Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (480)

Search Parameters:
Keywords = extreme short-term prediction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 6212 KiB  
Article
A Hybrid Deep Reinforcement Learning Architecture for Optimizing Concrete Mix Design Through Precision Strength Prediction
by Ali Mirzaei and Amir Aghsami
Math. Comput. Appl. 2025, 30(4), 83; https://doi.org/10.3390/mca30040083 (registering DOI) - 3 Aug 2025
Viewed by 32
Abstract
Concrete mix design plays a pivotal role in ensuring the mechanical performance, durability, and sustainability of construction projects. However, the nonlinear interactions among the mix components challenge traditional approaches in predicting compressive strength and optimizing proportions. This study presents a two-stage hybrid framework [...] Read more.
Concrete mix design plays a pivotal role in ensuring the mechanical performance, durability, and sustainability of construction projects. However, the nonlinear interactions among the mix components challenge traditional approaches in predicting compressive strength and optimizing proportions. This study presents a two-stage hybrid framework that integrates deep learning with reinforcement learning to overcome these limitations. First, a Convolutional Neural Network–Long Short-Term Memory (CNN–LSTM) model was developed to capture spatial–temporal patterns from a dataset of 1030 historical concrete samples. The extracted features were enhanced using an eXtreme Gradient Boosting (XGBoost) meta-model to improve generalizability and noise resistance. Then, a Dueling Double Deep Q-Network (Dueling DDQN) agent was used to iteratively identify optimal mix ratios that maximize the predicted compressive strength. The proposed framework outperformed ten benchmark models, achieving an MAE of 2.97, RMSE of 4.08, and R2 of 0.94. Feature attribution methods—including SHapley Additive exPlanations (SHAP), Elasticity-Based Feature Importance (EFI), and Permutation Feature Importance (PFI)—highlighted the dominant influence of cement content and curing age, as well as revealing non-intuitive effects such as the compensatory role of superplasticizers in low-water mixtures. These findings demonstrate the potential of the proposed approach to support intelligent concrete mix design and real-time optimization in smart construction environments. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

27 pages, 10190 KiB  
Article
Assessing the Impact of Assimilated Remote Sensing Retrievals of Precipitation on Nowcasting a Rainfall Event in Attica, Greece
by Aikaterini Pappa, John Kalogiros, Maria Tombrou, Christos Spyrou, Marios N. Anagnostou, George Varlas, Christine Kalogeri and Petros Katsafados
Hydrology 2025, 12(8), 198; https://doi.org/10.3390/hydrology12080198 - 28 Jul 2025
Viewed by 308
Abstract
Accurate short-term rainfall forecasting, an essential component of the broader framework of nowcasting, is crucial for managing extreme weather events. Traditional forecasting approaches, whether radar-based or satellite-based, often struggle with limited spatial coverage or temporal accuracy, reducing their effectiveness. This study tackles these [...] Read more.
Accurate short-term rainfall forecasting, an essential component of the broader framework of nowcasting, is crucial for managing extreme weather events. Traditional forecasting approaches, whether radar-based or satellite-based, often struggle with limited spatial coverage or temporal accuracy, reducing their effectiveness. This study tackles these challenges by implementing the Local Analysis and Prediction System (LAPS) enhanced with a forward advection nowcasting module, integrating multiple remote sensing rainfall datasets. Specifically, we combine weather radar data with three different satellite-derived rainfall products (H-SAF, GPM, and TRMM) to assess their impact on nowcasting performance for a rainfall event in Attica, Greece (29–30 September 2018). The results demonstrate that combined high-resolution radar data with the broader coverage and high temporal frequency of satellite retrievals, particularly H-SAF, leads to more accurate predictions with lower uncertainty. The assimilation of H-SAF with radar rainfall retrievals (HX experiment) substantially improved forecast skill, reducing the unbiased Root Mean Square Error by almost 60% compared to the control experiment for the 60 min rainfall nowcast and 55% for the 90 min rainfall nowcast. This work validates the effectiveness of the specific LAPS/advection configuration and underscores the importance of multi-source data assimilation for weather prediction. Full article
(This article belongs to the Topic Advances in Hydrological Remote Sensing)
Show Figures

Figure 1

11 pages, 1161 KiB  
Proceeding Paper
Spatio-Temporal PM2.5 Forecasting Using Machine Learning and Low-Cost Sensors: An Urban Perspective
by Mateusz Zareba, Szymon Cogiel and Tomasz Danek
Eng. Proc. 2025, 101(1), 6; https://doi.org/10.3390/engproc2025101006 - 25 Jul 2025
Viewed by 209
Abstract
This study analyzes air pollution time-series big data to assess stationarity, seasonal patterns, and the performance of machine learning models in forecasting PM2.5 concentrations. Fifty-two low-cost sensors (LCS) were deployed across Krakow city and its surroundings (Poland), collecting hourly air quality data and [...] Read more.
This study analyzes air pollution time-series big data to assess stationarity, seasonal patterns, and the performance of machine learning models in forecasting PM2.5 concentrations. Fifty-two low-cost sensors (LCS) were deployed across Krakow city and its surroundings (Poland), collecting hourly air quality data and generating nearly 20,000 observations per month. The network captured both spatial and temporal variability. The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test confirmed trend-based non-stationarity, which was addressed through differencing, revealing distinct daily and 12 h cycles linked to traffic and temperature variations. Additive seasonal decomposition exhibited time-inconsistent residuals, leading to the adoption of multiplicative decomposition, which better captured pollution outliers associated with agricultural burning. Machine learning models—Ridge Regression, XGBoost, and LSTM (Long Short-Term Memory) neural networks—were evaluated under high spatial and temporal variability (winter) and low variability (summer) conditions. Ridge Regression showed the best performance, achieving the highest R2 (0.97 in winter, 0.93 in summer) and the lowest mean squared errors. XGBoost showed strong predictive capabilities but tended to overestimate moderate pollution events, while LSTM systematically underestimated PM2.5 levels in December. The residual analysis confirmed that Ridge Regression provided the most stable predictions, capturing extreme pollution episodes effectively, whereas XGBoost exhibited larger outliers. The study proved the potential of low-cost sensor networks and machine learning in urban air quality forecasting focused on rare smog episodes (RSEs). Full article
Show Figures

Figure 1

26 pages, 5325 KiB  
Article
Spatiotemporal Dengue Forecasting for Sustainable Public Health in Bandung, Indonesia: A Comparative Study of Classical, Machine Learning, and Bayesian Models
by I Gede Nyoman Mindra Jaya, Yudhie Andriyana, Bertho Tantular, Sinta Septi Pangastuti and Farah Kristiani
Sustainability 2025, 17(15), 6777; https://doi.org/10.3390/su17156777 - 25 Jul 2025
Viewed by 368
Abstract
Accurate dengue forecasting is essential for sustainable public health planning, especially in tropical regions where the disease remains a persistent threat. This study evaluates the predictive performance of seven modeling approaches—Seasonal Autoregressive Integrated Moving Average (SARIMA), Extreme Gradient Boosting (XGBoost), Recurrent Neural Network [...] Read more.
Accurate dengue forecasting is essential for sustainable public health planning, especially in tropical regions where the disease remains a persistent threat. This study evaluates the predictive performance of seven modeling approaches—Seasonal Autoregressive Integrated Moving Average (SARIMA), Extreme Gradient Boosting (XGBoost), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), Convolutional LSTM (CNN–LSTM), and a Bayesian spatiotemporal model—using monthly dengue incidence data from 2009 to 2023 in Bandung City, Indonesia. Model performance was assessed using MAE, sMAPE, RMSE, and Pearson’s correlation (R). Among all models, the Bayesian spatiotemporal model achieved the best performance, with the lowest MAE (5.543), sMAPE (62.137), and RMSE (7.482), and the highest R (0.723). While SARIMA and XGBoost showed signs of overfitting, the Bayesian model not only delivered more accurate forecasts but also produced spatial risk estimates and identified high-risk hotspots via exceedance probabilities. These features make it particularly valuable for developing early warning systems and guiding targeted public health interventions, supporting the broader goals of sustainable disease management. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Figure 1

20 pages, 523 KiB  
Article
Improved Probability-Weighted Moments and Two-Stage Order Statistics Methods of Generalized Extreme Value Distribution
by Autcha Araveeporn
Mathematics 2025, 13(14), 2295; https://doi.org/10.3390/math13142295 - 17 Jul 2025
Viewed by 261
Abstract
This study evaluates six parameter estimation methods for the generalized extreme value (GEV) distribution: maximum likelihood estimation (MLE), two probability-weighted moments (PWM-UE and PWM-PP), and three robust two-stage order statistics estimators (TSOS-ME, TSOS-LMS, and TSOS-LTS). Their performance was assessed using simulation experiments under [...] Read more.
This study evaluates six parameter estimation methods for the generalized extreme value (GEV) distribution: maximum likelihood estimation (MLE), two probability-weighted moments (PWM-UE and PWM-PP), and three robust two-stage order statistics estimators (TSOS-ME, TSOS-LMS, and TSOS-LTS). Their performance was assessed using simulation experiments under varying tail behaviors, represented by three types of GEV distributions: Weibull (short-tailed), Gumbel (light-tailed), and Fréchet (heavy-tailed) distributions, based on the mean squared error (MSE) and mean absolute percentage error (MAPE). The results showed that TSOS-LTS consistently achieved the lowest MSE and MAPE, indicating high robustness and forecasting accuracy, particularly for short-tailed distributions. Notably, PWM-PP performed well for the light-tailed distribution, providing accurate and efficient estimates in this specific setting. For heavy-tailed distributions, TSOS-LTS exhibited superior estimation accuracy, while PWM-PP showed a better predictive performance in terms of MAPE. The methods were further applied to real-world monthly maximum PM2.5 data from three air quality stations in Bangkok. TSOS-LTS again demonstrated superior performance, especially at Thon Buri station. This research highlights the importance of tailoring estimation techniques to the distribution’s tail behavior and supports the use of robust approaches for modeling environmental extremes. Full article
(This article belongs to the Section D1: Probability and Statistics)
Show Figures

Figure 1

32 pages, 9426 KiB  
Article
Multi-Output Prediction and Optimization of CO2 Laser Cutting Quality in FFF-Printed ASA Thermoplastics Using Machine Learning Approaches
by Oguzhan Der
Polymers 2025, 17(14), 1910; https://doi.org/10.3390/polym17141910 - 10 Jul 2025
Viewed by 423
Abstract
This research article examines the CO2 laser cutting performance of Fused Filament Fabricated Acrylonitrile Styrene Acrylate (ASA) thermoplastics by analyzing the influence of plate thickness, laser power, and cutting speed on four quality characteristics: surface roughness (Ra), top kerf width (Top KW), [...] Read more.
This research article examines the CO2 laser cutting performance of Fused Filament Fabricated Acrylonitrile Styrene Acrylate (ASA) thermoplastics by analyzing the influence of plate thickness, laser power, and cutting speed on four quality characteristics: surface roughness (Ra), top kerf width (Top KW), bottom kerf width (Bottom KW), and bottom heat-affected zone (Bottom HAZ). Forty-five experiments were conducted using five thickness levels, three power levels, and three cutting speeds. To model and predict these outputs, seven machine learning approaches were employed: Autoencoder, Autoencoder–Gated Recurrent Unit, Autoencoder–Long Short-Term Memory, Random Forest, Extreme Gradient Boosting (XGBoost), Support Vector Regression, and Linear Regression. Among them, XGBoost yielded the highest accuracy across all performance metrics. Analysis of Variance results revealed that Ra is mainly affected by plate thickness, Bottom KW by cutting speed, and Bottom HAZ by power, while Top KW is influenced by all three parameters. The study proposes an effective prediction framework using multi-output modeling and hybrid deep learning, offering a data-driven foundation for process optimization. The findings are expected to support intelligent manufacturing systems for real-time quality prediction and adaptive laser post-processing of engineering-grade thermoplastics such as ASA. This integrative approach also enables a deeper understanding of nonlinear dependencies in laser–material interactions. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

19 pages, 3742 KiB  
Article
Hybrid Prediction Model of Burn-Through Point Temperature with Color Temperature Information from Cross-Sectional Frame at Discharge End
by Mengxin Zhao, Yinghua Fan, Jing Ge, Xinzhe Hao, Caili Wu, Xian Ma and Sheng Du
Energies 2025, 18(14), 3595; https://doi.org/10.3390/en18143595 - 8 Jul 2025
Viewed by 255
Abstract
Iron ore sintering is a critical process in steelmaking, where the produced sinter is the main raw material for blast furnace ironmaking. The quality and yield of sinter ore directly affect the cost and efficiency of iron and steel production. Accurately predicting the [...] Read more.
Iron ore sintering is a critical process in steelmaking, where the produced sinter is the main raw material for blast furnace ironmaking. The quality and yield of sinter ore directly affect the cost and efficiency of iron and steel production. Accurately predicting the burn-through point (BTP) temperature is of paramount importance for controlling quality and yield. Traditional BTP temperature prediction only utilizes data from bellows, neglecting the information contained in sinter images. This study combines color temperature information extracted from the cross-sectional frame at the discharge end with bellows data. Due to the non-stationarity of the BTP temperature, a hybrid prediction model of the BTP temperature integrating bidirectional long short-term memory and extreme gradient boosting is presented. By combining the advantages of deep learning and tree ensemble learning, a hybrid prediction model of the BTP temperature is established using the color temperature information in the cross-sectional frame at the discharge end and time-series data. Experiments were conducted with the actual running data in an iron and steel enterprise and show that the proposed method has higher accuracy than existing methods, achieving an approximately 4.3% improvement in prediction accuracy. The proposed method can provide an effective reference for decision-making and for the optimization of operating parameters in the sintering process. Full article
Show Figures

Figure 1

16 pages, 5320 KiB  
Article
Response Mechanism of Carbon Fluxes in Restored and Natural Mangrove Ecosystems Under the Effects of Storm Surges
by Huimin Zou, Jianhua Zhu, Zhen Tian, Zhulin Chen, Zhiyong Xue and Weiwei Li
Forests 2025, 16(7), 1115; https://doi.org/10.3390/f16071115 - 5 Jul 2025
Viewed by 222
Abstract
As climate change intensifies the frequency and magnitude of extreme weather events, such as storm surges, understanding how extreme weather events alter mangrove carbon dynamics is critical for predicting the resilience of blue carbon ecosystems under climate change. Mangrove forests are generally recognized [...] Read more.
As climate change intensifies the frequency and magnitude of extreme weather events, such as storm surges, understanding how extreme weather events alter mangrove carbon dynamics is critical for predicting the resilience of blue carbon ecosystems under climate change. Mangrove forests are generally recognized for their resilience to natural disturbances, a characteristic largely attributed to the evolutionary development of species-specific functional traits. However, limited research has explored the impacts of storm surges on carbon flux dynamics in both natural and restored mangrove ecosystems. In this study, we analyzed short-term responses of storm surges on carbon dioxide flux and methane flux in natural and restored mangroves. The results revealed that following the storm surge, CO2 uptake decreased by 51% in natural mangrove forests and increased by 20% in restored mangroves, while CH4 emissions increased by 14% in natural mangroves and decreased by 22% in restored mangroves. GPP is mainly driven by PPFD and negatively affected by VPD and RH, while Reco and CH4 flux respond to a combination of temperature, humidity, and hydrological factors. NEE is primarily controlled by GPP and Reco, with environmental variables acting indirectly. These findings highlight the complex, site-specific pathways through which extreme events regulate carbon fluxes, underscoring the importance of incorporating ecological feedbacks into coastal carbon assessments under climate change. Full article
(This article belongs to the Special Issue Advances in Forest Carbon, Water Use and Growth Under Climate Change)
Show Figures

Figure 1

18 pages, 2771 KiB  
Article
Short-Term Forecasting of Crop Production for Sustainable Agriculture in a Changing Climate
by Vincenzo Guerriero, Anna Rita Scorzini, Bruno Di Lena, Mario Di Bacco and Marco Tallini
Sustainability 2025, 17(13), 6135; https://doi.org/10.3390/su17136135 - 4 Jul 2025
Viewed by 302
Abstract
Globally, crop productive systems exhibit climatic adaptation, resulting in increased overall yields over the past century. Nevertheless, inter-annual fluctuations in production can lead to food price volatility, raising concerns about food security. Within this framework, short-term crop yield predictions informed by climate observations [...] Read more.
Globally, crop productive systems exhibit climatic adaptation, resulting in increased overall yields over the past century. Nevertheless, inter-annual fluctuations in production can lead to food price volatility, raising concerns about food security. Within this framework, short-term crop yield predictions informed by climate observations may significantly contribute to sustainable agricultural development. In this study, we discuss the criteria for historical monitoring and forecasting of the productive system response to climatic fluctuations, both ordinary and extreme. Here, forecasting is intended as an assessment of the conditional probability distribution of crop yield, given the observed value of a key climatic index in an appropriately chosen month of the year. Wheat production in the Teramo province (central Italy) is adopted as a case study to illustrate the approach. To characterize climatic conditions, this study utilizes the Standardized Precipitation Evapotranspiration Index (SPEI) as a key indicator impacting wheat yield. Validation has been carried out by means of Monte Carlo simulations, confirming the effectiveness of the method. The main findings of this study show that the model describing the yield–SPEI relationship has time-varying parameters and that the study of their variation trend allows for an estimate of their current values. These results are of interest from a methodological point of view, as these methods can be adapted to various crop products across different geographical regions, offering a tool to anticipate production figures. This offers effective tools for informed decision-making in support of both agricultural and economic sustainability, with the additional benefit of helping to mitigate price volatility. Full article
Show Figures

Figure 1

24 pages, 5555 KiB  
Article
A Signal Processing-Guided Deep Learning Framework for Wind Shear Prediction on Airport Runways
by Afaq Khattak, Pak-wai Chan, Feng Chen, Hashem Alyami and Masoud Alajmi
Atmosphere 2025, 16(7), 802; https://doi.org/10.3390/atmos16070802 - 1 Jul 2025
Viewed by 383
Abstract
Wind shear at the Hong Kong International Airport (HKIA) poses a significant safety risk due to terrain-induced airflow disruptions near the runways. Accurate assessment is essential for safeguarding aircraft during take-off and landing, as abrupt changes in wind speed or direction can compromise [...] Read more.
Wind shear at the Hong Kong International Airport (HKIA) poses a significant safety risk due to terrain-induced airflow disruptions near the runways. Accurate assessment is essential for safeguarding aircraft during take-off and landing, as abrupt changes in wind speed or direction can compromise flight stability. This study introduces a hybrid framework for short-term wind shear prediction based on data collected from Doppler LiDAR systems positioned near the central and south runways of the HKIA. These systems provide high-resolution measurements of wind shear magnitude along critical flight paths. To predict wind shear more effectively, the proposed framework integrates a signal processing technique with a deep learning strategy. It begins with optimized variational mode decomposition (OVMD), which decomposes the wind shear time series into intrinsic mode functions (IMFs), each capturing distinct temporal characteristics. These IMFs are then modeled using bidirectional gated recurrent units (BiGRU), with hyperparameters optimized via the Tree-structured Parzen Estimator (TPE). To further enhance prediction accuracy, residual errors are corrected using Extreme Gradient Boosting (XGBoost), which captures discrepancies between the reconstructed signal and actual observations. The resulting OVMD–BiGRU–XGBoost framework exhibits strong predictive performance on testing data, achieving R2 values of 0.729 and 0.926, RMSE values of 0.931 and 0.709, and MAE values of 0.624 and 0.521 for the central and south runways, respectively. Compared with GRUs, LSTM, BiLSTM, and ResNet-based baselines, the proposed framework achieves higher accuracy and a more effective representation of multi-scale temporal dynamics. It contributes to improving short-term wind shear prediction and supports operational planning and safety management in airport environments. Full article
(This article belongs to the Special Issue Aviation Meteorology: Developments and Latest Achievements)
Show Figures

Figure 1

20 pages, 6086 KiB  
Article
Analysis of Evolutionary Characteristics and Prediction of Annual Runoff in Qianping Reservoir
by Xiaolong Kang, Haoming Yu, Chaoqiang Yang, Qingqing Tian and Yadi Wang
Water 2025, 17(13), 1902; https://doi.org/10.3390/w17131902 - 26 Jun 2025
Viewed by 366
Abstract
Under the combined influence of climate change and human activities, the non-stationarity of reservoir runoff has significantly intensified, posing challenges for traditional statistical models to accurately capture its multi-scale abrupt changes. This study focuses on Qianping (QP) Reservoir and systematically integrates climate-driven mechanisms [...] Read more.
Under the combined influence of climate change and human activities, the non-stationarity of reservoir runoff has significantly intensified, posing challenges for traditional statistical models to accurately capture its multi-scale abrupt changes. This study focuses on Qianping (QP) Reservoir and systematically integrates climate-driven mechanisms with machine learning approaches to uncover the patterns of runoff evolution and develop high-precision prediction models. The findings offer a novel paradigm for adaptive reservoir operation under non-stationary conditions. In this paper, we employ methods including extreme-point symmetric mode decomposition (ESMD), Bayesian ensemble time series decomposition (BETS), and cross-wavelet transform (XWT) to investigate the variation trends and mutation features of the annual runoff in QP Reservoir. Additionally, four models—ARIMA, LSTM, LSTM-RF, and LSTM-CNN—are utilized for runoff prediction and analysis. The results indicate that: (1) the annual runoff of QP Reservoir exhibits a quasi-8.25-year mid-short-term cycle and a quasi-13.20-year long-term cycle on an annual scale; (2) by using Bayesian estimators based on abrupt change year detection and trend variation algorithms, an abrupt change point with a probability of 79.1% was identified in 1985, with a confidence interval spanning 1984 to 1986; (3) cross-wavelet analysis indicates that the periodic associations between the annual runoff of QP Reservoir and climate-driving factors exhibit spatiotemporal heterogeneity: the AMO, AO, and PNA show multi-scale synergistic interactions; the DMI and ENSO display only phase-specific weak coupling; while solar sunspot activity modulates runoff over long-term cycles; and (4) The NSE of the ARIMA, LSTM, LSTM-RF, and LSTM-CNN models all exceed 0.945, the RMSE is below 0.477 × 109 m3, and the MAE is below 0.297 × 109 m3, Among them, the LSTM-RF model demonstrated the highest accuracy and the most stable predicted fluctuations, indicating that future annual runoff will continue to fluctuate but with a decreasing amplitude. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

20 pages, 1771 KiB  
Review
Detection and Prediction of Wind and Solar Photovoltaic Power Ramp Events Based on Data-Driven Methods: A Critical Review
by Jie Zhang, Xinchun Zhu, Yigong Xie, Guo Chen and Shuangquan Liu
Energies 2025, 18(13), 3290; https://doi.org/10.3390/en18133290 - 23 Jun 2025
Viewed by 395
Abstract
In recent years, the increasing frequency of extreme weather events has led to a rise in unplanned unit outages, posing significant risks to the safe operation of power systems and underscoring the critical need for accurate prediction and effective mitigation of wind and [...] Read more.
In recent years, the increasing frequency of extreme weather events has led to a rise in unplanned unit outages, posing significant risks to the safe operation of power systems and underscoring the critical need for accurate prediction and effective mitigation of wind and solar power ramp events. Unlike traditional power forecasting, ramp event prediction must capture the abrupt output variations induced by short-term meteorological fluctuations. This review systematically examines recent advancements in the field, focusing on three principal areas: the definition and detection of ramp event characteristics, innovations in predictive model architectures, and strategies for precision optimization. Our analysis reveals that while detection algorithms for ramp events have matured and the overall predictive performance of power forecasting models has improved, existing approaches often struggle to capture localized ramp phenomena, resulting in persistent deviations. Moreover, current research highlights the necessity of developing evaluation systems tailored to the specific operational hazards of ramp events, rather than relying solely on conventional forecasting metrics. The integration of artificial intelligence has accelerated progress in both event prediction and error correction. However, significant challenges remain, particularly regarding the interpretability, generalizability, and real-time applicability of advanced models. Future research should prioritize the development of adaptive, ramp-specific evaluation frameworks, the fusion of physical and data-driven modeling techniques, and the deployment of multi-modal systems capable of leveraging heterogeneous data sources for robust, actionable ramp event forecasting. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

31 pages, 14978 KiB  
Article
Experimental Evaluation and Machine Learning-Based Prediction of Laser Cutting Quality in FFF-Printed ABS Thermoplastics
by Gokhan Basar
Polymers 2025, 17(13), 1728; https://doi.org/10.3390/polym17131728 - 20 Jun 2025
Cited by 1 | Viewed by 502
Abstract
Additive manufacturing, particularly Fused Filament Fabrication (FFF), provides notable advantages such as design flexibility and efficient material usage. However, components produced via FFF often exhibit suboptimal surface quality and dimensional inaccuracies. Acrylonitrile Butadiene Styrene (ABS), a widely used thermoplastic in FFF applications, commonly [...] Read more.
Additive manufacturing, particularly Fused Filament Fabrication (FFF), provides notable advantages such as design flexibility and efficient material usage. However, components produced via FFF often exhibit suboptimal surface quality and dimensional inaccuracies. Acrylonitrile Butadiene Styrene (ABS), a widely used thermoplastic in FFF applications, commonly necessitates post-processing to enhance its surface finish and dimensional precision. This study investigates the effects of CO2 laser cutting on FFF-printed ABS plates, focusing on surface roughness, top and bottom kerf width, and bottom heat-affected zone. Forty-five experimental trials were conducted using different combinations of plate thickness, cutting speed, and laser power. Measurements were analysed statistically, and analysis of variance was applied to determine the significance of each parameter. To enhance prediction capabilities, seven machine learning models—comprising traditional (Linear Regression and Support Vector Regression), ensemble (Extreme Gradient Boosting and Random Forest), and deep learning algorithms (Long Short-Term Memory (LSTM), LSTM-Gated Recurrent Unit (LSTM-GRU), LSTM-Extreme Gradient Boosting (LSTM-XGBoost))—were developed and compared. Among these, the LSTM-GRU model achieved the highest predictive performance across all output metrics. Results show that cutting speed is the dominant factor affecting cutting quality, followed by laser power and thickness. The proposed experimental-computational approach enables accurate prediction of laser cutting outcomes, facilitating optimisation of post-processing strategies for 3D-printed ABS parts and contributing to improved precision and efficiency in polymer-based additive manufacturing. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

56 pages, 3118 KiB  
Article
Semantic Reasoning Using Standard Attention-Based Models: An Application to Chronic Disease Literature
by Yalbi Itzel Balderas-Martínez, José Armando Sánchez-Rojas, Arturo Téllez-Velázquez, Flavio Juárez Martínez, Raúl Cruz-Barbosa, Enrique Guzmán-Ramírez, Iván García-Pacheco and Ignacio Arroyo-Fernández
Big Data Cogn. Comput. 2025, 9(6), 162; https://doi.org/10.3390/bdcc9060162 - 19 Jun 2025
Viewed by 744
Abstract
Large-language-model (LLM) APIs demonstrate impressive reasoning capabilities, but their size, cost, and closed weights limit the deployment of knowledge-aware AI within biomedical research groups. At the other extreme, standard attention-based neural language models (SANLMs)—including encoder–decoder architectures such as Transformers, Gated Recurrent Units (GRUs), [...] Read more.
Large-language-model (LLM) APIs demonstrate impressive reasoning capabilities, but their size, cost, and closed weights limit the deployment of knowledge-aware AI within biomedical research groups. At the other extreme, standard attention-based neural language models (SANLMs)—including encoder–decoder architectures such as Transformers, Gated Recurrent Units (GRUs), and Long Short-Term Memory (LSTM) networks—are computationally inexpensive. However, their capacity for semantic reasoning in noisy, open-vocabulary knowledge bases (KBs) remains unquantified. Therefore, we investigate whether compact SANLMs can (i) reason over hybrid OpenIE-derived KBs that integrate commonsense, general-purpose, and non-communicable-disease (NCD) literature; (ii) operate effectively on commodity GPUs; and (iii) exhibit semantic coherence as assessed through manual linguistic inspection. To this end, we constructed four training KBs by integrating ConceptNet (600k triples), a 39k-triple general-purpose OpenIE set, and an 18.6k-triple OpenNCDKB extracted from 1200 PubMed abstracts. Encoder–decoder GRU, LSTM, and Transformer models (1–2 blocks) were trained to predict the object phrase given the subject + predicate. Beyond token-level cross-entropy, we introduced the Meaning-based Selectional-Preference Test (MSPT): for each withheld triple, we masked the object, generated a candidate, and measured its surplus cosine similarity over a random baseline using word embeddings, with significance assessed via a one-sided t-test. Hyperparameter sensitivity (311 GRU/168 LSTM runs) was analyzed, and qualitative frame–role diagnostics completed the evaluation. Our results showed that all SANLMs learned effectively from the point of view of the cross entropy loss. In addition, our MSPT provided meaningful semantic insights: for the GRUs (256-dim, 2048-unit, 1-layer): mean similarity (μsts) of 0.641 to the ground truth vs. 0.542 to the random baseline (gap 12.1%; p<10180). For the 1-block Transformer: μsts=0.551 vs. 0.511 (gap 4%; p<1025). While Transformers minimized loss and accuracy variance, GRUs captured finer selectional preferences. Both architectures trained within <24 GB GPU VRAM and produced linguistically acceptable, albeit over-generalized, biomedical assertions. Due to their observed performance, LSTM results were designated as baseline models for comparison. Therefore, properly tuned SANLMs can achieve statistically robust semantic reasoning over noisy, domain-specific KBs without reliance on massive LLMs. Their interpretability, minimal hardware footprint, and open weights promote equitable AI research, opening new avenues for automated NCD knowledge synthesis, surveillance, and decision support. Full article
Show Figures

Figure 1

28 pages, 7612 KiB  
Article
Machine Learning Models for Predicting Freeze–Thaw Damage of Concrete Under Subzero Temperature Curing Conditions
by Yanhua Zhao, Bo Yang, Kai Zhang, Aojun Guo, Yonghui Yu and Li Chen
Materials 2025, 18(12), 2856; https://doi.org/10.3390/ma18122856 - 17 Jun 2025
Viewed by 439
Abstract
In high-elevation or high-latitude permafrost areas, persistent subzero temperatures significantly impact the freeze–thaw durability of concrete structures. Traditional methods for studying the frost resistance of concrete in permafrost regions do not provide a complete picture for predicting properties, and new approaches are needed [...] Read more.
In high-elevation or high-latitude permafrost areas, persistent subzero temperatures significantly impact the freeze–thaw durability of concrete structures. Traditional methods for studying the frost resistance of concrete in permafrost regions do not provide a complete picture for predicting properties, and new approaches are needed using, for example, machine learning algorithms. This study utilizes four machine learning models—Support Vector Machine (SVM), extreme learning machine (ELM), long short-term memory (LSTM), and radial basis function neural network (RBFNN)—to predict freeze–thaw damage factors in concrete under low and subzero temperature conservation conditions. Building on the prediction results, the optimal model is refined to develop a new machine learning model: the Sparrow Search Algorithm-optimized Extreme Learning Machine (SSA-ELM). Furthermore, the SHapley Additive exPlanations (SHAP) value analysis method is employed to interpret this model, clarifying the relationship between factors affecting the freezing resistance of concrete and freeze–thaw damage factors. In conclusion, the empirical formula for concrete freeze–thaw damage is compared and validated against the prediction results from the SSA-ELM model. The study results indicate that the SSA-ELM model offers the most accurate predictions for concrete freeze–thaw resistance compared to the SVM, ELM, LSTM, and RBFNN models. SHAP value analysis quantitatively confirms that the number of freeze–thaw cycles is the most significant input parameter affecting the freeze–thaw damage coefficient of concrete. Comparative analysis shows that the accuracy of the SSA-ELMDE prediction set is improved by 15.46%, 9.19%, 21.79%, and 11.76%, respectively, compared with the prediction results of SVM, ELM, LSTM, and RBF. This parameter positively influences the prediction results for the freeze–thaw damage coefficient. Curing humidity has the least influence on the freeze–thaw damage factor of concrete. Comparing the prediction results with empirical formulas shows that the machine learning model provides more accurate predictions. This introduces a new approach for predicting the extent of freeze–thaw damage to concrete under low and subzero temperature conservation conditions. Full article
(This article belongs to the Special Issue Artificial Intelligence in Materials Science and Engineering)
Show Figures

Figure 1

Back to TopTop