Chromosome-Scale Genome and Transcriptomic Analyses Reveal Differential Regulation of Terpenoid Secondary Metabolites in Hericium coralloides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Protoplasts
2.3. PacBio Library Construction and Sequencing
2.4. Hi-C Library Construction and Sequencing
2.5. Illumina Library Construction and Sequencing
2.6. Genome Assembly and Annotation
2.6.1. De Novo Genome Assembly
2.6.2. Repeat Sequence Annotation
2.6.3. Prediction of Non-Coding RNA
2.6.4. Annotation of Genome Structure
2.6.5. Annotation of Gene Function
2.7. Mitochondrial Genome Assembly and Annotation
2.8. Collinearity Analysis
2.9. Determination of Erinacines
2.10. Extraction of Total RNA and Determination of Quality
2.11. Analysis of Differentially Expressed Genes
2.12. Statistical Analysis of Data
3. Results
3.1. Culture Conditions
3.2. High-Quality Genome Assembly
3.3. Prediction of Genome Components
3.4. Prediction of Genome Function
3.5. Comparison of the MK-2 Genome with Other Genomes
3.6. Prediction of H. Coralloides Gene Clusters Related to the Biosynthesis of Terpenoids
3.7. Terpenoid Backbone Biosynthesis Pathway
3.8. Diterpenoid Biosynthesis Pathway
3.9. Sesquiterpene Biosynthesis Pathway
3.10. Validation of RNA-Seq Results Using qRT-PCR
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shimbo, M.; Kawagishi, H.; Yokogoshi, H. Erinacine A increases catecholamine and nerve growth factor content in the central nervous system of rats. Nutr. Res. 2005, 25, 617–623. [Google Scholar] [CrossRef]
- Lee, K.C.; Kuo, H.C.; Shen, C.H.; Lu, C.C.; Huang, W.S.; Hsieh, M.C.; Huang, C.Y.; Kuo, Y.H.; Hsieh, Y.Y.; Teng, C.C.; et al. A proteomics approach to identifying novel protein targets involved in erinacine A-mediated inhibition of colorectal cancer cells’ aggressiveness. J. Cell. Mol. Med. 2016, 21, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, L.; Bao, L.; Yang, Y.; Ma, K.; Liu, H. Three new cyathane diterpenes with neurotrophic activity from the liquid cultures of Hericium erinaceus. J. Antibiot. 2018, 71, 818–821. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.H.; Chyau, C.C.; Chen, C.C.; Lee, L.Y.; Chen, W.P.; Liu, J.L.; Lin, W.H.; Mong, M.C. Erinacine A-Enriched Hericium erinaceus Mycelium Produces Antidepressant-Like Effects through Modulating BDNF/PI3K/Akt/GSK-3β Signaling in Mice. Int. J. Mol. Sci. 2018, 19, 341. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, R.-N.; Tang, Q.-J.; Zhang, J.-S.; Yang, Y.; Shang, X.-D. A new diterpene from the fungal mycelia of Hericium erinaceus. Phytochem. Lett. 2015, 11, 151–156. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, L.; Li, J.; Chen, J.; Yang, M. Genome Sequencing of Hericium coralloides by a Combination of PacBio RS II and Next-Generation Sequencing Platforms. Int. J. Genom. 2022, 2022, 4017654. [Google Scholar] [CrossRef]
- Li, Y.; Zhan, G.; Tu, M.; Wang, Y.; Cao, J.; Sun, S. A chromosome-scale genome and proteome draft of Tremella fuciformis. Int. J. Biol. Macromol. 2023, 247, 125749. [Google Scholar] [CrossRef]
- Vollger, M.R.; Logsdon, G.A.; Audano, P.A.; Sulovari, A.; Porubsky, D.; Peluso, P.; Wenger, A.M.; Concepcion, G.T.; Kronenberg, Z.N.; Munson, K.M.; et al. Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads. Ann. Hum. Genet. 2019, 84, 125–140. [Google Scholar] [CrossRef]
- Wang, B.; Yang, X.; Jia, Y.; Xu, Y.; Jia, P.; Dang, N.; Wang, S.; Xu, T.; Zhao, X.; Gao, S.; et al. High-quality Arabidopsis thaliana genome assembly with nanopore and HiFi long reads. Genom. Proteom. Bioinforma 2022, 20, 4–13. [Google Scholar] [CrossRef]
- Song, J.; Xie, W.; Wang, S.; Guo, Y.; Koo, D.H.; Kudrna, D.; Gong, C.; Huang, Y.; Feng, J.; Zhang, W.; et al. Two gap-free reference genomes and a global view of the centromere architecture in rice. Mol. Plant 2021, 14, 1757–1767. [Google Scholar] [CrossRef]
- Huo, J.; Zhong, S.; Du, X.; Cao, Y.; Wang, W.; Sun, Y.; Tian, Y.; Zhu, J.; Chen, J.; Xuan, L.; et al. Whole-genome sequence of Phellinus gilvus (mulberry Sanghuang) reveals its unique medicinal values. J. Adv. Res. 2020, 24, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Wang, Y.; Xie, C.; Zhou, Y.; Zhu, Z.; Peng, Y. Whole genome sequence of an edible and medicinal mushroom, Hericium erinaceus (Basidiomycota, Fungi). Genomics 2020, 112, 2393–2399. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Song, J.; Liang, J.; Wang, S.; Lu, J. Whole genome sequencing and genome annotation of the wild edible mushroom, Russula griseocarnosa. Genomics 2020, 112, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhao, S.; Hu, C.; Mao, C.; Guo, L.; Yu, H. Whole genome sequence of an edible mushroom Stropharia rugosoannulata (Daqiugaigu). J. Fungi 2022, 8, 99. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, L.; Shang, X.; Peng, B.; Li, Y.; Xiao, S.; Tan, Q.; Fu, Y. Chromosomal genome and population genetic analyses to reveal genetic architecture, breeding history and genes related to cadmium accumulation in Lentinula edodes. BMC Genom. 2022, 23, 120. [Google Scholar] [CrossRef]
- Cheng, Y.; Richard, R.B. Protoplast preparation and regeneration from spores of the biocontrol fungus Pseudozyma flocculosa. FEMS Microbiol. Lett. 2000, 190, 287–291. [Google Scholar] [CrossRef]
- Ma, Y.; Cui, G.; Chen, T.; Ma, X.; Wang, R.; Jin, B.; Yang, J.; Kang, L.; Tang, J.; Lai, C.; et al. Expansion within the CYP71D subfamily drives the heterocyclization of tanshinones synthesis in Salvia miltiorrhiza. Nat. Commun. 2021, 12, 685. [Google Scholar] [CrossRef]
- Cheng, H.A.; Concepcion, G.A.; Feng, X.A.; Zhang, H.; Li, H.A. Haplotyperesolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 2021, 2, 170–175. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Methods Mol. Biol. 2019, 1962, 227–245. [Google Scholar] [CrossRef]
- Rhie, A.A.; Walenz, B.P.; Koren, S.; Phillippy, A.M. Merqury: Reference-freequality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020, 21, 245. [Google Scholar] [CrossRef]
- Flynn, J.M.; Hubley, R.; Goubert, C.; Rosen, J.; Clark, A.G.; Feschotte, C.; Smit, A.F. Repeat Modeler2 for automated genomic discovery of transposable element families. Proc. Natl. Acad. Sci. USA 2020, 117, 9451–9457. [Google Scholar] [CrossRef] [PubMed]
- Willhoeft, U.; Kurtz, S.; Ellinghaus, D. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinform. 2008, 9, 18. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. tRNAscan-SE 2.0: Improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Wang, N.; Zhu, D.; Peng, W.; Wang, M.; Wen, T.; Le, Y.; Wu, M.; Yao, T.; Zhang, X.; et al. Gossypium tomentosum genome and interspecific ultra-dense genetic maps reveal genomic structures, recombination landscape and flowering depression in cotton. Genomics 2021, 113, 1999–2009. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, L.; Tian, G.; Dong, Y.; Zhang, X.; Zhou, Z.; Luo, X.; Li, Y.; Yao, W. shinyCircos-V2.0: Leveraging the creation of Circos plot with enhanced usability and advanced features. iMeta 2023, 2, e109. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. The subread aligner: Fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013, 41, e108. [Google Scholar] [CrossRef]
- Tewhey, R.; Bansal, V.; Torkamani, A.; Topol, E.J.; Schork, N.J. The importance of phase information for human genomics. Nat. Rev. Genet. 2011, 12, 215–223. [Google Scholar] [CrossRef]
- Cao, H.; Wu, H.; Luo, R.; Huang, S.; Sun, Y.; Tong, X.; Xie, Y.; Liu, B.; Yang, H.; Zheng, H.; et al. De novo assembly of a haplotyperesolved human genome. Nat. Biotechnol. 2015, 33, 617–622. [Google Scholar] [CrossRef]
- Wang, G.; Chen, L.; Tang, W.; Wang, Y.; Zhang, Q.; Wang, H.; Zhou, X.; Wu, H.; Guo, L.; Dou, M.; et al. Identifying a melanogenesis-related candidate gene by a high-quality genome assembly and population diversity analysis in Hypsizygus marmoreus. J. Genet. Genom. 2021, 48, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, E.H.; Epel, E.S.; Lin, J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science 2015, 350, 1193–1198. [Google Scholar] [CrossRef] [PubMed]
- Belser, C.; Baurens, F.-C.; Noel, B.; Martin, G.; Cruaud, C.; Istace, B.; Yahiaoui, N.; Labadie, K.; Hřibová, E.; Doležel, J.; et al. Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Commun. Biol. 2021, 4, 1047. [Google Scholar] [CrossRef] [PubMed]
- Jan, M.; Michael, B. Metabolic engineering of microorganisms for the synthesis of plant natural products. J. Biotechnol. 2013, 163, 166–178. [Google Scholar] [CrossRef]
- Mikael, R.A.; Jakob, B.N.; Andreas, K.; Lene, M.P.; Mia, Z.; Tilde, J.H.; Lene, H.B.; Charlotte, H.G.; Thomas, O.L.; Kristian, F.N.; et al. Accureate prediction of secondary metabolite gene clusters in filamentous fungi. Proc. Natl. Acad. Sci. USA 2013, 110, E99–E107. [Google Scholar] [CrossRef]
- Agger, S.; Lopez-Gallego, F.; Schmidt-Dannert, C. Diversity of sesquiterpene synthases in the basidiomycete Coprinus cinereus. Mol. Microbiol. 2010, 72, 1181–1195. [Google Scholar] [CrossRef]
- Szkopińska, A.; Lochocka, P.D. Farnesyl diphosphate synthase; regulation of product specificity. Acta Biochim. Pol. 2005, 52, 45–55. [Google Scholar] [CrossRef]
- Shu, S.; Chen, B.; Zhou, M.; Zhao, X.; Xia, H.; Wang, M. De Novo Sequencing and Transcriptome Analysis of Wolfiporia cocos to Reveal Genes Related to Biosynthesis of Triterpenoids. PLoS ONE 2013, 8, e71350. [Google Scholar] [CrossRef]
- Margareta, F.; Anneli, A.; Staffan Lake Jacob, G.; Ewa, S.; Gustav, D.; Sablel, C. Isolation and functional expression of human COQ2, a gene encoding a polyprenyl transferase involved in the synthesis of CoQ. Biochem. J. 2004, 382, 519–526. [Google Scholar] [CrossRef]
- Zeng, G.; Zhong, L.; Zhao, Z. Comparative Analysis of the Characteristics of Triterpenoid Transcriptome from Different Strains of Wolfiporia cocos. Int. J. Mol. Sci. 2019, 20, 3703. [Google Scholar] [CrossRef]
- Marc, J.F.; Camille, R.; Véronique, L.; Guy, P. Molecular and functional evolution of the fungal diterpene synthase genes. BMC Microbiol. 2015, 15, 221. [Google Scholar] [CrossRef]
- Andy, M.B.; Fabrizio, A.; Sreedhar, K.; Catherine, M.C.; Kate, M.; Amanda, J.H.; Patrick, H.; Alison, G.; Colin, M.L.; Russell, J.C.; et al. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production. Sci. Rep. 2016, 6, 25202. [Google Scholar] [CrossRef]
- Fernando, L.; Grayson, T.W.; Claudia, S. Selectivity of fungal sesquiterpene synthases: Role of the active site’s H-1alpha loop in catalysis. Appl. Environ. Microbiol. 2010, 76, 7723–7733. [Google Scholar] [CrossRef]
- Maureen, B.Q.; Christopher, M.F.; Grayson, T.W.; Swati, C.; Claudia, S.D. Mushroom hunting by using bioinformatics: Application of a predictive framework facilitates the selective identification of sesquiterpene synthases in Basidiomycota. ChemBioChem 2013, 14, 2480–2491. [Google Scholar] [CrossRef]
- Grayson, T.W.; Maureen, B.Q.; Swati, C.; Fernando, L.; Claudia, S.D. Draft genome of Omphalotus olearius provides a predictive framework for sesquiterpenoid natural product biosynthesis in Basidiomycota. Chem. Biol. 2012, 19, 772–783. [Google Scholar] [CrossRef]
Assembly Feature | H. coralloides |
---|---|
Number of Chromosome | 13 |
Assembly size (Mb) | 43.7 |
Assembly of genome (%) | 96.9% |
Number of predicted gene models | 11,690 |
Average coding sequence length (bp) | 255.94 |
Average gene length (bp) | 1, 566.6 |
Average exons per gene | 7.1 |
Database | Number | Percent (%) |
---|---|---|
GO_Annotation | 3492 | 29.9 |
KEGG_Annotation | 4243 | 36.3 |
KOG_Annotation | 3980 | 34.0 |
COG_Annotation | 7090 | 60.7 |
Pfam_Annotation | 7176 | 61.4 |
CAZy | 310 | 2.7 |
Swissprot_Annotation | 4949 | 42.3 |
All_Annotated | 8560 | 73.2 |
Unannotated | 3130 | 26.8 |
Total | 11,690 | - |
Terpenoid-Related Pathways | Genes Numbers | Percentage (%) |
---|---|---|
Terpenoid backbone biosynthesis | 22 | 0.19% |
Ubiquinone and other terpenoid–quinone biosynthesis | 13 | 0.11% |
Sesquiterpenoid and triterpenoid biosynthesis | 5 | 0.04% |
Steroid biosynthesis | 23 | 0.2% |
N-glycan biosynthesis | 31 | 0.27% |
Other glycan degradation | 19 | 0.16% |
Various types of N-glycan biosynthesis | 22 | 0.19% |
Assembly Feature | H. coralloides (MK-2)_PacBio | H. coralloides (ASM367540v1)_PacBio |
---|---|---|
Assembly size (Mb) | 43.7 | 55.8 |
Number of contigs | 63 | 306 |
Contig N50 (bp) | 3,598,748 | 441,100 |
Number of scaffolds | 13 | - |
Scaffold N50 (bp) | 3,598,748 | - |
GC percent (%) | 54 | 53.5 |
Number of predicted gene models | 11,690 | 13,175 |
Assembly level | Chromosome | Contig |
Gene ID | Function | Chromosome | Log2 Ratio MK-1/MK-2 | Log2 Ratio DK/FB-A | Log2 Ratio DK/FB-B | Log2 Ratio DK/FB-C |
---|---|---|---|---|---|---|
Her005768 | 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase | Chr05 | 1.00 | 1.83 | 1.50 | 2.01 |
Her008335 | FDPS/GGPPS | Chr08 | 1.27 | 2.14 | 1.73 | 1.97 |
Her011461 | FDPS/GGPPS | Chr13 | 1.93 | 1.47 | 2.30 | 2.55 |
Her010901 | ubiA/COQ2 | Chr12 | −0.02 | 2.92 | 2.59 | 2.71 |
Her009959 | ubiA/COQ2 | Chr11 | 0.51 | 0.01 | 2.82 | 1.31 |
Her001132 | ubiF/COQ7 | Chr01 | 0.14 | 1.46 | 1.21 | 1.53 |
Her006816 | TAT/ARO8 | Chr07 | −0.26 | 0.12 | 0.93 | 1.27 |
Gene ID | Function | Chromosome | Log2 Ratio MK-1/MK-2 | Log2 Ratio DK/FB-A | Log2 Ratio DK/FB-B | Log2 Ratio DK/FB-C |
---|---|---|---|---|---|---|
Her011457 | cytochrome p450 | Chr13 | 1.04 | 0.52 | 0.40 | 0.29 |
Her 011458 | NADP binding protein | Chr13 | −1.76 | 0.22 | 0.76 | 1.16 |
Her011459 | cytochrome p450 | Chr13 | −0.61 | −0.55 | 0.41 | 0.25 |
Her011460 | ABC-transporter | Chr13 | −0.30 | −0.98 | 032 | 0.74 |
Her011461 | Geranylgeranyl pyrophosphate synthase | Chr13 | 1.93 | 1.47 | 2.30 | 2.55 |
Her011463 | diterpene cyclase | Chr13 | −2.30 | −0.22 | −0.62 | 0.24 |
Her011463 | UbiA prenyltransferase | Chr13 | −2.30 | −0.22 | −0.62 | 0.24 |
Her011465 | NAD binding protein | Chr13 | −1.08 | 1.55 | 1.67 | 3.77 |
Her011466 | cytochrome p450 | Chr13 | −0.33 | −0.623 | −0.60 | 0.06 |
Her011467 | UDP-glycosyltransferase | Chr13 | −1.24 | 0.034 | 1.04 | 2.38 |
Gene ID | Function | Chromosome | Log2 Ratio MK-1/MK-2 | Log2 Ratio DK/FB-A | Log2 Ratio DK/FB-B | Log2 Ratio DK/FB-C |
---|---|---|---|---|---|---|
Her003788 | Linoleate 10R-lipoxygenasexygenase | Chr04 | −0.66 | 0.57 | −0.26 | −0.10 |
Her003832 | Linoleate 10R-lipoxygenasexygenase | Chr04 | −1.55 | −1.88 | −0.07 | −1.00 |
Her005338 | Linoleate 10R-lipoxygenasexygenase | Chr05 | −0.91 | −0.04 | −1.54 | −0.99 |
Her002337 | Alpha-muurolene synthase | Chr02 | −0.79 | −0.42 | −0.45 | 0.45 |
Her005433 | Alpha-muurolene synthase | Chr05 | −0.47 | −0.14 | −1.37 | −1.24 |
Her006723 | Trichodiene synthase | Chr06 | −2.60 | 0.44 | 0.24 | −0.07 |
Her006724 | Trichodiene synthase | Chr06 | 0.87 | −1.69 | −3.21 | −3.83 |
Her010605 | Trichodiene synthase | Chr12 | 1.51 | −1.38 | −2.54 | −2.08 |
Her010608 | Trichodiene synthase | Chr12 | −2.63 | −0.88 | −1.8 | −1.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, K.; Lv, J.; Zhang, T.; Liu, Y.; Zhang, P.; Zhang, Y.; Hu, B.; Huang, Q.; Xie, B.; Fu, J. Chromosome-Scale Genome and Transcriptomic Analyses Reveal Differential Regulation of Terpenoid Secondary Metabolites in Hericium coralloides. J. Fungi 2024, 10, 704. https://doi.org/10.3390/jof10100704
Meng K, Lv J, Zhang T, Liu Y, Zhang P, Zhang Y, Hu B, Huang Q, Xie B, Fu J. Chromosome-Scale Genome and Transcriptomic Analyses Reveal Differential Regulation of Terpenoid Secondary Metabolites in Hericium coralloides. Journal of Fungi. 2024; 10(10):704. https://doi.org/10.3390/jof10100704
Chicago/Turabian StyleMeng, Kexin, Junyi Lv, Tuo Zhang, Yuanyuan Liu, Peng Zhang, Yue Zhang, Banghui Hu, Qianhui Huang, Baogui Xie, and Junsheng Fu. 2024. "Chromosome-Scale Genome and Transcriptomic Analyses Reveal Differential Regulation of Terpenoid Secondary Metabolites in Hericium coralloides" Journal of Fungi 10, no. 10: 704. https://doi.org/10.3390/jof10100704
APA StyleMeng, K., Lv, J., Zhang, T., Liu, Y., Zhang, P., Zhang, Y., Hu, B., Huang, Q., Xie, B., & Fu, J. (2024). Chromosome-Scale Genome and Transcriptomic Analyses Reveal Differential Regulation of Terpenoid Secondary Metabolites in Hericium coralloides. Journal of Fungi, 10(10), 704. https://doi.org/10.3390/jof10100704