Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (549)

Search Parameters:
Keywords = extreme events and health

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6835 KiB  
Article
Spatiotemporal Changes in Extreme Temperature and Associated Large-Scale Climate Driving Forces in Chongqing
by Chujing Wang, Yuefeng Wang, Chaogui Lei, Sitong Wei, Xingying Huang, Zhenghui Zhu and Shuqiong Zhou
Hydrology 2025, 12(8), 208; https://doi.org/10.3390/hydrology12080208 - 7 Aug 2025
Abstract
Due to global warming, extreme temperature events have become increasingly prevalent, posing significant threats to both socioeconomic development and human safety. While previous studies have extensively examined the influence of individual climatic circulation systems on extreme temperature, the combined effects of multiple concurrent [...] Read more.
Due to global warming, extreme temperature events have become increasingly prevalent, posing significant threats to both socioeconomic development and human safety. While previous studies have extensively examined the influence of individual climatic circulation systems on extreme temperature, the combined effects of multiple concurrent circulation patterns remain poorly understood. Using daily temperature data from 29 meteorological stations in Chongqing (1960–2019), this study employs linear trend analysis, correlation analysis, and random forest (RF) models to analyze spatiotemporal variations in the intensity and frequency of extreme temperature. We selected 21 climate indicators from three categories—atmospheric circulation, sea surface temperature (SST), and sea-level pressure (SLP)—to identify the primary drivers of extreme temperatures and quantify their respective contributions. The key findings are as follows: (1) All extreme intensity indices exhibited an increasing trend, with the TXx (annual maximum daily maximum temperature) showing the higher trend (0.03 °C/year). The northeastern region experienced the most pronounced increases. (2) Frequency indices also displayed an upward trend. This was particularly evident for the TD35 (number of days with maximum temperature ≥35 °C), which increased at an average rate of 0.16 days/year, most notably in the northeast. (3) The Western Pacific Subtropical High Ridge Position Index (GX) and Asia Polar Vortex Area Index (APV) were the dominant climate factors driving intensity indices, with cumulative contributions of 26.0% to 33.4%, while the Western Pacific Warm Pool Strength Index (WPWPS), Asia Polar Vortex Area Index (APV), North Atlantic Subtropical High Intensity Index (NASH), and Indian Ocean Warm Pool Strength Index (IOWP) were the dominant climate factors influencing frequency indices, with cumulative contributions of 46.4 to 49.5%. The explanatory power of these indices varies spatially across stations, and the RF model effectively identifies key circulation factors at each station. In the future, more attention should be paid to urban planning adaptations, particularly green infrastructure and land use optimization, along with targeted heat mitigation strategies, such as early warning systems and public health interventions, to strengthen urban resilience against escalating extreme temperatures. Full article
Show Figures

Figure 1

13 pages, 249 KiB  
Review
Update on Thromboembolic Events After Vaccination Against COVID-19
by Theocharis Anastasiou, Elias Sanidas, Thekla Lytra, Georgios Mimikos, Helen Gogas and Marina Mantzourani
Vaccines 2025, 13(8), 833; https://doi.org/10.3390/vaccines13080833 - 5 Aug 2025
Viewed by 61
Abstract
The association between COVID-19 vaccination and thromboembolic events has garnered significant research attention, particularly with the advent of vaccines based on adenoviral vectors, including AstraZeneca’s and Johnson & Johnson’s vaccines. This review underscores the uncommon occurrence of venous thromboembolism (VTE), arterial thromboembolism (ATE), [...] Read more.
The association between COVID-19 vaccination and thromboembolic events has garnered significant research attention, particularly with the advent of vaccines based on adenoviral vectors, including AstraZeneca’s and Johnson & Johnson’s vaccines. This review underscores the uncommon occurrence of venous thromboembolism (VTE), arterial thromboembolism (ATE), and vaccine-induced thrombotic thrombocytopenia (VITT) following COVID-19 vaccination. Although these complications are extremely rare compared to the heightened risk of thrombosis from COVID-19 infection, elements like age, biological sex, type of vaccine and underlying health conditions may contribute to their development. In addition, rare renal complications such as acute kidney injury and thrombotic microangiopathy have been documented, broadening the spectrum of potential vaccine-associated thrombotic manifestations. Current guidelines emphasize early detection, individualized risk assessment, and use of anticoagulation therapy to mitigate risks. Despite these events, the overwhelming majority of evidence supports the continued use of COVID-19 vaccines, given their proven efficacy in reducing severe illness and mortality. In addition, recent comparative data confirm that mRNA-based vaccines are associated with a significantly lower risk of serious thrombotic events compared to adenoviral vector platforms. Ongoing research is essential to further refine preventive and therapeutic strategies, particularly for at-risk populations. Full article
(This article belongs to the Section COVID-19 Vaccines and Vaccination)
17 pages, 2292 KiB  
Article
Employing Cover Crops and No-Till in Southern Great Plains Cotton Production to Manage Runoff Water Quantity and Quality
by Jack L. Edwards, Kevin L. Wagner, Lucas F. Gregory, Scott H. Stoodley, Tyson E. Ochsner and Josephus F. Borsuah
Water 2025, 17(15), 2283; https://doi.org/10.3390/w17152283 - 31 Jul 2025
Viewed by 197
Abstract
Conventional tillage and monocropping are common practices employed for cotton production in the Southern Great Plains (SGP) region, but they can be detrimental to soil health, crop yield, and water resources when improperly managed. Regenerative practices such as cover crops and conservation tillage [...] Read more.
Conventional tillage and monocropping are common practices employed for cotton production in the Southern Great Plains (SGP) region, but they can be detrimental to soil health, crop yield, and water resources when improperly managed. Regenerative practices such as cover crops and conservation tillage have been suggested as an alternative. The proposed shift in management practices originates from the need to make agriculture resilient to extreme weather events including intense rainfall and drought. The objective of this study is to test the effects of these regenerative practices in an environment with limited rainfall. Runoff volume, nutrient and sediment concentrations and loadings, and surface soil moisture levels were compared on twelve half-acre (0.2 hectare) cotton plots that employed different cotton seeding rates and variable winter wheat cover crop presence. A winter cover implemented on plots with a high cotton seeding rate significantly reduced runoff when compared to other treatments (p = 0.032). Cover cropped treatments did not show significant effects on nutrient or sediment loadings, although slight reductions were observed in the concentrations and loadings of total Kjeldahl nitrogen, total phosphorus, total solids, and Escherichia coli. The limitations of this study included a short timeframe, mechanical failures, and drought. These factors potentially reduced the statistical differences in several findings. More efficient methods of crop production must continue to be developed for agriculture in the SGP to conserve soil and water resources, improve soil health and crop yields, and enhance resiliency to climate change. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

23 pages, 1447 KiB  
Article
Heat Risk Perception and Vulnerability in Puerto Rico: Insights for Climate Adaptation in the Caribbean
by Brenda Guzman-Colon, Zack Guido, Claudia P. Amaya-Ardila, Laura T. Cabrera-Rivera and Pablo A. Méndez-Lázaro
Int. J. Environ. Res. Public Health 2025, 22(8), 1197; https://doi.org/10.3390/ijerph22081197 - 31 Jul 2025
Viewed by 236
Abstract
Extreme heat poses growing health risks in tropical regions, yet public perception of this threat remains understudied in the Caribbean. This study examines how residents in Puerto Rico perceived heat-related health risks and how these perceptions relate to vulnerability and protective behaviors during [...] Read more.
Extreme heat poses growing health risks in tropical regions, yet public perception of this threat remains understudied in the Caribbean. This study examines how residents in Puerto Rico perceived heat-related health risks and how these perceptions relate to vulnerability and protective behaviors during the extreme heat events of the summer of 2020. We conducted a cross-sectional telephone survey of 500 adults across metropolitan and non-metropolitan areas of Puerto Rico, using stratified probability sampling. The questionnaire assessed heat risk perception, sociodemographic characteristics, health status, prior heat exposure, and heat-related behaviors. While most participants expressed concern about climate change and high temperatures, fewer than half perceived heat as a high level of personal health risk. Higher levels of risk perception were significantly associated with being male, aged 50–64, unemployed, and in fair health, having multiple chronic conditions, and prior experience with heat-related symptoms. Those with symptoms were nearly five times more likely to report high levels of risk perception (OR = 4.94, 95% CI: 2.93–8.34). In contrast, older adults (65+), despite their higher level of vulnerability, reported lower levels of risk perception and fewer symptoms. Nighttime heat exposure was widespread and strongly associated with heat-related symptoms. Common coping strategies included the use of fans and air conditioning, though economic constraints and infrastructure instability limited access. The findings highlight the disparity between actual and perceived vulnerability, particularly among older adults. Public health strategies should focus on risk communication tailored to vulnerable groups and address barriers to heat adaptation. Strengthening heat resilience in Puerto Rico requires improved infrastructure, equitable access to cooling, and targeted outreach. Full article
Show Figures

Figure 1

14 pages, 377 KiB  
Article
From Lockdowns to Long COVID—Unraveling the Link Between Sleep, Chronotype, and Long COVID Symptoms
by Mariam Tsaava, Tamar Basishvili, Irine Sakhelashvili, Marine Eliozishvili, Nikoloz Oniani, Nani Lortkipanidze, Maria Tarielashvili, Lali Khoshtaria and Nato Darchia
Brain Sci. 2025, 15(8), 800; https://doi.org/10.3390/brainsci15080800 - 28 Jul 2025
Viewed by 286
Abstract
Background/Objectives: Given the heterogeneous nature of long COVID, its treatment and management remain challenging. This study aimed to investigate whether poor pre-pandemic sleep quality, its deterioration during the peak of the pandemic, and circadian preference increase the risk of long COVID symptoms. [...] Read more.
Background/Objectives: Given the heterogeneous nature of long COVID, its treatment and management remain challenging. This study aimed to investigate whether poor pre-pandemic sleep quality, its deterioration during the peak of the pandemic, and circadian preference increase the risk of long COVID symptoms. Methods: An online survey was conducted between 9 October and 12 December 2022, with 384 participants who had recovered from COVID-19 at least three months prior to data collection. Participants were categorized based on the presence of at least one long COVID symptom. Logistic regression models assessed associations between sleep-related variables and long COVID symptoms. Results: Participants with long COVID symptoms reported significantly poorer sleep quality, higher perceived stress, greater somatic and cognitive pre-sleep arousal, and elevated levels of post-traumatic stress symptoms, anxiety, depression, and aggression. Fatigue (39.8%) and memory problems (37.0%) were the most common long COVID symptoms. Sleep deterioration during the pandemic peak was reported by 34.6% of respondents. Pre-pandemic poor sleep quality, its deterioration during the pandemic, and poor sleep at the time of the survey were all significantly associated with long COVID. An extreme morning chronotype consistently predicted long COVID symptoms across all models, while an extreme evening chronotype was predictive only when accounting for sleep quality changes during the pandemic. COVID-19 frequency, severity, financial impact, and somatic pre-sleep arousal were significant predictors in all models. Conclusions: Poor sleep quality before the pandemic and its worsening during the pandemic peak are associated with a higher likelihood of long COVID symptoms. These findings underscore the need to monitor sleep health during pandemics and similar global events to help identify at-risk individuals and mitigate long-term health consequences, with important clinical and societal implications. Full article
(This article belongs to the Section Sleep and Circadian Neuroscience)
Show Figures

Figure 1

13 pages, 10728 KiB  
Article
Climate Features Affecting the Management of the Madeira River Sustainable Development Reserve, Brazil
by Matheus Gomes Tavares, Sin Chan Chou, Nicole Cristine Laureanti, Priscila da Silva Tavares, Jose Antonio Marengo, Jorge Luís Gomes, Gustavo Sueiro Medeiros and Francis Wagner Correia
Geographies 2025, 5(3), 36; https://doi.org/10.3390/geographies5030036 - 24 Jul 2025
Viewed by 261
Abstract
Sustainable Development Reserves are organized units in the Amazon that are essential for the proper use and sustainable management of the region’s natural resources and for the livelihoods and economy of the local communities. This study aims to provide a climatic characterization of [...] Read more.
Sustainable Development Reserves are organized units in the Amazon that are essential for the proper use and sustainable management of the region’s natural resources and for the livelihoods and economy of the local communities. This study aims to provide a climatic characterization of the Madeira River Sustainable Development Reserve (MSDR), offering scientific support to efforts to assess the feasibility of implementing adaptation measures to increase the resilience of isolated Amazon communities in the face of extreme climate events. Significant statistical analyses based on time series of observational and reanalysis climate data were employed to obtain a detailed diagnosis of local climate variability. The results show that monthly mean two-meter temperatures vary from 26.5 °C in February, the coolest month, to 28 °C in August, the warmest month. Monthly precipitation averages approximately 250 mm during the rainy season, from December until May. July and August are the driest months, August and September are the warmest months, and September and October are the months with the lowest river level. Cold spells were identified in July, and warm spells were identified between July and September, making this period critical for public health. Heavy precipitation events detected by the R80, Rx1day, and Rx5days indices show an increasing trend in frequency and intensity in recent years. The analyses indicated that the MSDR has no potential for wind-energy generation; however, photovoltaic energy production is viable throughout the year. Regarding the two major commercial crops and their resilience to thermal stress, the region presents suitable conditions for açaí palm cultivation, but Brazil nut production may be adversely affected by extreme drought and heat events. The results of this study may support research on adaptation strategies that includethe preservation of local traditions and natural resources to ensure sustainable development. Full article
Show Figures

Figure 1

27 pages, 3927 KiB  
Article
Comparative Study on Outdoor Heatwave Indicators for Indoor Overheating Evaluation
by Wenyan Liu, Jingjing An, Chuang Wang and Shan Hu
Buildings 2025, 15(14), 2461; https://doi.org/10.3390/buildings15142461 - 14 Jul 2025
Viewed by 216
Abstract
With increasing global climate change, extreme weather threats to indoor environments are growing. Heatwave events provide essential data for building thermal resilience analysis. However, existing heatwave definition indicators vary widely and lack standardized criteria. To more accurately evaluate indoor overheating risks, this study [...] Read more.
With increasing global climate change, extreme weather threats to indoor environments are growing. Heatwave events provide essential data for building thermal resilience analysis. However, existing heatwave definition indicators vary widely and lack standardized criteria. To more accurately evaluate indoor overheating risks, this study compared indoor overheating responses under different heatwave definition indicators, considering the temporal disconnect between indoor and outdoor heat conditions. Focusing on Beijing, this study established an indoor–outdoor coupled heatwave evaluation framework using 1951–2021 meteorological data and the heat index as an overheating metric. By analyzing indoor overheating degree and overlap degree to characterize indoor–outdoor correlations, we concluded that different definitions of heatwaves lead to variations in identifications, while multidimensional indicators better capture extreme events. Heatwaves with prolonged duration and high intensity pose greater health risks. Although Beijing’s indoor thermal conditions are generally safe, peak heat indices during summer heatwaves exceed danger thresholds in some buildings, highlighting thermal safety concerns. The metrics for heatwave 6 and heatwave 7 optimally integrate indoor–outdoor characteristics with higher thresholds identifying more extreme events. These findings support the design of building thermal resilience, overheating early warnings, and climate-adaptive electrification strategies. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

21 pages, 448 KiB  
Article
Enhancing Urban Resilience: Integrating Actions for Resilience (A4R) and Multi-Criteria Decision Analysis (MCDA) for Sustainable Urban Development and Proactive Hazard Mitigation
by Goran Janaćković, Žarko Vranjanac and Dejan Vasović
Sustainability 2025, 17(14), 6408; https://doi.org/10.3390/su17146408 - 13 Jul 2025
Viewed by 436
Abstract
Hazards stemming from extreme natural events have exhibited heightened prominence in recent years. The natural hazard management process adopts a comprehensive approach that encompasses all stakeholders involved in the disaster management cycle. “Actions for Resilience” (A4R) represents a standardised concept derived from ISO/TR [...] Read more.
Hazards stemming from extreme natural events have exhibited heightened prominence in recent years. The natural hazard management process adopts a comprehensive approach that encompasses all stakeholders involved in the disaster management cycle. “Actions for Resilience” (A4R) represents a standardised concept derived from ISO/TR 22370:2020 that integrates principles from various scientific disciplines to enhance resilience in systems, whether they are socio-ecological systems, communities, or organisations. A4R emphasises proactive measures and interventions aimed at fostering resilience rather than merely reacting to crises or disruptions. It recognises that resilience is a multifaceted concept influenced by various factors, including social, economic, environmental, and institutional dimensions. Central to A4R is the understanding of complex system dynamics. Also, A4R involves rigorous risk assessment to identify potential threats and vulnerabilities within a system, as well as to build adaptive capacity within systems. A4R advocates for the development of resilience metrics and monitoring systems to assess the effectiveness of interventions and track changes in resilience over time. These metrics may include indicators related to social cohesion, ecosystem health, economic stability, and public infrastructure resilience. In this context, the study aims to apply the proposed hierarchy of factors and group decision-making using fuzzy numbers to identify strategic priorities for improving the urban resilience of the pilot area. The identified priority factors are then analysed across different scenarios, and corresponding actions are described in detail. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

24 pages, 5899 KiB  
Article
Unveiling Spatiotemporal Differences and Responsive Mechanisms of Seamless Hourly Ozone in China Using Machine Learning
by Jiachen Fan, Tijian Wang, Qingeng Wang, Mengmeng Li, Min Xie, Shu Li, Bingliang Zhuang and Ume Kalsoom
Remote Sens. 2025, 17(13), 2318; https://doi.org/10.3390/rs17132318 - 7 Jul 2025
Viewed by 345
Abstract
Surface ozone (O3) is a multifaceted threat that not only deteriorates the environment but also poses risks to human health. Here, we estimated the seamless hourly surface O3 in China using Extreme Gradient Boosting (XGBoost) with multisource data fusion to [...] Read more.
Surface ozone (O3) is a multifaceted threat that not only deteriorates the environment but also poses risks to human health. Here, we estimated the seamless hourly surface O3 in China using Extreme Gradient Boosting (XGBoost) with multisource data fusion to investigate spatiotemporal differences in O3 during multistage COVID-19, and the response of O3 variation to meteorology and emissions were explored using Shapley Additive Explanations (SHAP) and WRF-Chem. The results indicate that the optimized model demonstrated higher accuracy, with CV-R2 of 0.96–0.97 and RMSE of 4.58–5.00 μg/m3. Benefitting from the full coverage of the dataset, the underestimated O3 was corrected and hotspots of short-term O3 pollution events were successfully captured. O3 increased by 16.8% during the lockdown, with high values clustered in the north and west, attributed to the weakened urban NOx titration resulting from reduced emissions. During the control and regulation period, O3 levels declined year by year. O3 exhibited significant fluctuations in the Pearl River Delta but remained stable in western China, with both regions demonstrating high sensitivity to meteorological variability. Among these, solar radiation and temperature were the key meteorological factors. The seamless high-resolution O3 datasets will enable more insightful analyses regarding the spatiotemporal characterization and cause analysis. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

17 pages, 4789 KiB  
Article
Occurrence and Atmospheric Patterns Associated with Individual and Compound Heatwave–Ozone Events in São Paulo Megacity
by Vanessa Silveira Barreto Carvalho, Paola do Nascimento Silva, Aline Araújo de Freitas, Vitor Lucas dos Santos Rosa Tenório, Michelle Simões Reboita, Taciana Toledo de Almeida Albuquerque and Leila Droprinchinski Martins
Atmosphere 2025, 16(7), 822; https://doi.org/10.3390/atmos16070822 - 6 Jul 2025
Viewed by 402
Abstract
High ozone (O3) concentrations are frequently recorded in São Paulo Megacity, with extreme O3 levels often linked to high temperatures and heatwaves, phenomena expected to intensify with climate change. The co-occurrence of extreme O3 and heatwaves poses amplified risks [...] Read more.
High ozone (O3) concentrations are frequently recorded in São Paulo Megacity, with extreme O3 levels often linked to high temperatures and heatwaves, phenomena expected to intensify with climate change. The co-occurrence of extreme O3 and heatwaves poses amplified risks to environmental and human health. Hence, this study aims to analyze individual and compound extreme O3 and heatwave events and assess the associated atmospheric patterns. Hourly O3 and temperature (T) data from 20 sites (1998–2023) were used to calculate the maximum daily 8 h average O3 (MD8A-O3) and maximum daily temperature (Tmax). The Mann–Kendall test identified trends for these variables. The 90th percentile of data from September to March defined thresholds for extreme events. Events were classified as extreme when MD8A-O3 and Tmax exceeded their thresholds for at least six consecutive days. ERA5 data were used to evaluate atmospheric patterns during these events. The results show positive trends in MD8A-O3 in 62% of sites, with values exceeding WHO Air Quality Guidelines, alongside positive Tmax trends in 90% of sites. Over the study period, four compound events, seven heatwaves, and four extreme O3 events were identified. Compound and individual events were associated with the South America Subtropical Anticyclone and positive temperature anomalies. Individual O3 events were linked to cold anomalies south of 30° S and positive geopotential height anomalies at 850 hPa. These findings highlight the increasing occurrence of extreme O3 and heatwaves in São Paulo and their atmospheric drivers, offering insights to enhance awareness, forecasting, and policy responses to mitigate health and environmental impacts. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

29 pages, 3813 KiB  
Article
Addressing Climate Resilience in the African Region: Prioritizing Mental Health and Psychosocial Well-Being in Disaster Preparedness and Response Planning for Mainstream Communities and Migrants
by Belayneh Fentahun Shibesh and Nidhi Nagabhatla
Climate 2025, 13(7), 139; https://doi.org/10.3390/cli13070139 - 3 Jul 2025
Viewed by 611
Abstract
Climate change represents a complex and multifaceted challenge for health systems, particularly in the African region, where the research has predominantly focused on physical health impacts while overlooking critical mental health dimensions. Our central hypothesis is that integrating culturally adapted mental health and [...] Read more.
Climate change represents a complex and multifaceted challenge for health systems, particularly in the African region, where the research has predominantly focused on physical health impacts while overlooking critical mental health dimensions. Our central hypothesis is that integrating culturally adapted mental health and psychosocial support (MHPSS) into climate resilience frameworks and disaster response planning will significantly reduce psychological distress (e.g., anxiety, depression, and trauma) and enhance adaptive capacities among both mainstream and migrant communities in disaster-prone African regions. This rapid review methodology systematically explores the intricate relationships between climate change, mental health, and migration by examining the existing literature and identifying significant information gaps. The key findings underscore the urgent need for targeted research and strategic interventions that specifically address mental health vulnerabilities in the context of climate change. This review highlights how extreme weather events, environmental disruptions, and forced migration create profound psychological stressors that extend beyond immediate physical health concerns. This research emphasizes the importance of developing comprehensive adaptation strategies integrating mental health considerations into broader climate response frameworks. Recommendations emerging from this assessment call for immediate and focused attention on developing specialized research, policies, and interventions that recognize the unique mental health challenges posed by climate change in African contexts. We also note the current limitations in the existing national adaptation plans, which frequently overlook mental health dimensions, thereby underscoring the necessity of a more holistic and nuanced approach to understanding climate change’s psychological impacts. In this exploratory study, we intended to provide a crucial preliminary assessment of the complex intersections between climate change, mental health, and migration, offering valuable insights for policymakers, researchers, and healthcare professionals seeking to develop more comprehensive and responsive strategies in an increasingly challenging environmental landscape. Full article
(This article belongs to the Special Issue Coping with Flooding and Drought)
Show Figures

Figure 1

7 pages, 394 KiB  
Communication
Environmental Exposures Increase Health Risks in Childhood Cancer Survivors
by Omar Shakeel, Nicole M. Wood, Hannah M. Thompson, Michael E. Scheurer and Mark D. Miller
Cancers 2025, 17(13), 2223; https://doi.org/10.3390/cancers17132223 - 2 Jul 2025
Viewed by 613
Abstract
Childhood cancer survivors (CCSs) are at increased risk for chronic health issues due to late effects of cancer and its treatment. We address the impact of environmental exposures, such as air pollution, tobacco smoke, extreme weather events, and pesticides, on the health and [...] Read more.
Childhood cancer survivors (CCSs) are at increased risk for chronic health issues due to late effects of cancer and its treatment. We address the impact of environmental exposures, such as air pollution, tobacco smoke, extreme weather events, and pesticides, on the health and survival of CCSs. These environmental hazards have been associated with worsening health outcomes and decreased survival among CCSs on a global scale. We also highlight that providers at a major pediatric cancer center in the United States have limited knowledge and practical skills about environmental risk factors and how to reduce exposures. Our survey results show that pediatric oncology providers would find an environmental referral service helpful and useful in their department. Integrating environmental health into pediatric cancer care can empower patients and families, promote healthier behaviors, and potentially reduce morbidity and mortality in this vulnerable population. Full article
Show Figures

Figure 1

30 pages, 6809 KiB  
Article
Laminaria digitata Supplementation as a Climate-Smart Strategy to Counteract the Interactive Effects of Marine Heatwaves and Disease Outbreaks in Farmed Gilthead Seabream (Sparus aurata)
by Isa Marmelo, Tomás Chainho, Daniel Bolotas, Alícia Pereira, Busenur Özkan, Cátia Marques, Iris A. L. Silva, Florbela Soares, Pedro Pousão-Ferreira, Elsa F. Vieira, Cristina Delerue-Matos, Zélia Silva, Paula A. Videira, Tiago Repolho, Mário Sousa Diniz, António Marques and Ana Luísa Maulvault
Environments 2025, 12(7), 226; https://doi.org/10.3390/environments12070226 - 30 Jun 2025
Viewed by 720
Abstract
Extreme weather events, such as marine heatwaves (MHWs), pose serious threats to the aquaculture sector, facilitating the occurrence of disease outbreaks and compromising farmed animals’ welfare and survival. Hence, finding eco-innovative strategies to improve animal immunocompetence is essential to assure aquaculture’s sustainability and [...] Read more.
Extreme weather events, such as marine heatwaves (MHWs), pose serious threats to the aquaculture sector, facilitating the occurrence of disease outbreaks and compromising farmed animals’ welfare and survival. Hence, finding eco-innovative strategies to improve animal immunocompetence is essential to assure aquaculture’s sustainability and resilience in a rapidly changing ocean. This study evaluated the immunostimulatory potential of Laminaria digitata powder (0.3% and 1.5%) and extract (0.3%) in juvenile gilthead seabream (Sparus aurata) exposed to a Vibrio harveyi outbreak during a Category III MHW event (T = 25.7 °C). Overall, L. digitata supplementation did not significantly affect fish immunocompetence under optimal rearing conditions (T = 21.4 °C; no infection), nor did it induce any adverse effects. However, both the powder (1.5%) and extract (0.3%) forms of L. digitata supplementation effectively mitigated the negative impacts prompted by the MHW and Vibrio harveyi infection—evidenced by improvements in fish health indicators, hematological parameters, leukocyte viability, granulocyte proportions, and reductions in peroxidase activity and immunoglobulin M levels. From an economic standpoint, supplementation with 1.5% L. digitata powder emerged as the most promising strategy, offering a practical balance between effectiveness and affordability for large-scale applications. These findings highlight the potential of L. digitata as an immunostimulatory aquafeed supplement, with promising benefits for fish health and resilience under adverse rearing conditions. Full article
Show Figures

Graphical abstract

20 pages, 8690 KiB  
Article
Challenges and Potential of Remote Sensing for Assessing Salmonella Risk in Water Sources: Evidence from Chile
by Rayana Santos Araujo Palharini, Makarena Sofia Gonzalez Reyes, Felipe Ferreira Monteiro, Lourdes Milagros Mendoza Villavicencio, Aiko D. Adell, Magaly Toro, Andrea I. Moreno-Switt and Eduardo A. Undurraga
Microorganisms 2025, 13(7), 1539; https://doi.org/10.3390/microorganisms13071539 - 30 Jun 2025
Viewed by 336
Abstract
Waterborne illnesses, including those caused by Salmonella, are an increasing public health challenge, particularly in developing countries. Potential sources of salmonellosis include fruits and vegetables irrigated/treated with surface water, leading to human infections. Salmonella causes millions of gastroenteritis cases annually, but early [...] Read more.
Waterborne illnesses, including those caused by Salmonella, are an increasing public health challenge, particularly in developing countries. Potential sources of salmonellosis include fruits and vegetables irrigated/treated with surface water, leading to human infections. Salmonella causes millions of gastroenteritis cases annually, but early detection through routine water quality surveillance is time-consuming, requires specialized equipment, and faces limitations, such as coverage gaps, delayed data, and poor accessibility. Climate change-driven extreme events such as floods and droughts further exacerbate variability in water quality. In this context, remote sensing offers an efficient and cost-effective alternative for environmental monitoring. This study evaluated the potential of Sentinel-2 satellite imagery to predict Salmonella occurrence in the Maipo and Mapocho river basins (Chile) by integrating spectral, microbiological, climatic, and land use variables. A total of 1851 water samples collected between 2019 and 2023, including 704 positive samples for Salmonella, were used to develop a predictive model. Predicting Salmonella in surface waters using remote sensing is challenging for several reasons. Satellite sensors capture environmental proxies (e.g., vegetation cover, surface moisture, and turbidity) but not pathogens. Our goal was to identify proxies that reliably correlate with Salmonella. Twelve spectral indices (e.g., NDVI, NDWI, and MNDWI) were used as predictors to develop a predictive model for the presence of the pathogen, which achieved 59.2% accuracy. By spatially interpolating the occurrences, it was possible to identify areas with the greatest potential for Salmonella presence. NDWI and AWEI were most strongly correlated with Salmonella presence in high-humidity areas, and spatial interpolation identified the higher-risk zones. These findings reveal the challenges of using remote sensing to identify environmental conditions conducive to the presence of pathogens in surface waters. This study highlights the methodological challenges that must be addressed to make satellite-based surveillance an accessible and effective public health tool. By integrating satellite data with environmental and microbiological analyses, this approach can potentially strengthen low-cost, proactive environmental monitoring for public health decision-making in the context of climate change. Full article
(This article belongs to the Special Issue Advances in Research on Waterborne Pathogens)
Show Figures

Figure 1

12 pages, 359 KiB  
Article
Perceptions of Climate Change and Health Risks Among Urban Older Adults in Mexico City: A Pilot Study
by Simone Lucatello, Josafat Francisco Martínez Magaña, Citlali Fernández Vivar, Jorge Orozco Gaytán, Jessica Camacho Ruíz, Lorena Figueroa Escamilla and Mónica Pérez Rodríguez
Atmosphere 2025, 16(7), 792; https://doi.org/10.3390/atmos16070792 - 29 Jun 2025
Viewed by 586
Abstract
Climate change poses significant risks to public health, particularly for vulnerable populations such as older adults. In Mexico, where extreme weather events are becoming more frequent, understanding how this demographic perceives climate-related health risks is crucial for designing effective adaptation strategies. Limited research [...] Read more.
Climate change poses significant risks to public health, particularly for vulnerable populations such as older adults. In Mexico, where extreme weather events are becoming more frequent, understanding how this demographic perceives climate-related health risks is crucial for designing effective adaptation strategies. Limited research exists on this topic; this pilot study aims to assess the perceptions of climate related health risks among older adults from a multidisciplinary team, with data collected at the Centro Médico Nacional “La Raza” in Mexico City. Using a cross-sectional, descriptive, and observational survey design, data were collected from hospitalized and outpatient individuals using a validated instrument that measures perceived environmental and emotional impacts of climate change. Key findings reveal varying levels of awareness and emotional responses to environmental changes, such as heatwaves, droughts, and ecosystem degradation. Participants’ sociodemographic characteristics and existing health conditions are also documented to explore their association with climate risk perceptions. The study highlights the need for tailored health communication strategies and adaptive policies that address the specific vulnerabilities and perceptions of older adults. Results will contribute to building climate-resilient health interventions and support the development of inclusive public health strategies amid global climate change in the country. Full article
(This article belongs to the Special Issue Extreme Climate Events: Causes, Risk and Adaptation)
Back to TopTop