Detection and Prediction of Wind and Solar Photovoltaic Power Ramp Events Based on Data-Driven Methods: A Critical Review
Abstract
1. Introduction
2. Mathematical Modeling and Detection of Power Ramp Events
2.1. Mathematical Modeling and Characteristic Parameters of Power Ramp Events
2.2. Definitions of Power Ramp Events
2.3. Detection Algorithms for Power Ramp Events
Continuous Detection Based on Wavelet Transform
3. Power Ramp Event Forecasting
3.1. Simulation of Ramp Events—The Sample Imbalance Problem of Ramp Events
3.2. Power Ramp Forecasting Using Different Models
3.3. Evaluation Metrics for Ramp Event Forecasting
4. Improving the Accuracy of Ramp Detection and Prediction Using Advanced Artificial Intelligence Methods
4.1. Parameter Adaptation and Dynamic Update of Detection Methods
4.2. Analyzing Ramp Characteristics Using Historical Similarity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gallego-Castillo, C.; Cuerva-Tejero, A.; Lopez-Garcia, O. A review on the recent history of wind power ramp forecasting. Renew. Sustain. Energy Rev. 2015, 52, 1148–1157. [Google Scholar] [CrossRef]
- Shivashankar, S.; Mekhilef, S.; Mokhlis, H.; Karimi, M. Mitigating methods of power fluctuation of photovoltaic (PV) sources—A review. Renew. Sustain. Energy Rev. 2016, 59, 1170–1184. [Google Scholar] [CrossRef]
- Perera, A.T.D.; Nik, V.M.; Chen, D.; Scartezzini, J.-L.; Hong, T. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat. Energy 2020, 5, 150–159. [Google Scholar] [CrossRef]
- Yang, B.; Zhong, L.; Wang, J.; Shu, H.; Zhang, X.; Yu, T.; Sun, L. State-of-the-art one-stop handbook on wind forecasting technologies: An overview of classifications, methodologies, and analysis. J. Clean. Prod. 2021, 283, 124628. [Google Scholar] [CrossRef]
- Samu, R.; Calais, M.; Shafiullah, G.M.; Moghbel, M.; Shoeb, M.A.; Nouri, B.; Blum, N. Applications for solar irradiance nowcasting in the control of microgrids: A review. Renew. Sustain. Energy Rev. 2021, 147, 111187. [Google Scholar] [CrossRef]
- Mansoori, A.; Sheikhi Fini, A.; Parsa Moghaddam, M. Power System Robust Day-ahead Scheduling with the Presence of Fast-Response Resources Both on Generation and Demand Sides under High Penetration of Wind Generation Units. Int. J. Electr. Power Energy Syst. 2021, 131, 107149. [Google Scholar] [CrossRef]
- Wang, Q.; Hodge, B.-M. Enhancing Power System Operational Flexibility With Flexible Ramping Products: A Review. IEEE Trans. Ind. Inf. 2017, 13, 1652–1664. [Google Scholar] [CrossRef]
- Lamsal, D.; Sreeram, V.; Mishra, Y.; Kumar, D. Output power smoothing control approaches for wind and photovoltaic generation systems: A review. Renew. Sustain. Energy Rev. 2019, 113, 109245. [Google Scholar] [CrossRef]
- Pan, Y.; Ju, L.; Yang, S.; Guo, X.; Tan, Z. A multi-objective robust optimal dispatch and cost allocation model for microgrids-shared hybrid energy storage system considering flexible ramping capacity. Appl. Energy 2024, 369, 123565. [Google Scholar] [CrossRef]
- Wen, H.; Du, Y.; Chen, X.; Lim, E.; Wen, H.; Jiang, L.; Xiang, W. Deep Learning Based Multistep Solar Forecasting for PV Ramp-Rate Control Using Sky Images. IEEE Trans. Ind. Inf. 2021, 17, 1397–1406. [Google Scholar] [CrossRef]
- Valldecabres, L.; Von Bremen, L.; Kühn, M. Minute-scale detection and probabilistic prediction of offshore wind turbine power ramps using dual-Doppler radar. Wind Energy 2020, 23, 2202–2224. [Google Scholar] [CrossRef]
- Sevlian, R.; Rajagopal, R. Detection and Statistics of Wind Power Ramps. IEEE Trans. Power Syst. 2013, 28, 3610–3620. [Google Scholar] [CrossRef]
- Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J. A Survey on Wind Power Ramp Forecasting; No. ANL/DIS-10-13; Argonne National Lab (ANL): Argonne, IL, USA, 2011. [Google Scholar]
- Wang, C.; Lin, H.; Yang, M.; Fu, X. Review of Research on New Energy Ramp Events. In Proceedings of the 2023 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Chongqing, China, 7–9 July 2023; pp. 1542–1546. [Google Scholar] [CrossRef]
- Ye, L.; Li, Y.; Pei, M.; Li, Z.; Xu, X.J.; Lu, J. Combined approach for short-term wind power forecasting under cold weather with small sample. Proc. CSEE 2023, 43, 543–554. [Google Scholar]
- Kamath, C. Understanding wind ramp events through analysis of historical data. In Proceedings of the IEEE PES T&D 2010, New Orleans, LA, USA, 19–22 April 2010. [Google Scholar]
- Greaves, B.; Collins, J.; Parkes, J.; Tindal, A. Temporal Forecast Uncertainty for Ramp Events. Wind Eng. 2009, 33, 309–319. [Google Scholar] [CrossRef]
- Cutler, N.; Kay, M.; Jacka, K.; Nielsen, T.S. Detecting, categorizing and forecasting large ramps in wind farm power output using meteorological observations and WPPT. Wind Energy 2007, 10, 453–470. [Google Scholar] [CrossRef]
- Florita, A.; Hodge, B.-M.; Orwig, K. Identifying Wind and Solar Ramping Events. In Proceedings of the 2013 IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 4–5 April 2013; pp. 147–152. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, J.; Florita, A.R.; Hodge, B.-M.; Ke, D.; Sun, Y. An Optimized Swinging Door Algorithm for Identifying Wind Ramping Events. IEEE Trans. Sustain. Energy 2016, 7, 150–162. [Google Scholar] [CrossRef]
- Cui, Y.; He, Y.; Xiong, X.; Chen, Z.; Li, F.; Xu, T.; Zhang, F. Algorithm for identifying wind power ramp events via novel improved dynamic swinging door. Renew. Energy 2021, 171, 542–556. [Google Scholar] [CrossRef]
- Lyners, D.; Vermeulen, H.; Groch, M. Wind power ramp event detection using a multi-parameter segmentation algorithm. Energy Rep. 2021, 7, 5536–5548. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, J.; Feng, C.; Florita, A.R.; Sun, Y.; Hodge, B.-M. Characterizing and analyzing ramping events in wind power, solar power, load. Renew. Energy 2017, 111, 227–244. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, L.; Yang, M.; Wang, B. Solar Power Ramp Event Forewarning With Limited Historical Observations. IEEE Trans. Ind. Applicat. 2019, 55, 5621–5630. [Google Scholar] [CrossRef]
- Raj, R.P.; Kowli, A. Characterizing the ramps and noise in solar power imbalances. Sol. Energy 2022, 247, 531–542. [Google Scholar] [CrossRef]
- Gallego, C.; Costa, A.; Cuerva, Á.; Landberg, L.; Greaves, B.; Collins, J. A wavelet-based approach for large wind power ramp characterisation. Wind Energy 2013, 16, 257–278. [Google Scholar] [CrossRef]
- Hannesdóttir, Á.; Kelly, M. Detection and characterization of extreme wind speed ramps. Wind Energy Sci. 2019, 4, 385–396. [Google Scholar] [CrossRef]
- Cui, M.; Ke, D.; Sun, Y.; Gan, D.; Zhang, J.; Hodge, B.-M. Wind Power Ramp Event Forecasting Using a Stochastic Scenario Generation Method. IEEE Trans. Sustain. Energy 2015, 6, 422–433. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, J.; Wang, Q.; Krishnan, V.; Hodge, B.-M. A Data-Driven Methodology for Probabilistic Wind Power Ramp Forecasting. IEEE Trans. Smart Grid 2019, 10, 1326–1338. [Google Scholar] [CrossRef]
- Ouyang, T.; Zha, X.; Qin, L.; He, Y.; Tang, Z. Prediction of wind power ramp events based on residual correction. Renew. Energy 2019, 136, 781–792. [Google Scholar] [CrossRef]
- Zhou, B.; Duan, H.; Wu, Q.; Wang, H.; Or, S.W.; Chan, K.W.; Meng, Y. Short-term prediction of wind power and its ramp events based on semi-supervised generative adversarial network. Int. J. Electr. Power Energy Syst. 2021, 125, 106411. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, Z.; He, Y.; Xiong, X.; Li, F. An algorithm for forecasting day-ahead wind power via novel long short-term. Energy 2023, 263, 125888. [Google Scholar] [CrossRef]
- Fantini, D.G.; Silva, R.N.; Siqueira, M.B.B.; Pinto, M.S.S.; Guimarães, M.; Brasil, A.C.P. Wind speed short-term prediction using recurrent neural network GRU model and stationary wavelet transform GRU hybrid model. Energy Convers. Manag. 2024, 308, 118333. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, L.; Tang, J.; Liu, Z. A novel transformer ordinal regression network with label diversity for wind power ramp events forecasting. Energy 2023, 280, 128075. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Pan, G.; Zhao, Y. A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting. Energy Convers. Manag. 2019, 195, 180–197. [Google Scholar] [CrossRef]
- Wang, H.; Yi, H.; Peng, J.; Wang, G.; Liu, Y.; Jiang, H.; Liu, W. Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network. Energy Convers. Manag. 2017, 153, 409–422. [Google Scholar] [CrossRef]
- Peng, X.; Li, Y.; Tsung, F. A graph attention network with spatio-temporal wind propagation graph for wind power ramp events prediction. Renew. Energy 2024, 236, 121280. [Google Scholar] [CrossRef]
- Liu, J.; Zang, H.; Ding, T.; Cheng, L.; Wei, Z.; Sun, G. Harvesting spatiotemporal correlation from sky image sequence to improve ultra-short-term solar irradiance forecasting. Renew. Energy 2023, 209, 619–631. [Google Scholar] [CrossRef]
- Chu, T.-P.; Guo, J.-H.; Leu, Y.-G.; Chou, L.-F. Estimation of solar irradiance and solar power based on all-sky images. Sol. Energy 2023, 249, 495–506. [Google Scholar] [CrossRef]
- Hendrikx, N.Y.; Barhmi, K.; Visser, L.R.; De Bruin, T.A.; Pó, M.; Salah, A.A.; Van Sark, W.G.J.H.M. All sky imaging-based short-term solar irradiance forecasting with Long Short-Term Memory networks. Sol. Energy 2024, 272, 112463. [Google Scholar] [CrossRef]
- Ruan, G.; Chen, X.; Lim, E.G.; Fang, L.; Su, Q.; Jiang, L.; Du, Y. On the use of sky images for intra-hour solar forecasting benchmarking: Comparison of indirect and direct approaches. Sol. Energy 2024, 276, 112649. [Google Scholar] [CrossRef]
- Gharaie, M.M.; Sezer, D.; Zareipour, H. An Updated Review and Comparison of Wind Power Ramp Detection Techniques. In Proceedings of the 2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Kingston, ON, Canada, 6–9 August 2024; pp. 829–834. [Google Scholar] [CrossRef]
- Vallance, L.; Charbonnier, B.; Paul, N.; Dubost, S.; Blanc, P. Towards a standardized procedure to assess solar forecast accuracy: A new ramp and time alignment metric. Sol. Energy 2017, 150, 408–422. [Google Scholar] [CrossRef]
- Nouri, B.; Fabel, Y.; Blum, N.; Schnaus, D.; Zarzalejo, L.F.; Kazantzidis, A.; Wilbert, S. Ramp Rate Metric Suitable for Solar Forecasting. Sol. RRL 2024, 2400468. [Google Scholar] [CrossRef]
- Song, W.; Yan, J.; Han, S.; Liu, S.; Wang, H.; Dai, Q.; Huo, X.; Liu, Y. A multi-task spatio-temporal fusion network for offshore wind power ramp events forecasting. Renew. Energy 2024, 237, 121774. [Google Scholar] [CrossRef]
- Lou, S.; Zhang, D.; Li, D.H.W.; Huang, Y. Evaluating solar ramp rate correlations by simple radiation and wind measurements. Renew. Energy 2024, 235, 121358. [Google Scholar] [CrossRef]
- He, Y.; Zhu, C.; Cao, C. A wind power ramp prediction method based on value-at-risk. Energy Convers. Manag. 2024, 315, 118767. [Google Scholar] [CrossRef]
- Yu, M.; Niu, D.; Gao, T.; Wang, K.; Sun, L.; Li, M.; Xu, X. A novel framework for ultra-short-term interval wind power prediction based on RF-WOA-VMD and BiGRU optimized by the attention mechanism. Energy 2023, 269, 126738. [Google Scholar] [CrossRef]
- Ye, L.; Peng, Y.; Li, Y.; Li, Z. A novel informer-time-series generative adversarial networks for day-ahead scenario generation of wind power. Appl. Energy 2024, 364, 123182. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Li, Y. A parallel differential learning ensemble framework based on enhanced feature extraction and anti-information leakage mechanism for ultra-short-term wind speed forecast. Appl. Energy 2024, 361, 122909. [Google Scholar] [CrossRef]
- Yang, J.; Xu, S.; Jiang, S.; Liu, Y.; Ko, D.; Xu, J. Rolling correction model of ramp for wind power based on dynamic time warping. Autom. Electr. Power Syst. 2021, 45, 152–159. [Google Scholar]
- Keerthisinghe, C.; Silva, A.R.; Tardáguila, P.; Horváth, G.; Deng, A.; Theis, T.N. Improved Short-Term Wind Power Forecasts: Low-Latency Feedback Error Correction Using Ramp Prediction and Data From Nearby Farms. IEEE Access 2023, 11, 128697–128705. [Google Scholar] [CrossRef]
- Zhu, J.; Li, M.; Luo, L.; Zhang, B.; Cui, M.; Yu, L. Short-term PV power forecast methodology based on multi-scale fluctuation characteristics extraction. Renew. Energy 2023, 208, 141–151. [Google Scholar] [CrossRef]
- Li, J.; Song, T.; Liu, B.; Ma, H.; Chen, J.; Cheng, Y. Forecasting of Wind Capacity Ramp Events Using Typical Event Clustering Identification. IEEE Access 2020, 8, 176530–176539. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, N.; Gong, L.; Jiang, M. Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine. Energy 2020, 204, 117894. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, X.; Ma, T.; Jiao, C.; Wang, H.; Hu, W. A multi-step ahead photovoltaic power prediction model based on similar day. Energy 2021, 224, 120094. [Google Scholar] [CrossRef]
- Cao, B.; Chang, L.; Gong, X.; Pijnenburg, P.; Levy, T.; Kilpatrick, R. Day-ahead wind power ramp forecasting using an image-based similarity search strategy. IET Renew. Power Gen 2023, 17, 271–278. [Google Scholar] [CrossRef]
- Jin, C.; Yang, Y.; Han, C.; Lei, T.; Li, C.; Lu, B. Evaluation of forecasted wind speed at turbine hub height and wind ramps by five NWP models with observations from 262 wind farms over China. Meteorol. Appl. 2024, 31, e70007. [Google Scholar] [CrossRef]
- Lochmann, M.; Kalesse-Los, H.; Schäfer, M.; Heinrich, I.; Leinweber, R. Analysing wind power ramp events and improving very short-term wind power predictions by including wind speed observations. Wind Energy 2023, 26, 573–588. [Google Scholar] [CrossRef]
- Sun, M.; Feng, C.; Zhang, J. Probabilistic solar power forecasting based on weather scenario generation. Appl. Energy 2020, 266, 114823. [Google Scholar] [CrossRef]
- Li, L.; Carver, R.; Lopez-Gomez, I.; Sha, F.; Anderson, J. Generative emulation of weather forecast ensembles with diffusion models. Sci. Adv. 2024, 10, eadk4489. [Google Scholar] [CrossRef]
- Zhang, L.; Wilson, R.; Sumner, M.; Wu, Y. Advanced multimodal fusion method for very short-term solar irradiance. Renew. Energy 2023, 216, 118952. [Google Scholar] [CrossRef]
Detection Algorithms | Author | Advantages | Limitation |
---|---|---|---|
Linear fitting | [17] | Intuitive | Noise interference |
L1-SW | [16] | Trend extraction | Computation time |
SDA | [19] | Data compression | Point detection |
OpSDA | [20] | Time flexibility | Parameter adjustment |
ImSDA | [21] | Adaptive adjustment | Complex process |
Models | Author | RMSE | MAPE | RC | Acc |
---|---|---|---|---|---|
GAN | [31] | 0.4326 | 2.55% | 93.75% | None |
CNN-LSTM-Attention | [32] | 0.144 | 17.2% | 0.80 | 0.82 |
IFORNLD-random | [34] | 0.4558 | None | 0.4922 | 0.7309 |
Reference | Data Processing Method | Prediction Model | Evaluation Index |
---|---|---|---|
[44] | End2End | GFM | Ramp Rate Metric, RMSE, Skill Score |
[45] | VMD | GCN | ACC, TPR, FPR, RMSE |
[46] | KHC | WP-GAT | Rec, Pre, Acc, CSI |
[29] | SVM | GGMM | Reliability, Sharpness |
[35] | VMD-WT, PCA-BP | RBF | RMSE, MAE, MAPE |
[36] | WT | DCNN | RMSE, MAE, MAPE, ACE, IS, CRPS |
[47] | VaR | SVM, RF, AdaBoost, GRU, LSTM, CNN | Confusion matrix, F1-Score |
[33] | SWT | GRU | MBE, MSLE, LogCosh, R-Squared |
[48] | RF, VMD | BiGRU | RMSE, R2 |
[32] | FCM, GRA | LSTM, BP, CNN | MAPE. RMSE |
[49] | GAN | Informer | Temporal Correlation, Volatility, Accuracy |
[50] | ISSA, SE | PDLN | MAE, RMSE, MAPE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhu, X.; Xie, Y.; Chen, G.; Liu, S. Detection and Prediction of Wind and Solar Photovoltaic Power Ramp Events Based on Data-Driven Methods: A Critical Review. Energies 2025, 18, 3290. https://doi.org/10.3390/en18133290
Zhang J, Zhu X, Xie Y, Chen G, Liu S. Detection and Prediction of Wind and Solar Photovoltaic Power Ramp Events Based on Data-Driven Methods: A Critical Review. Energies. 2025; 18(13):3290. https://doi.org/10.3390/en18133290
Chicago/Turabian StyleZhang, Jie, Xinchun Zhu, Yigong Xie, Guo Chen, and Shuangquan Liu. 2025. "Detection and Prediction of Wind and Solar Photovoltaic Power Ramp Events Based on Data-Driven Methods: A Critical Review" Energies 18, no. 13: 3290. https://doi.org/10.3390/en18133290
APA StyleZhang, J., Zhu, X., Xie, Y., Chen, G., & Liu, S. (2025). Detection and Prediction of Wind and Solar Photovoltaic Power Ramp Events Based on Data-Driven Methods: A Critical Review. Energies, 18(13), 3290. https://doi.org/10.3390/en18133290