through transcriptional regulatory network manipulation. Full article
Show Figures

Figure 1

12 pages, 1052 KB  
Article
Exploring the Anti-Chagas Activity of Zanthoxylum chiloperone’s Seedlings Through Metabolomics and Protein–Ligand Docking
by Ninfa Vera de Bilbao, Ryland T. Giebelhaus, Ryan P. Dias, Maria Elena Ferreira, Miguel Martínez, Lorea Velasco-Carneros, Seo Lin Nam, A. Paulina de la Mata, Jean-Didier Maréchal, Ahissan Innocent Adou, Gloria Yaluff, Elva Serna, Muriel Sylvestre, Susana Torres, Alicia Schinini, Ricardo Galeano, Alain Fournet, James J. Harynuk and Gerardo Cebrián-Torrejón
Plants 2025, 14(6), 954; https://doi.org/10.3390/plants14060954 - 18 Mar 2025
Cited by 3 | Viewed by 1172
Abstract
This publication reports the controlled cultivation of Zanthoxylum chiloperone var. angustifolium Engl. (Rutaceae) in several growth substrates under controlled greenhouse conditions. This plant is well-known for its anti-Chagas (trypanocidal) activity, related to the presence of several β-carboline alkaloids. The metabolomic study of Z. [...] Read more.
This publication reports the controlled cultivation of Zanthoxylum chiloperone var. angustifolium Engl. (Rutaceae) in several growth substrates under controlled greenhouse conditions. This plant is well-known for its anti-Chagas (trypanocidal) activity, related to the presence of several β-carboline alkaloids. The metabolomic study of Z. chiloperone seedlings over two years of growth (2018–2020) was performed using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC × GC-TOFMS). The canthin-6-one alkaloids, canthin-6-one and 5-methoxy-canthin-6-one, were putatively identified in Z. chiloperone extracts. Finally, in vitro and in silico studies of trypanocidal activity were performed, suggesting that canthin-6-one alkaloids could interact with the main pharmacological targets against Trypanosoma cruzi, cruzain protease, dihydroorotate dehydrogenase, lanosterol 14-alpha-demethylase, farnesyl diphosphate, and squalene synthases. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

15 pages, 3470 KB  
Article
Enhancement and Mechanism of Ergosterol Biosynthesis in Termite Ball Fungus Athelia termitophila by Methyl Jasmonate
by Yong-Gang Fang, Zahid Khan, Fang-Cheng Hu, Xiao-Hong Su and Lian-Xi Xing
Curr. Issues Mol. Biol. 2025, 47(3), 149; https://doi.org/10.3390/cimb47030149 - 26 Feb 2025
Cited by 1 | Viewed by 1150
Abstract
Ergosterol is a component of fungal cell membranes that has physiological functions and applications in drugs, such as anti-inflammatory, anti-tumor, anti-fungal, and other immunosuppressive activities. The fungus Athelia termitophila, also known as the termite ball fungus, primarily contains secondary metabolites (like active [...] Read more.
Ergosterol is a component of fungal cell membranes that has physiological functions and applications in drugs, such as anti-inflammatory, anti-tumor, anti-fungal, and other immunosuppressive activities. The fungus Athelia termitophila, also known as the termite ball fungus, primarily contains secondary metabolites (like active ingredients) that are similar to ergosterol. To enhance the synthesis of ergosterol and mycelial biomass in termite ball fungus, methyl jasmonate and salicylic acid were used to stimulate the biosynthesis of ergosterol compounds during the growth of TMB mycelium and relative quantitative levels of gene transcripts. The conditions of the inducers were optimized. Under 80 µmol/L MJ incubation conditions, the content of ergosterol compounds in TMB was increased by 2.23-fold compared with the wild-type strain. RT-qPCR results at the transcriptional level of ergosterol synthesis pathway genes showed that MJ significantly induced the expression of HMGR (3-Hydroxy-3-Methylglutaryl-Coa Reductase), HMGS (3-Hydroxy-3-Methylglutaryl-Coa Synthase), SE (Squalene Epoxidase), and FPS (Farnesyl Diphosphate Synthase) genes in the ergosterol synthesis pathway. For expression levels at different induction days, we collected 7/10 d and 4/6/8 d samples with similar expression patterns, as well as SS (Squalene Synthase)/FPS (Farnesyl Diphosphate Synthase), SE (Squalene Epoxidase)/MVD (Mevalonate Diphosphate Decarboxylase), and HMGS (3-Hydroxy-3-Methylglutaryl-Coa Synthase)/HMGR (3-Hydroxy-3-Methylglutaryl-Coa Reductase) genes with similar expression patterns, which resulted in gene transcription data during ergosterol content synthesis. The current study provides an effective method to increase the ergosterol contents in termite ball fungus and a new idea for the mechanism of MJ-induced ergosterol compound biosynthesis. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Graphical abstract

22 pages, 8556 KB  
Article
Genome-Wide Identification and Expression Profile of Farnesyl Pyrophosphate Synthase (FPS) Gene Family in Euphorbia Hirta L.
by Xinyi Bian, Tingkai Wu, Runrun Qiang, Zhi Deng, Fazal Rehman, Qiyu Han, Dong Xu, Yuan Yuan, Xiaobo Wang, Zewei An, Wenguan Wu, Huasen Wang and Han Cheng
Int. J. Mol. Sci. 2025, 26(2), 798; https://doi.org/10.3390/ijms26020798 - 18 Jan 2025
Cited by 2 | Viewed by 2208
Abstract
The biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are essential for sesquiterpenes and triterpenes, respectively, is primarily governed by the mevalonate pathway, wherein farnesyl pyrophosphate synthase (FPS) plays a pivotal role. This study identified eight members of the [...] Read more.
The biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are essential for sesquiterpenes and triterpenes, respectively, is primarily governed by the mevalonate pathway, wherein farnesyl pyrophosphate synthase (FPS) plays a pivotal role. This study identified eight members of the FPS gene family in Euphorbia hirta, designated EhFPS1EhFPS8, through bioinformatics analysis, revealing their distribution across several chromosomes and a notable tandem gene cluster. The genes exhibited strong hydrophilic properties and key functional motifs crucial for enzyme activity. An in-depth analysis of the EhFPS genes highlighted their significant involvement in isoprenoid metabolism and lipid biosynthesis, with expression patterns influenced by hormones such as jasmonic acid and salicylic acid. Tissue-specific analysis demonstrated that certain FPS genes, particularly EhFPS1, EhFPS2, and EhFPS7, showed elevated expression levels in latex, suggesting their critical roles in terpenoid biosynthesis. Furthermore, subcellular localization studies have indicated that these proteins are primarily found in the cytoplasm, reinforcing their function in metabolic processes. These findings provide a foundational understanding of the FPS genes in E. hirta, including their gene structures, conserved domains, and evolutionary relationships. This study elucidates the potential roles of these genes in response to environmental factors, hormone signaling, and stress adaptation, thereby paving the way for future functional analyses aimed at exploring the regulation of terpenoid biosynthesis and enhancing stress tolerance in this species. Full article
(This article belongs to the Special Issue Research on Plant Genomics and Breeding: 2nd Edition)
Show Figures

Figure 1

18 pages, 13191 KB  
Article
Estrogen Enhances FDFT1 Expression in Theca Cells of Chicken Hierarchical Ovarian Follicles by Increasing LSD1Ser54p Level Through GSK3β Phosphorylation at 216th Tyrosine
by Yanhong Zhang, Conghao Zhong, Xinmei Shu, Qingxin Liu and Yunliang Jiang
Biomolecules 2024, 14(11), 1343; https://doi.org/10.3390/biom14111343 - 22 Oct 2024
Cited by 4 | Viewed by 2139
Abstract
The development of chicken ovarian follicles involves two key stages of primordial follicle recruitment and follicle selection that are tightly regulated by multiple reproductive hormones and cytokines. Our previous study revealed an estrogen-stimulated increase in the phosphorylation level of serine at position 54 [...] Read more.
The development of chicken ovarian follicles involves two key stages of primordial follicle recruitment and follicle selection that are tightly regulated by multiple reproductive hormones and cytokines. Our previous study revealed an estrogen-stimulated increase in the phosphorylation level of serine at position 54 of lysine demethylase 1A (LSD1Ser54p) in the theca cells of chicken hierarchical ovarian follicles (Post-TCs). In this study, we further found that the upregulation of LSD1Ser54p by estrogen was performed by glycogen synthase kinase 3 beta (GSK3β) and that GSK3β promoted LSD1Ser54p levels by directly binding to the SWIRM and AOL1 domains of LSD1. Upon estrogen stimulation, the phosphorylation level of tyrosine at position 216 of GSK3β (GSK3βTyr216p) increased, which enhanced the binding between LSD1 and GSK3β. The subsequent transcriptome sequencing on chicken Post-TCs treated with estrogen and CUT&RUN sequencing against the LSD1Ser54p protein revealed that the expression of the farnesyl-diphosphate farnesyltransferase 1 (FDFT1) gene was simultaneously upregulated by estrogen, GSK3β, and LSD1Ser54p. Moreover, the overexpression of FDFT1 further promoted cholesterol biosynthesis in chicken Post-TCs. In short, the findings of this study suggest that estrogen-induced tyrosine phosphorylation at position 216 of GSK3β can upregulate the level of LSD1Ser54p, leading to the activation of FDFT1 expression and subsequently promoting cholesterol biosynthesis in chicken Post-TCs, which may in turn enhance estrogen synthesis. Full article
(This article belongs to the Section Molecular Reproduction)
Show Figures

Figure 1

20 pages, 5274 KB  
Article
Chromosome-Scale Genome and Transcriptomic Analyses Reveal Differential Regulation of Terpenoid Secondary Metabolites in Hericium coralloides
by Kexin Meng, Junyi Lv, Tuo Zhang, Yuanyuan Liu, Peng Zhang, Yue Zhang, Banghui Hu, Qianhui Huang, Baogui Xie and Junsheng Fu
J. Fungi 2024, 10(10), 704; https://doi.org/10.3390/jof10100704 - 9 Oct 2024
Cited by 4 | Viewed by 1945
Abstract
Construction of the genome of Hericium coralloides, a species of edible mushroom, and identification of the genes involved in terpenoid biosynthesis can determine the biology and genetics of terpenoids. The present study describes the assembly of a high-quality chromosome-scale genome of H. [...] Read more.
Construction of the genome of Hericium coralloides, a species of edible mushroom, and identification of the genes involved in terpenoid biosynthesis can determine the biology and genetics of terpenoids. The present study describes the assembly of a high-quality chromosome-scale genome of H. coralloides using Pacbio HiFi sequencing and Hi-C technology. This genome consisted of 13 chromosomes, a total size of 43.6 Mb, contigs of N50 3.6 Mb, GC content at 54%, and BUSCOs integrity of 96.9%. Genes associated with terpenoid biosynthesis were predicted by KEGG enrichment analysis and homologous alignment. The Her011461 and Her008335 genes, encoding proteins in the terpenoid backbone synthesis pathway, were found to encode geranylgeranyl pyrophosphate and farnesyl diphosphate synthases, key enzymes in the biosynthesis of geranylgeranyl diphosphate, a precursor of several diterpenoids. Her011463 was found to be involved in regulating diterpene cyclase. The Her005433, Her006724, Her010605, and Her010608 genes were found to encode sesquiterpene synthesis. Most of these genes were more highly expressed in dikaryotic mycelia than in the primordium and fruiting bodies, indicating that terpenoids may be more abundant in dikaryotic mycelia. To our knowledge, this study is the first to assemble the H. coralloides genome at the chromosome scale and to identify the genes involved in terpenoid biosynthesis. Full article
Show Figures

Figure 1

13 pages, 9328 KB  
Article
Transcriptome and Metabolome Analysis of BmFAMeT6 Overexpression in Bombyx mori
by Yang Yu, Tian Li and Ping Chen
Genes 2024, 15(10), 1261; https://doi.org/10.3390/genes15101261 - 27 Sep 2024
Cited by 1 | Viewed by 1318
Abstract
Background/Objectives: The gene-encoding farnesyl diphosphate O-methyltransferase 6 (FAMeT 6) is a member of the farnesyl diphosphate O-methyltransferase family. Our previous studies have demonstrated its influence on juvenile hormone levels in third instar silkworm larvae. Methods: we utilized transcriptomic and metabolomic techniques to investigate [...] Read more.
Background/Objectives: The gene-encoding farnesyl diphosphate O-methyltransferase 6 (FAMeT 6) is a member of the farnesyl diphosphate O-methyltransferase family. Our previous studies have demonstrated its influence on juvenile hormone levels in third instar silkworm larvae. Methods: we utilized transcriptomic and metabolomic techniques to investigate the changes in third instar larvae at 0, 12, and 24 h following BmFAMeT6 overexpression. Results: (1) The differentially expressed homologous genes were enriched in detoxification-related pathways at all three time points. (2) Transcription factor analysis of DEGs indicated a predominant presence of ZF-C2H2. (3) The metabolite-related network suggested that BmFAMeT6 may influence the metabolism of silkworm larvae through the ABC transporters, purine metabolism, and tyrosine metabolism pathways. (4) The differential gene count, differential metabolite count, and types of metabolites at the three time points indicated a shift in the regulatory focus within the larvae as time progresses, with the inflection point of regulation occurring at the third instar larval stage, 12 h. Conclusion: In summary, our research indicates that the regulatory role of BmFAMeT6 occurs within the context of the domestic silkworm’s own growth and development regulation. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Graphical abstract

26 pages, 5993 KB  
Article
Unveiling the Impact of Eco-Friendly Synthesized Nanoparticles on Vegetative Growth and Gene Expression in Pelargonium graveolens and Sinapis alba L.
by Maha M. Kamel, Abdelfattah Badr, Dalal Hussien M. Alkhalifah, Rehab Mahmoud, Yasser GadelHak and Wael N. Hozzein
Molecules 2024, 29(14), 3394; https://doi.org/10.3390/molecules29143394 - 19 Jul 2024
Viewed by 2393
Abstract
Nanoscale geranium waste (GW) and magnesium nanoparticle/GW nanocomposites (Mg NP/GW) were prepared using green synthesis. The Mg NP/GW samples were subjected to characterization using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR-FT). The surface morphology of the materials was examined using a scanning [...] Read more.
Nanoscale geranium waste (GW) and magnesium nanoparticle/GW nanocomposites (Mg NP/GW) were prepared using green synthesis. The Mg NP/GW samples were subjected to characterization using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR-FT). The surface morphology of the materials was examined using a scanning electron microscope (SEM), and their thermal stability was assessed through thermal gravimetric analysis (TG). The BET-specific surface area, pore volume, and pore size distribution of the prepared materials were determined using the N2 adsorption–desorption method. Additionally, the particle size and zeta potentials of the materials were also measured. The influence of the prepared nanomaterials on seed germination was intensively investigated. The results revealed an increase in seed germination percent at low concentrations of Mg NP/GWs. Upon treatment with Mg NP/GW nanoparticles, a reduction in the mitotic index (MI) was observed, indicating a decrease in cell division. Additionally, an increase in chromosomal abnormalities was detected. The efficacy of GW and Mg NP/GW nanoparticles as new elicitors was evaluated by studying their impact on the expression levels of the farnesyl diphosphate synthase (FPPS1) and geranylgeranyl pyrophosphate (GPPS1) genes. These genes play a crucial role in the terpenoid biosynthesis pathway in Sinapis alba (S. alba) and Pelargonium graveolens (P. graveolens) plants. The expression levels were analyzed using reverse transcription–quantitative polymerase chain reaction (RT-qPCR) analysis. The qRT-PCR analysis of FPPS and GPPS gene expression was performed. The outputs of FPPS1 gene expression demonstrated high levels of mRNA in both S. alba and P. graveolens with fold changes of 25.24 and 21.68, respectively. In contrast, the minimum expression levels were observed for the GPPS1 gene, with fold changes of 11.28 and 6.48 in S. alba and P. graveolens, respectively. Thus, this study offers the employment of medicinal plants as an alternative to fertilizer usage resulting in promoting environmental preservation, optimal waste utilization, reducing water consumption, and cost reduction. Full article
(This article belongs to the Topic Advanced Biomaterials: Processing and Applications)
Show Figures

Figure 1

19 pages, 12061 KB  
Article
Impact of Methyl Jasmonate on Terpenoid Biosynthesis and Functional Analysis of Sesquiterpene Synthesis Genes in Schizonepeta tenuifolia
by Dishuai Li, Congling Jia, Guyin Lin, Jingjie Dang, Chanchan Liu and Qinan Wu
Plants 2024, 13(14), 1920; https://doi.org/10.3390/plants13141920 - 12 Jul 2024
Cited by 3 | Viewed by 2574
Abstract
This study investigates the impact of methyl jasmonate (MeJA) on the volatile oil composition of Schizonepeta tenuifolia and elucidates the function of the StTPS45 gene, a key player in terpenoid biosynthesis. The effect of different concentrations of MeJA (0, 50, 100, 200, and [...] Read more.
This study investigates the impact of methyl jasmonate (MeJA) on the volatile oil composition of Schizonepeta tenuifolia and elucidates the function of the StTPS45 gene, a key player in terpenoid biosynthesis. The effect of different concentrations of MeJA (0, 50, 100, 200, and 300 μmol/L) on the growth of S. tenuifolia adventitious bud clusters was analyzed over a 20 d period. Using gas chromatography–mass spectrometry (GC-MS), 17 compounds were identified from the adventitious bud clusters of S. tenuifolia. Significant changes in the levels of major monoterpenes, including increased contents of (+)-limonene and (+)-menthone, were observed, particularly at higher concentrations of MeJA. Analysis of transcriptome data from three groups treated with 0, 100, and 300 μmol/L MeJA revealed significant changes in the gene expression profiles following MeJA treatment. At 100 μmol/L MeJA, most terpene synthase (TPS) genes were overexpressed. Additionally, gene expression and functional predictions suggested that StTPS45 acts as germacrene D synthase. Therefore, StTPS45 was cloned and expressed in Escherichia coli, and enzyme activity assays confirmed its function as a germacrene D synthase. Molecular docking and structural prediction of StTPS45 further suggested specific interactions with farnesyl diphosphate (FPP), aligning with its role in the terpenoid synthesis pathway. These findings provide valuable insights into the modulation of secondary metabolite pathways by jasmonate signaling and underscore the potential of genetic engineering approaches to enhance the production of specific terpenoids in medicinal plants. Full article
(This article belongs to the Special Issue Chemical Characteristics and Bioactivity of Plant Natural Products)
Show Figures

Figure 1

12 pages, 1426 KB  
Article
Farnesyl Diphosphate Synthase Gene Associated with Loss of Bone Mass Density and Alendronate Treatment Failure in Patients with Primary Osteoporosis
by Werbson Lima Guaraná, Camilla Albertina Dantas Lima, Alexandre Domingues Barbosa, Sergio Crovella and Paula Sandrin-Garcia
Int. J. Mol. Sci. 2024, 25(11), 5623; https://doi.org/10.3390/ijms25115623 - 22 May 2024
Cited by 2 | Viewed by 1977
Abstract
Aminobisphosphonates (NBPs) are the first-choice medication for osteoporosis (OP); NBP treatment aims at increasing bone mineral density (BMD) by inhibiting the activity of farnesyl diphosphate synthase (FDPS) enzyme in osteoclasts. Despite its efficacy, inadequate response to the drug and side effects have been [...] Read more.
Aminobisphosphonates (NBPs) are the first-choice medication for osteoporosis (OP); NBP treatment aims at increasing bone mineral density (BMD) by inhibiting the activity of farnesyl diphosphate synthase (FDPS) enzyme in osteoclasts. Despite its efficacy, inadequate response to the drug and side effects have been reported. The A allele of the rs2297480 (A > C) SNP, found in the regulatory region of the FDPS gene, is associated with reduced gene transcription. This study evaluates the FDPS variant rs2297480 (A > C) association with OP patients’ response to alendronate sodium treatment. A total of 304 OP patients and 112 controls were enrolled; patients treated with alendronate sodium for two years were classified, according to BMD variations at specific regions (lumbar spine (L1-L4), femoral neck (FN) and total hip (TH), as responders (OP-R) (n = 20) and non-responders (OP-NR) (n = 40). We observed an association of CC genotype with treatment failure (p = 0.045), followed by a BMD decrease in the regions L1-L4 (CC = −2.21% ± 2.56; p = 0.026) and TH (CC = −2.06% ± 1.84; p = 0.015) after two years of alendronate sodium treatment. Relative expression of the FDPS gene was also evaluated in OP-R and OP-NR patients. Higher expression of the FDPS gene was also observed in OP-NR group (FC = 1.84 ± 0.77; p = 0.006) when compared to OP-R. In conclusion, the influence observed of FDPS expression and the rs2897480 variant on alendronate treatment highlights the importance of a genetic approach to improve the efficacy of treatment for primary osteoporosis. Full article
(This article belongs to the Special Issue Genetic Variations in Human Diseases)
Show Figures

Figure 1

Back to TopTop