Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (337)

Search Parameters:
Keywords = farmland surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6563 KiB  
Article
Determining the Structural Characteristics of Farmland Shelterbelts in a Desert Oasis Using LiDAR
by Xiaoxiao Jia, Huijie Xiao, Zhiming Xin, Junran Li and Guangpeng Fan
Forests 2025, 16(8), 1221; https://doi.org/10.3390/f16081221 - 24 Jul 2025
Viewed by 177
Abstract
The structural analysis of shelterbelts forms the foundation of their planning and management, yet the scientific and effective quantification of shelterbelt structures requires further investigation. This study developed an innovative heterogeneous analytical framework, integrating three key methodologies: the LeWoS algorithm for wood–leaf separation, [...] Read more.
The structural analysis of shelterbelts forms the foundation of their planning and management, yet the scientific and effective quantification of shelterbelt structures requires further investigation. This study developed an innovative heterogeneous analytical framework, integrating three key methodologies: the LeWoS algorithm for wood–leaf separation, TreeQSM for structural reconstruction, and 3D alpha-shape spatial quantification, using terrestrial laser scanning (TLS) technology. This framework was applied to three typical farmland shelterbelts in the Ulan Buh Desert oasis, enabling the first precise quantitative characterization of structural components during the leaf-on stage. The results showed the following to be true: (1) The combined three-algorithm method achieved ≥90.774% relative accuracy in extracting structural parameters for all measured traits except leaf surface area. (2) Branch length, diameter, surface area, and volume decreased progressively from first- to fourth-order branches, while branch angles increased with ascending branch order. (3) The trunk, branch, and leaf components exhibited distinct vertical stratification. Trunk volume and surface area decreased linearly with height, while branch and leaf volumes and surface areas followed an inverted U-shaped distribution. (4) Horizontally, both surface area density (Scd) and volume density (Vcd) in each cube unit exhibited pronounced edge effects. Specifically, the Scd and Vcd were greatest between 0.33 and 0.60 times the shelterbelt’s height (H, i.e., mid-canopy). In contrast, the optical porosity (Op) was at a minimum of 0.43 H to 0.67 H, while the volumetric porosity (Vp) was at a minimum at 0.25 H to 0.50 H. (5) The proposed volumetric stratified porosity (Vsp) metric provides a scientific basis for regional farmland shelterbelt management strategies. This three-dimensional structural analytical framework enables precision silviculture, with particular relevance to strengthening ecological barrier efficacy in arid regions. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

23 pages, 2875 KiB  
Article
Analysis of Habitat Quality Changes in Mountainous Areas Using the PLUS Model and Construction of a Dynamic Restoration Framework for Ecological Security Patterns: A Case Study of Golog Tibetan Autonomous Prefecture, Qinghai Province, China
by Zihan Dong, Haodong Liu, Hua Liu, Yongfu Chen, Xinru Fu, Yang Zhang, Jiajia Xia, Zhiwei Zhang and Qiao Chen
Land 2025, 14(8), 1509; https://doi.org/10.3390/land14081509 - 22 Jul 2025
Viewed by 392
Abstract
The intensifying global climate warming caused by human activities poses severe challenges to ecosystem stability. Constructing an ecological security pattern can identify ecological land supply and an effective spatial distribution baseline and provide a scientific basis for safeguarding regional ecological security. This study [...] Read more.
The intensifying global climate warming caused by human activities poses severe challenges to ecosystem stability. Constructing an ecological security pattern can identify ecological land supply and an effective spatial distribution baseline and provide a scientific basis for safeguarding regional ecological security. This study analyzes land-use data from 2000 to 2020 for Golog Tibetan Autonomous Prefecture. The PLUS model was utilized to project land-use potential for the year 2030. The InVEST model was employed to conduct a comprehensive assessment of habitat quality in the study area for both 2020 and 2030, thereby pinpointing ecological sources. Critical ecological restoration zones were delineated by identifying ecological corridors, pinch points, and barrier points through the application of the Minimum Cumulative Resistance model and circuit theory. By comparing ecological security patterns (ESPs) in 2020 and 2030, we proposed a dynamic restoration framework and optimization recommendations based on habitat quality changes and ESPs. The results indicate significant land-use changes in the eastern part of Golog Tibetan Autonomous Prefecture from 2020 to 2030, with large-scale conversion of grasslands into bare land, farmland, and artificial surfaces. The ecological security pattern is threatened by risks like the deterioration of habitat quality, diminished ecological sources as well as pinch points, and growing barrier points. Optimizing the layout of ecological resources, strengthening barrier zone restoration and pinch point protection, and improving habitat connectivity are urgent priorities to ensure regional ecological security. This study offers a scientific foundation for the harmonization of ecological protection and economic development and the policy development and execution of relevant departments. Full article
Show Figures

Figure 1

21 pages, 8976 KiB  
Article
Design and Parameter Optimization of Drum Pick-Up Machine Based on Archimedean Curve
by Caichao Liu, Feng Wu, Fengwei Gu, Man Gu, Jingzhan Ni, Weiweng Luo, Jiayong Pei, Mingzhu Cao and Bing Wang
Agriculture 2025, 15(14), 1551; https://doi.org/10.3390/agriculture15141551 - 19 Jul 2025
Viewed by 242
Abstract
Stones in farmland soil affect the efficiency of agricultural mechanization and the efficient growth of crops. In order to solve the problems of traditional stone pickers, such as large soil disturbance, high soil content and low picking rate, this paper introduces the Archimedean [...] Read more.
Stones in farmland soil affect the efficiency of agricultural mechanization and the efficient growth of crops. In order to solve the problems of traditional stone pickers, such as large soil disturbance, high soil content and low picking rate, this paper introduces the Archimedean curve with constant radial expansion characteristics into the design of the core working parts of the drum picker and designs a new type of drum stone picker. The key components such as spiral blades, rollers, and scrapers were theoretically analyzed, the structural parameters of the main components were determined, and the reliability of the spiral blades was checked using ANSYS Workbench software. Through the preliminary stone-picking performance test, the forward speed of the stone picker, the rotation speed of the drum, and the starting sliding angle of the spiral blade were determined as the test influencing factors. The picking rate and soil content of the stone picker were determined as the test indicators. The response surface test was carried out in the Design-Expert13.0 software. The results show that, when the forward speed of the stone picker is 0.726 m/s, the drum speed is 30 rpm, and the initial sliding angle of the spiral blade is 26.214°, the picking rate is 91.458% and the soil content is 3.513%. Field tests were carried out with the same parameters, and the picking rate was 91.42% and the soil content was 3.567%, with errors of 0.038% and 0.054% compared with the predicted values, indicating that the stone picker meets the field operation requirements. These research results can provide new ideas and technical paths for improving the performance of pickers and are of great value in promoting the development of advanced harvesting equipment and the efficient use of agricultural resources. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

33 pages, 9362 KiB  
Article
Multi-Layer and Profile Soil Moisture Estimation and Uncertainty Evaluation Based on Multi-Frequency (Ka-, X-, C-, S-, and L-Band) and Quad-Polarization Airborne SAR Data from Synchronous Observation Experiment in Liao River Basin, China
by Jiaxin Qian, Jie Yang, Weidong Sun, Lingli Zhao, Lei Shi, Hongtao Shi, Chaoya Dang and Qi Dou
Water 2025, 17(14), 2096; https://doi.org/10.3390/w17142096 - 14 Jul 2025
Viewed by 343
Abstract
Validating the potential of multi-frequency synthetic aperture radar (SAR) data for multi-layer and profile soil moisture (SM) estimation modeling, we conducted an airborne multi-frequency SAR joint observation experiment (AMFSEX) over the Liao River Basin in China. The experiment simultaneously acquired airborne high spatial [...] Read more.
Validating the potential of multi-frequency synthetic aperture radar (SAR) data for multi-layer and profile soil moisture (SM) estimation modeling, we conducted an airborne multi-frequency SAR joint observation experiment (AMFSEX) over the Liao River Basin in China. The experiment simultaneously acquired airborne high spatial resolution quad-polarization (quad-pol) SAR data at five frequencies, including the Ka-, X-, C-, S-, and L-band. A preliminary “vegetation–soil” parameter estimation model based on the multi-frequency SAR data was established. Theoretical penetration depths of the multi-frequency SAR data were analyzed using the Dobson empirical model and the Hallikainen modified model. On this basis, a water cloud model (WCM) constrained by multi-polarization weighted and penetration depth weighted parameters was used to analyze the estimation accuracy of the multi-layer and profile SM (0–50 cm depth) under different vegetation types (grassland, farmland, and woodland). Overall, the estimation error (root mean square error, RMSE) of the surface SM (0–5 cm depth) ranged from 0.058 cm3/cm3 to 0.079 cm3/cm3, and increased with radar frequency. For multi-layer and profile SM (3 cm, 5 cm, 10 cm, 20 cm, 30 cm, 40 cm, 50 cm depth), the RMSE ranged from 0.040 cm3/cm3 to 0.069 cm3/cm3. Finally, a multi-input multi-output regression model (Gaussian process regression) was used to simultaneously estimate the multi-layer and profile SM. For surface SM, the overall RMSE was approximately 0.040 cm3/cm3. For multi-layer and profile SM, the overall RMSE ranged from 0.031 cm3/cm3 to 0.064 cm3/cm3. The estimation accuracy achieved by coupling the multi-source data (multi-frequency SAR data, multispectral data, and soil parameters) was superior to that obtained using the SAR data alone. The optimal SM penetration depth varied across different vegetation cover types, generally falling within the range of 10–30 cm, which holds true for both the scattering model and the regression model. This study provides methodological guidance for the development of multi-layer and profile SM estimation models based on the multi-frequency SAR data. Full article
Show Figures

Figure 1

31 pages, 4680 KiB  
Article
Path Mechanism and Field Practice Effect of Green Agricultural Production on the Soil Organic Carbon Dynamics and Greenhouse Gas Emission Intensity in Farmland Ecosystems
by Xiaoqian Li, Yi Wang, Wen Chen and Bin He
Agriculture 2025, 15(14), 1499; https://doi.org/10.3390/agriculture15141499 - 12 Jul 2025
Viewed by 362
Abstract
Exploring the mechanisms by which green agricultural production reduces emissions and enhances carbon sequestration in soil can provide a scientific basis for greenhouse gas reduction and sustainable development in farmland. This study uses a combination of meta-analysis and field experiments to evaluate the [...] Read more.
Exploring the mechanisms by which green agricultural production reduces emissions and enhances carbon sequestration in soil can provide a scientific basis for greenhouse gas reduction and sustainable development in farmland. This study uses a combination of meta-analysis and field experiments to evaluate the impact of different agricultural management practices and climatic conditions on soil organic carbon (SOC) and the emissions of CO2 and CH4, as well as the role of microorganisms. The results indicate the following: (1) Meta-analysis reveals that the long-term application of organic fertilizers in green agriculture increases SOC at a rate four times higher than that of chemical fertilizers. No-till and straw return practices significantly reduce CO2 emissions from alkaline soils by 30.7% (p < 0.05). Warm and humid climates in low-altitude regions are more conducive to soil carbon sequestration. (2) Structural equation modeling of plant–microbe–soil carbon interactions shows that plant species diversity (PSD) indirectly affects microbial biomass by influencing organic matter indicators, mineral properties, and physicochemical characteristics, thereby regulating soil carbon sequestration and greenhouse gas emissions. (3) Field experiments conducted in the typical green farming research area of Chenzhuang reveal that soils managed under natural farming absorb CH4 at a rate three times higher than those under conventional farming, and the stoichiometric ratios of soil enzymes in the former are close to 1. The peak SOC (19.90 g/kg) in the surface soil of Chenzhuang is found near fields cultivated with natural farming measures. This study provides theoretical support and practical guidance for the sustainable development of green agriculture. Full article
Show Figures

Figure 1

22 pages, 4476 KiB  
Article
A Method for Identifying Key Areas of Ecological Restoration, Zoning Ecological Conservation, and Restoration
by Shuaiqi Chen, Zhengzhou Ji and Longhui Lu
Land 2025, 14(7), 1439; https://doi.org/10.3390/land14071439 - 10 Jul 2025
Viewed by 317
Abstract
Ecological security patterns (ESPs) are fundamental to safeguarding regional ecological integrity and enhancing human well-being. Consequently, research on conservation and restoration in critical regions is vital for ensuring ecological security and optimizing territorial ecological spatial configurations. Focusing on the Henan section of the [...] Read more.
Ecological security patterns (ESPs) are fundamental to safeguarding regional ecological integrity and enhancing human well-being. Consequently, research on conservation and restoration in critical regions is vital for ensuring ecological security and optimizing territorial ecological spatial configurations. Focusing on the Henan section of the Yellow River Basin, this study established the regional ESP and conservation–restoration framework through an integrated approach: (1) assessing four key ecosystem services—soil conservation, water retention, carbon sequestration, and habitat quality; (2) identifying ecological sources based on ecosystem service importance classification; (3) calculating a comprehensive resistance surface using the entropy weight method, incorporating key factors (land cover type, NDVI, topographic relief, and slope); (4) delineating ecological corridors and nodes using Linkage Mapper and the minimum cumulative resistance (MCR) theory; and (5) integrating ecological functional zoning to synthesize the final spatial conservation and restoration strategy. Key findings reveal: (1) 20 ecological sources, totaling 8947 km2 (20.9% of the study area), and 43 ecological corridors, spanning 778.24 km, were delineated within the basin. Nineteen ecological barriers (predominantly located in farmland, bare land, construction land, and low-coverage grassland) and twenty-one ecological pinch points (primarily clustered in forestland, grassland, water bodies, and wetlands) were identified. Collectively, these elements form the Henan section’s Ecological Security Pattern (ESP), integrating source areas, a corridor network, and key regional nodes for ecological conservation and restoration. (2) Building upon the ESP and the ecological baseline, and informed by ecological functional zoning, we identified a spatial framework for conservation and restoration characterized by “one axis, two cores, and multiple zones”. Tailored conservation and restoration strategies were subsequently proposed. This study provides critical data support for reconciling ecological security and economic development in the Henan Yellow River Basin, offering a scientific foundation and practical guidance for regional territorial spatial ecological restoration planning and implementation. Full article
Show Figures

Figure 1

23 pages, 4667 KiB  
Article
An Experimental Study on the Charging Effects and Atomization Characteristics of a Two-Stage Induction-Type Electrostatic Spraying System for Aerial Plant Protection
by Yufei Li, Qingda Li, Jun Hu, Changxi Liu, Shengxue Zhao, Wei Zhang and Yafei Wang
Agronomy 2025, 15(7), 1641; https://doi.org/10.3390/agronomy15071641 - 5 Jul 2025
Viewed by 338
Abstract
To address the technical problems of broad droplet size spectrum, insufficient atomization uniformity, and spray drift in plant protection unmanned aerial vehicle (UAV) applications, this study developed a novel two-stage aerial electrostatic spraying device based on the coupled mechanisms of hydraulic atomization and [...] Read more.
To address the technical problems of broad droplet size spectrum, insufficient atomization uniformity, and spray drift in plant protection unmanned aerial vehicle (UAV) applications, this study developed a novel two-stage aerial electrostatic spraying device based on the coupled mechanisms of hydraulic atomization and electrostatic induction, and, through the integration of three-dimensional numerical simulation and additive manufacturing technology, a new two-stage inductive charging device was designed on the basis of the traditional hydrodynamic nozzle structure, and a synergistic optimization study of the charging effect and atomization characteristics was carried out systematically. With the help of a charge ratio detection system and Malvern laser particle sizer, spray pressure (0.25–0.35 MPa), charging voltage (0–16 kV), and spray height (100–1000 mm) were selected as the key parameters, and the interaction mechanism of each parameter on the droplet charge ratio (C/m) and the particle size distribution (Dv50) was analyzed through the Box–Behnken response surface experimental design. The experimental data showed that when the charge voltage was increased to 12 kV, the droplet charge-to-mass ratio reached a peak value of 1.62 mC/kg (p < 0.01), which was 83.6% higher than that of the base condition; the concentration of the particle size distribution of the charged droplets was significantly improved; charged droplets exhibited a 23.6% reduction in Dv50 (p < 0.05) within the 0–200 mm core atomization zone below the nozzle, with the coefficient of variation of volume median diameter decreasing from 28.4% to 16.7%. This study confirms that the two-stage induction structure can effectively break through the charge saturation threshold of traditional electrostatic spraying, which provides a theoretical basis and technical support for the optimal design of electrostatic spraying systems for plant protection UAVs. This technology holds broad application prospects in agricultural settings such as orchards and farmlands. It can significantly enhance the targeted deposition efficiency of pesticides, reducing drift losses and chemical usage, thereby enabling agricultural enterprises to achieve practical economic benefits, including reduced operational costs, improved pest control efficacy, and minimized environmental pollution, while generating environmental benefits. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

22 pages, 2370 KiB  
Article
Effects of Land Use Conversion from Upland Field to Paddy Field on Soil Temperature Dynamics and Heat Transfer Processes
by Jun Yi, Mengyi Xu, Qian Ren, Hailin Zhang, Muxing Liu, Yuanhang Fei, Shenglong Li, Hanjiang Nie, Qi Li, Xin Ni and Yongsheng Wang
Land 2025, 14(7), 1352; https://doi.org/10.3390/land14071352 - 26 Jun 2025
Viewed by 352
Abstract
Investigating soil temperature and the heat transfer process is essential for understanding water–heat changes and energy balance in farmland. The conversion from upland fields (UFs) to paddy fields (PFs) alters the land cover, irrigation regimes, and soil properties, leading to differences in soil [...] Read more.
Investigating soil temperature and the heat transfer process is essential for understanding water–heat changes and energy balance in farmland. The conversion from upland fields (UFs) to paddy fields (PFs) alters the land cover, irrigation regimes, and soil properties, leading to differences in soil temperature, thermal properties, and heat fluxes. Our study aimed to quantify the effects of converting UFs to PFs on soil temperature and heat transfer processes, and to elucidate its underlying mechanisms. A long-term cultivated UF and a newly developed PF (converted from a UF in May 2015) were selected for this study. Soil water content (SWC) and temperature were monitored hourly over two years (June 2017 to June 2019) in five soil horizons (i.e., 10, 20, 40, 60, and 90 cm) at both fields. The mean soil temperature differences between the UF and PF at each depth on the annual scale varied from −0.1 to 0.4 °C, while they fluctuated more significantly on the seasonal (−0.9~1.8 °C), monthly (−1.5~2.5 °C), daily (−5.6~4.9 °C), and hourly (−7.3~11.3 °C) scales. The SWC in the PF was significantly higher than that in the UF, primarily due to differences in tillage practices, which resulted in a narrower range of soil temperature variation in the PF. Additionally, the SWC and soil physicochemical properties significantly altered the soil’s thermal properties. Compared with the UF, the volumetric heat capacity (Cs) at the depths of 10, 20, 40, 60, and 90 cm in the PF changed by 8.6%, 19.0%, 5.5%, −4.3%, and −2.9%, respectively. Meanwhile, the thermal conductivity (λθ) increased by 1.5%, 18.3%, 19.0%, 9.0%, and 25.6%, respectively. Moreover, after conversion from the UF to the PF, the heat transfer direction changed from downward to upward in the 10–20 cm soil layer, resulting in a 42.9% reduction in the annual average soil heat flux (G). Furthermore, the differences in G between the UF and PF were most significant in the summer (101.9%) and most minor in the winter (12.2%), respectively. The conversion of the UF to the PF increased the Cs and λθ, ultimately reducing the range of soil temperature variation and changing the direction of heat transfer, which led to more heat release from the soil. This study reveals the effects of farmland use type conversion on regional land surface energy balance, providing theoretical underpinnings for optimizing agricultural ecosystem management. Full article
Show Figures

Figure 1

20 pages, 6564 KiB  
Article
Influence of Soil Depth and Land Use Type on the Diversity of and Metabolic Restriction in the Soil Microbial Community of a Forest-Grass Ecotone
by Xuman Ma, Xiaogang Li, Yaxin Meng, Jinhua Liu, Jinxin Wang, Xiaomeng Yu, Weipeng Wang and Xuehua Xu
Microorganisms 2025, 13(7), 1450; https://doi.org/10.3390/microorganisms13071450 - 22 Jun 2025
Viewed by 382
Abstract
Revealing soil microbial diversity and metabolic limitations in different land uses and soil depths is essential to understanding the regulation processes of soil nutrients. Here, bacterial and fungal microbial diversity and metabolic restriction in the 0–50 cm soil layers of four land uses, [...] Read more.
Revealing soil microbial diversity and metabolic limitations in different land uses and soil depths is essential to understanding the regulation processes of soil nutrients. Here, bacterial and fungal microbial diversity and metabolic restriction in the 0–50 cm soil layers of four land uses, namely farmland, grassland, Betula platyphylla secondary forest, and Larix principis-rupprechtii-planted forest in the mountainous forest-grass ecotone of northern China, were determined. The results showed that soil microbial diversity in farmland was the lowest. Soil microorganisms from all land uses are limited by nitrogen, with the highest nitrogen limitation in planted forest. However, microbial nitrogen limitation in farmland increased with increasing soil depth, while microbial nitrogen limitation in grassland, secondary forest, and planted forest decreased with increasing soil depth. The bacterial and fungal community composition was influenced by soil organic carbon, total nitrogen, soil organic carbon:total phosphorus ratio, soil water content, soil organic carbon, and total nitrogen:total phosphorus ratio. The soil organic carbon:total phosphorus ratio has an impact on microbial metabolic limitation. This study shows that soil microbial communities were more affected by land-use type than soil depth. Land use changes the input of soil nutrients from aboveground plants, which affects the physical and chemical properties of soil, microbial community diversity, and microbial metabolic limitation. The vertical filtration effect between soil layers reduces soil nutrients, making the microbial diversity and enzyme activity of surface soil greater than those of deep soil. Our study helps to understand the function of soil microorganisms under different land use types in the forest-grass ecotone of northern China and provides a basis for predicting biogeochemical cycle dynamics in the ecotone in the context of global warming. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

26 pages, 10157 KiB  
Article
Improving Soil Moisture Estimation by Integrating Remote Sensing Data into HYDRUS-1D Using an Ensemble Kalman Filter Approach
by Yule Sun, Quanming Liu, Chunjuan Wang, Qi Liu and Zhongyi Qu
Agriculture 2025, 15(12), 1320; https://doi.org/10.3390/agriculture15121320 - 19 Jun 2025
Viewed by 360
Abstract
Reliable soil moisture projections are critical for optimizing crop productivity and water savings in irrigation in arid and semi-arid regions. However, capturing their spatial and temporal variability is difficult when using individual observations, modeling, or satellite-based methods. Here, we present an integrated framework [...] Read more.
Reliable soil moisture projections are critical for optimizing crop productivity and water savings in irrigation in arid and semi-arid regions. However, capturing their spatial and temporal variability is difficult when using individual observations, modeling, or satellite-based methods. Here, we present an integrated framework that combines satellite-derived soil moisture estimates, ground-based observations, the HYDRUS-1D vadose zone model, and the ensemble Kalman filter (EnKF) data assimilation method to improve soil moisture simulations over saline-affected farmland in the Hetao irrigation district. Vegetation effects were first removed using the water cloud model; after correction, a cubic regression using the vertical transmit/vertical receive (VV) signal retrieved surface moisture with an R2 value of 0.7964 and a root mean square error (RMSE) of 0.021 cm3·cm−3. HYDRUS-1D, calibrated against multi-depth field data (0–80 cm), reproduced soil moisture profiles at 17 sites with RMSEs of 0.017–0.056 cm3·cm−3. The EnKF assimilation of satellite and ground observations further reduced the errors to 0.008–0.017 cm3·cm−3, with the greatest improvement in the 0–20 cm layer; the accuracy declined slightly with depth but remained superior to either data source alone. Our study improves soil moisture simulation accuracy and closes the knowledge gaps in multi-source data integration. This framework supports sustainable land management and irrigation policy in vulnerable farming regions. Full article
(This article belongs to the Special Issue Model-Based Evaluation of Crop Agronomic Traits)
Show Figures

Figure 1

16 pages, 3487 KiB  
Article
Towards an Evaluation of Soil Structure Alteration from GPR Responses and Their Implications for Management Practices
by Akinniyi Akinsunmade
Appl. Sci. 2025, 15(11), 6078; https://doi.org/10.3390/app15116078 - 28 May 2025
Cited by 1 | Viewed by 339
Abstract
Anthropogenic activities on soil layers contribute to reworking and eventual modification, which, in most cases, are detrimental to the soil. Going by the significance of soil to life in many ramifications, it is imperative that its consistent assessment enhances and guides management practices. [...] Read more.
Anthropogenic activities on soil layers contribute to reworking and eventual modification, which, in most cases, are detrimental to the soil. Going by the significance of soil to life in many ramifications, it is imperative that its consistent assessment enhances and guides management practices. This study focuses on delineating soil structure alterations using ground-penetrating radar (GPR), a geophysical survey method. The principle of operation and the simplicity of the technique have attracted the choice of the non-destructive testing (NDT) method with a view that it could circumvent the drawbacks that characterized the conventional methods hitherto used for such evaluation. Furthermore, the technique allows for the spatial investigation of the concealing sub-layer of the soil and, thus, informs its choice. A test site was selected on a plain farmland in Kraków, Poland, where some parts of the soil structure distortions were induced using tractor movement, which exerted normal stress from the soil surface layer. Subsequently, GPR measurements were acquired via pre-established profiles on the test site, and soil samples were taken for the laboratory evaluation of some of the soil’s physical properties. An analysis of the field data revealed that zones of distorted soil structures have lower attenuation effects on the GPR signal, with corresponding lower amplitude values compared with the unaltered soil structure zones. Evaluated physical properties such as bulk density and state variables like moisture water contents also show a declining trend from the unaltered soil structure zone to the altered zones. The results have revealed characteristic signatures of the zone of soil structure alterations from GPR scanning that can enhance its identification and characterization in the field and, thus, promote decision making toward the effective utilization and management of soil. Full article
(This article belongs to the Collection Agriculture 4.0: From Precision Agriculture to Smart Agriculture)
Show Figures

Figure 1

25 pages, 9203 KiB  
Article
Screening, Identification, and Fermentation of Brevibacillus laterosporus YS-13 and Its Impact on Spring Wheat Growth
by Wenjing Zhang, Xingxin Sun, Zele Wang, Jiayao Li, Yuanzhe Zhang, Wei Zhang, Jun Zhang, Xianghan Cheng and Peng Song
Microorganisms 2025, 13(6), 1244; https://doi.org/10.3390/microorganisms13061244 - 28 May 2025
Viewed by 429
Abstract
The low availability of phosphorus (P) in soil has become a critical factor limiting crop growth and agricultural productivity. This study aimed to isolate and evaluate a bacterial strain with high phosphate-solubilizing capacity to improve soil phosphorus utilization and promote crop growth. A [...] Read more.
The low availability of phosphorus (P) in soil has become a critical factor limiting crop growth and agricultural productivity. This study aimed to isolate and evaluate a bacterial strain with high phosphate-solubilizing capacity to improve soil phosphorus utilization and promote crop growth. A phosphate-solubilizing bacterium, designated as YS-13, was isolated from farmland soil in Henan Province, China, and identified as Brevibacillus laterosporus based on morphological characteristics, physiological and biochemical traits, and 16S rDNA sequence analysis. Qualitative assessment using plate assays showed that strain YS-13 formed a prominent phosphate solubilization zone on organic and inorganic phosphorus media containing lecithin and calcium phosphate, with D/d ratios of 2.28 and 1.57, respectively. Quantitative evaluation using the molybdenum–antimony colorimetric method revealed soluble phosphorus concentrations of 21.24, 6.67, 11.73, and 17.05 mg·L−1 when lecithin, ferric phosphate, calcium phosphate, and calcium phytate were used as phosphorus sources, respectively. The fermentation conditions for YS-13 were optimized through single-factor experiments combined with response surface methodology, using viable cell count as the response variable. The optimal conditions were determined as 34 °C, 8% inoculum volume, initial pH of 7.55, 48 h incubation, 5 g L−1 NaCl, 8.96 g L−1 glucose, and 8.86 g L−1 peptone, under which the viable cell count reached 6.29 × 108 CFU mL−1, consistent with the predicted value (98.33%, p < 0.05). The plant growth-promoting effect of YS-13 was further validated through a pot experiment using Triticum aestivum cv. Jinchun 6. Growth parameters, including plant height, fresh biomass, root length, root surface area, root volume, and phosphorus content in roots and stems, were measured. The results demonstrated that YS-13 significantly enhanced wheat growth, with a positive correlation between bacterial concentration and growth indicators, although the growth-promoting effect plateaued at higher concentrations. This study successfully identified a high-efficiency phosphate-solubilizing strain, YS-13, and established optimal culture conditions and bioassay validation, laying a foundation for its potential application as a microbial inoculant and providing theoretical and technical support for reducing phosphorus fertilizer inputs and advancing sustainable agriculture. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

15 pages, 4746 KiB  
Article
Multi-Decade Variations in Sediment and Nutrient Export in Cascading Developmental Rivers in Southwest China: Impacts of Land Use and Dams
by Shucong Lyu, Qibiao Yu, Liangjing Zhang, Fei Xu, Yu Wang, Zhaojun Dong and Lusan Liu
Water 2025, 17(9), 1333; https://doi.org/10.3390/w17091333 - 29 Apr 2025
Cited by 1 | Viewed by 483
Abstract
Anthropogenic activities (represented by dams and land use change) and climate change have disrupted the delicate balance between natural and anthropogenic factors affecting riverine material transport, yet their effects across different river basins remain underexplored. This study investigated multi-decade (1980–2023) variations in sediment [...] Read more.
Anthropogenic activities (represented by dams and land use change) and climate change have disrupted the delicate balance between natural and anthropogenic factors affecting riverine material transport, yet their effects across different river basins remain underexplored. This study investigated multi-decade (1980–2023) variations in sediment and particulate carbon (C), nitrogen (N), and phosphorus (P) exports from the Jinsha (JSR) and Jialing River (JLR) basins, two cascading developmental river systems in Southwestern China, and evaluated the cumulative impacts of land use change and dam construction. The results revealed significant decreases in particulate fluxes from both basins, despite stable water discharge. Particulate material fluxes declined by 90.9–99.6% in the JSR (last decade vs. 1980–1989, with an abrupt change occurring during 2002–2003) and by 54.0–79.3% in the JLR (with an abrupt change occurring in 1994). Over time, the influence of precipitation and water discharge on material transport has diminished, whereas land use change and dams have become increasingly dominant. Key drivers include forest expansion, increased impervious surfaces, reservoir construction, and reductions in grassland and farmland; however, there are spatial differences in the relative importance of these drivers. This study provides crucial insights for decision making on regional ecological conservation and cascading development. Full article
Show Figures

Graphical abstract

16 pages, 4902 KiB  
Article
Ecological Risk Assessment and Source Identification of Potential Toxic Elements in Farmland Soil of Nanyang Basin, China
by Weichun He, Xiaowei Fei, Hao Guo, Guangyu Zhang, Mengzhen Li and Yuling Jiang
Toxics 2025, 13(5), 342; https://doi.org/10.3390/toxics13050342 - 25 Apr 2025
Viewed by 316
Abstract
This study investigated spatial distribution features and ecological risks of eight potential toxic elements (Cr, Ni, Cu, Zn, Pb, As, Cd, and Hg) in surface soil samples (0–20 cm) collected from farmland in the Nanyang Basin, China. This research also aimed to analyze [...] Read more.
This study investigated spatial distribution features and ecological risks of eight potential toxic elements (Cr, Ni, Cu, Zn, Pb, As, Cd, and Hg) in surface soil samples (0–20 cm) collected from farmland in the Nanyang Basin, China. This research also aimed to analyze the sources of these elements. Its findings revealed that the mean contents of Cr, Ni, Cu, Zn, Pb, As, Cd, and Hg were 54.35, 26.57, 25.20, 82.09, 22.17, 8.27, 0.17, and 0.13 mg·kg−1, respectively, all of which were lower than their corresponding risk screening values. However, the mean contents of Cu, Zn, Cd, and Hg exceeded the background values of Henan Province. Spatial distribution analysis revealed that Cr and Ni exhibited similar patterns, with high contents primarily observed in the western part of the research area. Generally speaking, Cu, Zn, and Pb contents were higher in the south and lower in the north, whereas Hg, As, and Cd displayed a scattered distribution of high-value areas. Ecological risk assessment indicated that Hg and Cd posed relatively high risks, with their comprehensive ecological risk indexes (RIs) predominantly classified as moderate. Source identification suggested that As primarily originates from agriculture, Cd from industry sources, Hg from coal combustion, and the remaining elements from mixed sources, including parent material, transportation, and agriculture. Full article
(This article belongs to the Special Issue Assessment and Remediation of Heavy Metal Contamination in Soil)
Show Figures

Figure 1

24 pages, 6110 KiB  
Article
Nitrogen and Phosphorus Loss via Surface Flow and Interflow in Subtropical Chinese Tea Plantations: A Comparative Analysis Under Two Slope Gradients
by Haitao Wang, Shuang He, Kamel Mohamed Eltohamy, Weidong Feng, Xiangtian Yang, Hekang Xiao, Yucheng Wang, Zhirong Wang and Xinqiang Liang
Water 2025, 17(9), 1249; https://doi.org/10.3390/w17091249 - 23 Apr 2025
Viewed by 638
Abstract
Nitrogen (N) and phosphorus (P) losses from sloping agricultural lands through runoff are a significant environmental concern, yet their transport mechanisms across different slope gradients are not well understood. Therefore, we built an experimental site in a subtropical hilly region of China to [...] Read more.
Nitrogen (N) and phosphorus (P) losses from sloping agricultural lands through runoff are a significant environmental concern, yet their transport mechanisms across different slope gradients are not well understood. Therefore, we built an experimental site in a subtropical hilly region of China to explore the patterns of nitrogen and phosphorus loss in tea plantations under typical slopes. We set two slope gradients of 20° and 30°, with three plots for each gradient. We quantified the loss of nitrogen (N) and phosphorus (P) through surface flow and interflow on these two slope gradients. We also collected meteorological data through the meteorological station we built. A total of 17 rainfall events were recorded. Results showed that total nitrogen (TN) and phosphorus (TP) concentrations in surface flow on the 30° slope were 8.9% and 31.6% higher, respectively, than on the 20° slope. In interflow, the differences were even more pronounced, with TN and TP concentrations 68.5% and 218.1% higher on the 30° slope. Overall nutrient loss loads (combining surface and interflow pathways) were significantly greater on the steeper slope, with TN and TP loss loads being 2.58 and 3.43 times higher on the 30° slope than on the 20° slope. The composition analysis revealed that dissolved nitrogen (DN) dominated nitrogen transport, accounting for 68.6% of TN in surface flow and 97.8% in interflow, while dissolved phosphorus (DP) represented 35.0% of TP in surface flow and 57.0% in interflow. Initially, TN and TP concentrations in surface flow were high and decreased as runoff generation time increased. Correlation analysis showed that higher temperatures increased TN and TP concentrations in surface flow. On the 30° slope, increased soil moisture promoted higher concentrations of soluble P. Instantaneous rainfall intensity was significantly correlated with TN and TP concentrations in surface flow under both slope gradients. This study revealed N and P loss patterns in tea gardens on steeper slopes, offering guidance for controlling nutrient loss in sloping farmland. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

Back to TopTop