Occurrence and Atmospheric Patterns Associated with Individual and Compound Heatwave–Ozone Events in São Paulo Megacity
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
3. Results and Discussion
3.1. Long-Term Variability and Trends
3.2. Individual and Compound Extreme Events
3.3. Anomalous Atmospheric Patterns
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Urban Health (WHO) 2021. Urban Health. Available online: https://www.who.int/news-room/fact-sheets/detail/urban-health (accessed on 18 September 2024).
- Molina, M.J.; Molina, L.T. Megacities and Atmospheric Pollution. J. Air Waste Manag. Assoc. 2004, 54, 644–680. [Google Scholar] [CrossRef] [PubMed]
- Mage, D.; Ozolins, G.; Peterson, P.; Webster, A.; Orthofer, R.; Vandeweerd, V.; Gwynne, M. Urban Air Pollution in Megacities of the World. Atmos. Environ. 1996, 30, 681–686. [Google Scholar] [CrossRef]
- Chan, C.K.; Yao, X. Air Pollution in Mega Cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Marlier, M.E.; Jina, A.S.; Kinney, P.L.; DeFries, R.S. Extreme Air Pollution in Global Megacities. Curr. Clim. Change Rep. 2016, 2, 15–27. [Google Scholar] [CrossRef]
- Molina, M.O.; Sánchez, E.; Gutiérrez, C. Future Heat Waves over the Mediterranean from an Euro-CORDEX Regional Climate Model Ensemble. Sci. Rep. 2020, 10, 8801. [Google Scholar] [CrossRef]
- Salimi, M.; Al-Ghamdi, S.G. Climate Change Impacts on Critical Urban Infrastructure and Urban Resiliency Strategies for the Middle East. Sustain. Cities Soc. 2020, 54, 101948. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023. [Google Scholar]
- Dockery, D.W.; Pope, C.A.; Xu, X.; Spengler, J.D.; Ware, J.H.; Fay, M.E.; Ferris, B.G.; Speizer, F.E. An Association between Air Pollution and Mortality in Six U.S. Cities. N. Engl. J. Med. 1993, 329, 1753–1759. [Google Scholar] [CrossRef]
- Pope Iii, C.A. Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution. JAMA 2002, 287, 1132. [Google Scholar] [CrossRef]
- Gurjar, B.R.; Jain, A.; Sharma, A.; Agarwal, A.; Gupta, P.; Nagpure, A.S.; Lelieveld, J. Human Health Risks in Megacities Due to Air Pollution. Atmos. Environ. 2010, 44, 4606–4613. [Google Scholar] [CrossRef]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Lavigne, E.; Matus, P.; et al. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef]
- Hu, F.; Guo, Y. Health Impacts of Air Pollution in China. Front. Environ. Sci. Eng. 2021, 15, 74. [Google Scholar] [CrossRef]
- Ebi, K.L.; Hess, J.J. Health Risks Due To Climate Change: Inequity In Causes And Consequences: Study Examines Health Risks Due to Climate Change. Health Aff. 2020, 39, 2056–2062. [Google Scholar] [CrossRef] [PubMed]
- Ebi, K.L.; Vanos, J.; Baldwin, J.W.; Bell, J.E.; Hondula, D.M.; Errett, N.A.; Hayes, K.; Reid, C.E.; Saha, S.; Spector, J.; et al. Extreme Weather and Climate Change: Population Health and Health System Implications. Annu. Rev. Public Health 2021, 42, 293–315. [Google Scholar] [CrossRef] [PubMed]
- Makri, A.; Stilianakis, N.I. Vulnerability to Air Pollution Health Effects. Int. J. Hyg. Environ. Health 2008, 211, 326–336. [Google Scholar] [CrossRef]
- Benevolenza, M.A.; DeRigne, L. The Impact of Climate Change and Natural Disasters on Vulnerable Populations: A Systematic Review of Literature. J. Hum. Behav. Soc. Environ. 2019, 29, 266–281. [Google Scholar] [CrossRef]
- Von Schneidemesser, E.; Monks, P.S.; Allan, J.D.; Bruhwiler, L.; Forster, P.; Fowler, D.; Lauer, A.; Morgan, W.T.; Paasonen, P.; Righi, M.; et al. Chemistry and the Linkages between Air Quality and Climate Change. Chem. Rev. 2015, 115, 3856–3897. [Google Scholar] [CrossRef]
- Jacob, D.J.; Winner, D.A. Effect of Climate Change on Air Quality. Atmos. Environ. 2009, 43, 51–63. [Google Scholar] [CrossRef]
- Baklanov, A.; Molina, L.T.; Gauss, M. Megacities, Air Quality and Climate. Atmos. Environ. 2016, 126, 235–249. [Google Scholar] [CrossRef]
- Zscheischler, J.; Westra, S.; Van Den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future Climate Risk from Compound Events. Nat. Clim. Change 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Zscheischler, J.; Seneviratne, S.I. Dependence of Drivers Affects Risks Associated with Compound Events. Sci. Adv. 2017, 3, e1700263. [Google Scholar] [CrossRef]
- Ridder, N.N.; Ukkola, A.M.; Pitman, A.J.; Perkins-Kirkpatrick, S.E. Increased Occurrence of High Impact Compound Events under Climate Change. npj Clim. Atmos. Sci. 2022, 5, 3. [Google Scholar] [CrossRef]
- Zscheischler, J.; Martius, O.; Westra, S.; Bevacqua, E.; Raymond, C.; Horton, R.M.; Van Den Hurk, B.; AghaKouchak, A.; Jézéquel, A.; Mahecha, M.D.; et al. A Typology of Compound Weather and Climate Events. Nat. Rev. Earth Environ. 2020, 1, 333–347. [Google Scholar] [CrossRef]
- Hertig, E.; Russo, A.; Trigo, R.M. Heat and Ozone Pollution Waves in Central and South Europe—Characteristics, Weather Types, and Association with Mortality. Atmosphere 2020, 11, 1271. [Google Scholar] [CrossRef]
- Jahn, S.; Hertig, E. Using Clustering, Statistical Modeling, and Climate Change Projections to Analyze Recent and Future Region-Specific Compound Ozone and Temperature Burden Over Europe. GeoHealth 2022, 6, e2021GH000561. [Google Scholar] [CrossRef]
- Ban, J.; Lu, K.; Wang, Q.; Li, T. Climate Change Will Amplify the Inequitable Exposure to Compound Heatwave and Ozone Pollution. One Earth 2022, 5, 677–686. [Google Scholar] [CrossRef]
- An, N.; Chen, Y.; Zhai, P.; Li, J.; Wei, Y. Compound Hot and Ozone Extremes in Urban China. Urban Clim. 2023, 52, 101689. [Google Scholar] [CrossRef]
- Huang, Z.; Luo, M.; Gao, M.; Ning, G.; Ge, E.; On Chan, T.; Wu, S.; Zhang, H.; Tang, Y. Different Characteristics of Independent and Compound Extreme Heat and Ozone Pollution Events in the Greater Bay Area of China. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103508. [Google Scholar] [CrossRef]
- Li, M.; Huang, X.; Yan, D.; Lai, S.; Zhang, Z.; Zhu, L.; Lu, Y.; Jiang, X.; Wang, N.; Wang, T.; et al. Coping with the Concurrent Heatwaves and Ozone Extremes in China under a Warming Climate. Sci. Bull. 2024, 69, 2938–2947. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE) População 2022—Regiões Metropolitanas Das Capitais. 2022. Available online: https://atlasescolar.ibge.gov.br/brasil/caracteristicas-demograficas/distribuicao-da-populacao/21896-regioes-metropolitanas-das-capitais (accessed on 18 September 2024).
- Carvalho, V.S.B.; Freitas, E.D.; Martins, L.D.; Martins, J.A.; Mazzoli, C.R.; Andrade, M.D.F. Air Quality Status and Trends over the Metropolitan Area of São Paulo, Brazil as a Result of Emission Control Policies. Environ. Sci. Policy 2015, 47, 68–79. [Google Scholar] [CrossRef]
- Carvalho, V.S.B.; Martins, F.B.; Da Silveira, W.W.; De Campos, B.; Simões, J.B. Variance Analysis Applied to Ground-Level Ozone Concentrations in the State of São Paulo, Brazil. Braz. J. Chem. Eng. 2020, 37, 505–513. [Google Scholar] [CrossRef]
- Andrade, M.D.F.; Kumar, P.; De Freitas, E.D.; Ynoue, R.Y.; Martins, J.; Martins, L.D.; Nogueira, T.; Perez-Martinez, P.; De Miranda, R.M.; Albuquerque, T.; et al. Air Quality in the Megacity of São Paulo: Evolution over the Last 30 Years and Future Perspectives. Atmos. Environ. 2017, 159, 66–82. [Google Scholar] [CrossRef]
- Chiquetto, J.B.; Silva, M.E.S.; Cabral-Miranda, W.; Ribeiro, F.N.D.; Ibarra-Espinosa, S.A.; Ynoue, R.Y. Air Quality Standards and Extreme Ozone Events in the São Paulo Megacity. Sustainability 2019, 11, 3725. [Google Scholar] [CrossRef]
- Carvalho, V.S.B.; Freitas, E.D.D.; Mazzoli, C.R.; Andrade, M.D.F. Avaliação Da Influência de Condições Meteorológicas Na Ocorrência e Manutenção de Um Episódio Prolongado Com Altas Concentrações de Ozônio Sobre a Região Metropolitana de São Paulo. Rev. bras. Meteorol. 2012, 27, 463–474. [Google Scholar] [CrossRef]
- Sánchez-Ccoyllo, O.R.; Ynoue, R.Y.; Martins, L.D.; De Fátima Andrade, M. Impacts of Ozone Precursor Limitation and Meteorological Variables on Ozone Concentration in São Paulo, Brazil. Atmos. Environ. 2006, 40, 552–562. [Google Scholar] [CrossRef]
- Silva Júnior, R.S.D.; Oliveira, M.G.L.D.; Andrade, M.D.F. Weekend/Weekday Differences in Concentrations of Ozone, Nox, and Non-Methane Hydrocarbon in the Metropolitan Area of São Paulo. Rev. Bras. Meteorol. 2009, 24, 100–110. [Google Scholar] [CrossRef]
- Schuch, D.; De Freitas, E.D.; Espinosa, S.I.; Martins, L.D.; Carvalho, V.S.B.; Ramin, B.F.; Silva, J.S.; Martins, J.A.; De Fatima Andrade, M. A Two Decades Study on Ozone Variability and Trend over the Main Urban Areas of the São Paulo State, Brazil. Environ. Sci. Pollut. Res. 2019, 26, 31699–31716. [Google Scholar] [CrossRef]
- Geirinhas, J.L.; Russo, A.; Libonati, R.; Sousa, P.M.; Miralles, D.G.; Trigo, R.M. Recent Increasing Frequency of Compound Summer Drought and Heatwaves in Southeast Brazil. Environ. Res. Lett. 2021, 16, 034036. [Google Scholar] [CrossRef]
- Freitas, E.D.; Rozoff, C.M.; Cotton, W.R.; Dias, P.L.S. Interactions of an Urban Heat Island and Sea-Breeze Circulations during Winter over the Metropolitan Area of São Paulo, Brazil. Bound.-Layer Meteorol. 2007, 122, 43–65. [Google Scholar] [CrossRef]
- Companhia Ambiental do Estado de São Paulo (CETESB) Qualidade Do Ar No Estado de São Paulo. 2023. Available online: https://cetesb.sp.gov.br/ar/wp-content/uploads/sites/28/2023/07/Relatorio-de-Qualidade-do-Ar-no-Estado-de-Sao-Paulo-2022.pdf (accessed on 18 September 2024).
- Instituto Brasileiro de Geografia e Estatística (IBGE) Frota de Veículos. 2023. Available online: https://cidades.ibge.gov.br/brasil/pesquisa/22/28120 (accessed on 18 September 2024).
- Reboita, M.S.; Gan, M.A.; Rocha, R.P.D.; Ambrizzi, T. Regimes de Precipitação Na América Do Sul: Uma Revisão Bibliográfica. Rev. bras. Meteorol. 2010, 25, 185–204. [Google Scholar] [CrossRef]
- Ferreira, G.W.S.; Reboita, M.S. A New Look into the South America Precipitation Regimes: Observation and Forecast. Atmosphere 2022, 13, 873. [Google Scholar] [CrossRef]
- Ribeiro, F.N.D.; Oliveira, A.P.D.; Soares, J.; Miranda, R.M.D.; Barlage, M.; Chen, F. Effect of Sea Breeze Propagation on the Urban Boundary Layer of the Metropolitan Region of Sao Paulo, Brazil. Atmos. Res. 2018, 214, 174–188. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Quart J. R. Meteoro. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Vasquez, T. Weather Analysis & Forecasting Handbook, 2nd ed.; Weather Graphics Technologies: Garland, TX, USA, 2021; ISBN 10: 0983253307. [Google Scholar]
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.S.; Kousky, V.E.; Wayne Higgins, R.; Janowiak, J.E. Assessing Objective Techniques for Gauge-based Analyses of Global Daily Precipitation. J. Geophys. Res. 2008, 113, 2007JD009132. [Google Scholar] [CrossRef]
- Freitas, A.A.D.; Carvalho, V.S.B.; Reboita, M.S. Extreme Precipitation Events During the Wet Season of the South America Monsoon: A Historical Analysis over Three Major Brazilian Watersheds. Climate 2024, 12, 188. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Bonn, Germany, 2021; ISBN 978-92-4-003422-8. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Ye, X.; Xu, C.-Y.; Li, X.; Zhang, Q. Comprehensive Evaluation of Multiple Methods for Assessing Water Resources Variability of a Lake–River System under the Changing Environment. Hydrol. Res. 2018, 49, 332–343. [Google Scholar] [CrossRef]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Long-Term Trends and Seasonality Detection of the Observed Flow in Yangtze River Using Mann-Kendall and Sen’s Innovative Trend Method. Water 2019, 11, 1855. [Google Scholar] [CrossRef]
- Wang, F.; Shao, W.; Yu, H.; Kan, G.; He, X.; Zhang, D.; Ren, M.; Wang, G. Re-Evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Front. Earth Sci. 2020, 8, 14. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 978-0-12-815823-4. [Google Scholar]
- Curado, L.F.A.; De Paulo, S.R.; De Paulo, I.J.C.; De Oliveira Maionchi, D.; Da Silva, H.J.A.; De Oliveira Costa, R.; Da Silva, I.M.C.B.; Marques, J.B.; De Souza Lima, A.M.; Rodrigues, T.R. Trends and Patterns of Daily Maximum, Minimum and Mean Temperature in Brazil from 2000 to 2020. Climate 2023, 11, 168. [Google Scholar] [CrossRef]
- Krzyzanowski, M.; Cohen, A. Update of WHO Air Quality Guidelines. Air Qual Atmos Health 2008, 1, 7–13. [Google Scholar] [CrossRef]
- Gómez Peláez, L.M.; Santos, J.M.; De Almeida Albuquerque, T.T.; Reis, N.C.; Andreão, W.L.; De Fátima Andrade, M. Air Quality Status and Trends over Large Cities in South America. Environ. Sci. Policy 2020, 114, 422–435. [Google Scholar] [CrossRef]
- Boari, A.; Pedruzzi, R.; Vieira-Filho, M. Air Pollution Trends and Exceedances: Ozone and Particulate Matter Outlook in Brazilian Highly Urbanized Zones. Environ. Monit. Assess 2023, 195, 1058. [Google Scholar] [CrossRef] [PubMed]
- Seguel, R.J.; Castillo, L.; Opazo, C.; Rojas, N.Y.; Nogueira, T.; Cazorla, M.; Gavidia-Calderón, M.; Gallardo, L.; Garreaud, R.; Carrasco-Escaff, T.; et al. Changes in South American Surface Ozone Trends: Exploring the Influences of Precursors and Extreme Events. Atmos. Chem. Phys. 2024, 24, 8225–8242. [Google Scholar] [CrossRef]
- Dário, M.S.; Novais, D.G.; Pauliquevis, T.; Rizzo, L.V. Long-Term Trends and Probability Distribution Functions of Air Pollutant Concentrations in the Megacity of São Paulo. Derbyana 2024, 45, e816. [Google Scholar] [CrossRef]
- Venkatraman, S.; Kandasamy, V.; Rajalakshmi, J.; Sabarunisha Begum, S.; Sujatha, M. Assessment of Urban Heat Island Using Remote Sensing and Geospatial Application: A Case Study in Sao Paulo City, Brazil, South America. J. S. Am. Earth Sci. 2024, 134, 104763. [Google Scholar] [CrossRef]
- Valverde, M.C.; Coelho, L.H.; De Oliveira Cardoso, A.; Paiva Junior, H.; Brambila, R.; Boian, C.; Martinelli, P.C.; Valdambrini, N.M. Urban Climate Assessment in the ABC Paulista Region of São Paulo, Brazil. Sci. Total Environ. 2020, 735, 139303. [Google Scholar] [CrossRef]
- De Paula Corrêa, M.; Germano Marciano, A.; Silveira Barreto Carvalho, V.; Bernardo De Souza, P.M.; Da Silveira Carvalho Ripper, J.; Roy, D.; Breton, L.; De Vecchi, R. Exposome Extrinsic Factors in the Tropics: The Need for Skin Protection beyond Solar UV Radiation. Sci. Total Environ. 2021, 782, 146921. [Google Scholar] [CrossRef]
- Sarra, S.R.; Mülfarth, R.C.K. Os Impactos Da Onda de Calor de 2019 Sobre a Saúde Da População Na Cidade de Bauru (Estado de São Paulo—Brasil)/The Impacts of the 2019 Heatwave on Population Health in the City of Bauru (State of Sao Paulo—Brazil). Braz. J. Dev. 2021, 7, 63941–63960. [Google Scholar] [CrossRef]
- Alvin, D. Estudo Dos Principais Precursores de Ozônio Na Região Metropolitana de São Paulo. Ph.D. thesis, Universidade de São Paulo, São Paulo, Brazil, 2013. [Google Scholar]
- Valdambrini, N.M.; Ribeiro, F.N.D. Avaliação Das Ultrapassagens Dos Padrões de Ozônio Troposférico No Estado de São Paulo de 2014 a 2019. Rev. Bras. Meteorol. 2021, 36, 735–747. [Google Scholar] [CrossRef]
- Chen, B.; Zhen, L.; Wang, L.; Zhong, H.; Lin, C.; Yang, L.; Xu, W.; Huang, R.-J. Revisiting the Impact of Temperature on Ground-Level Ozone: A Causal Inference Approach. Sci. Total Environ. 2024, 953, 176062. [Google Scholar] [CrossRef]
- Oliveira, M.C.Q.D.; Drumond, A.; Rizzo, L.V. Air Pollution Persistent Exceedance Events in the Brazilian Metropolis of Sao Paulo and Associated Surface Weather Patterns. Int. J. Environ. Sci. Technol. 2022, 19, 9495–9506. [Google Scholar] [CrossRef]
- Sánchez-Ccoyllo, O.R.; De Fátima Andrade, M. The Influence of Meteorological Conditions on the Behavior of Pollutants Concentrations in São Paulo, Brazil. Environ. Pollut. 2002, 116, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Mao, F.; Chen, L.; Zhang, Y.; Gong, W. Rapid Extreme Particulate Pollution during Cold Frontal Passage over Central China. Atmos. Res. 2022, 280, 106453. [Google Scholar] [CrossRef]
- Reboita, M.S.; Ambrizzi, T.; Silva, B.A.; Pinheiro, R.F.; Da Rocha, R.P. The South Atlantic Subtropical Anticyclone: Present and Future Climate. Front. Earth Sci. 2019, 7, 8. [Google Scholar] [CrossRef]
- Coelho, C.A.S.; De Oliveira, C.P.; Ambrizzi, T.; Reboita, M.S.; Carpenedo, C.B.; Campos, J.L.P.S.; Tomaziello, A.C.N.; Pampuch, L.A.; Custódio, M.D.S.; Dutra, L.M.M.; et al. The 2014 Southeast Brazil Austral Summer Drought: Regional Scale Mechanisms and Teleconnections. Clim. Dyn. 2016, 46, 3737–3752. [Google Scholar] [CrossRef]
- Santos, T.C.D.; Reboita, M.S.; Carvalho, V.S.B. Investigação Da Relação Entre Variáveis Atmosféricas e a Concentração de MP10 E O3 No Estado de São Paulo. Rev. Bras. Meteorol. 2018, 33, 631–645. [Google Scholar] [CrossRef]
- Reboita, M.S.; Mattos, E.V.; Capucin, B.C.; Souza, D.O.D.; Ferreira, G.W.D.S. A Multi-Scale Analysis of the Extreme Precipitation in Southern Brazil in April/May 2024. Atmosphere 2024, 15, 1123. [Google Scholar] [CrossRef]
- Banta, R.M.; Senff, C.J.; Alvarez, R.J.; Langford, A.O.; Parrish, D.D.; Trainer, M.K.; Darby, L.S.; Michael Hardesty, R.; Lambeth, B.; Andrew Neuman, J. Dependence of Daily Peak O3 Concentrations near Houston, Texas on Environmental Factors: Wind Speed, Temperature, and Boundary-Layer Depth. Atmos. Environ. 2011, 45, 162–173. [Google Scholar] [CrossRef]
- Banta, R.M.; Senff, C.J.; Nielsen-Gammon, J.; Darby, L.S.; Ryerson, T.B.; Alvarez, R.J.; Sandberg, S.P.; Williams, E.J.; Trainer, M. A Bad Air Day in Houston. Bull. Amer. Meteor. Soc. 2005, 86, 657–670. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Bernier, C.; Estes, M. Identification of Sea Breeze Recirculation and Its Effects on Ozone in Houston, TX, During DISCOVER-AQ 2013. JGR Atmos. 2020, 125, e2020JD033165. [Google Scholar] [CrossRef]
- Capucin, B.C.; Rehbein, A.; Reboita, M.S.; Lucyrio, V.; Escobar, G.C.J. Análise Sinótica e de Grande Escala de Ondas de Frio Extremas No Sudeste Do Brasil No Século XX. Anu. Inst. Geociênc. 2022, 45, 41532. [Google Scholar] [CrossRef]
- Lu, P.; Liu, R.; Luo, Z.; Li, S.; Wu, Y.; Hu, W.; Xue, X. Impacts of Compound Extreme Weather Events on Summer Ozone in the Beijing-Tianjin-Hebei Region. Atmos. Pollut. Res. 2024, 15, 102030. [Google Scholar] [CrossRef]
Code | Name | Period | Parameters | Lat (°S) | Lon (°W) |
---|---|---|---|---|---|
63 | Santana | 1999–2023 | O3 | −23.506 | −46.631 |
64 | Santo Amaro | 2000–2023 | O3 | −23.655 | −46.710 |
65 | Mauá | 1998–2023 | O3 | −23.668 | −46.465 |
72 | P. D. Pedro II | 1998–2023 | O3, T | −23.545 | −46.627 |
83 | Ibirapuera | 1998–2023 | O3, T | −23.585 | −46.661 |
85 | Moóca | 1998–2023 | O3 | −23.548 | −46.604 |
86 | São Caetano | 1998–2023 | O3, T | −23.617 | −46.559 |
92 | Diadema | 1999–2023 | O3 | −23.615 | −46.594 |
95 | Cidade Universitária USP—IPEN | 2007–2023 | O3 | −23.566 | −46.737 |
96 | N. Sra. do Ó | 2004–2023 | O3 | −23.480 | −46.694 |
98 | Grajaú—Parelheiros | 2007–2023 | O3, T | −23.776 | −46.699 |
99 | Pinheiros | 1999–2023 | O3, T | −23.561 | −46.704 |
100 | Santo André—Capuava | 2000–2023 | O3 | −23.644 | −46.503 |
262 | Interlagos | 2012–2023 | O3, T | −23.682 | −46.678 |
263 | Carapicuíba | 2012–2023 | O3, T | −23.516 | −46.845 |
264 | Guarulhos—Paço Municipal | 2012–2023 | O3, T | −23.455 | −46.517 |
269 | Capão Redondo | 2012–2023 | O3, T | −23.666 | −46.783 |
272 | São Bernardo—Centro | 2014–2023 | O3, T | −23.699 | −46.549 |
279 | Guarulhos—Pimentas | 2015–2023 | O3, T | −23.440 | −46.412 |
284 | Pico do Jaraguá | 2016–2023 | O3, T | −23.475 | −46.770 |
83075 | Guarulhos * | 1998–2014 | Tmax | −23.433 | −46.466 |
83781 | Mirante de Santana * | 1998–2023 | Tmax | −23.496 | −46.619 |
Code | Name | O3 (p90) | Tmax (p90) |
---|---|---|---|
63 | Santana | 119.63 | - |
64 | Santo Amaro | 115.63 | - |
65 | Mauá | 117.75 | - |
72 | P. D. Pedro II | 107.75 | 32.8 |
83 | Ibirapuera | 130.38 | 30.9 |
85 | Moóca | 112.25 | - |
86 | São Caetano | 118.63 | 34.2 |
92 | Diadema | 113.00 | - |
95 | Cidade Universitária USP—IPEN | 132.13 | - |
96 | N. Sra. do Ó | 115.88 | - |
98 | Grajaú—Parelheiros | 100.63 | - |
99 | Pinheiros | 99.75 | 33.5 |
100 | Santo André—Capuava | 115.13 | - |
262 | Interlagos | 124.13 | - |
263 | Carapicuíba | 110.38 | 32.3 |
264 | Guarulhos—Paço Municipal | 113.63 | 32.6 |
269 | Capão Redondo | - | 32.0 |
83075 | Guarulhos | - | 33.2 |
83781 | Mirante de Santana | - | 32.6 |
MASP Average | - | 110.76 | 32.59 |
Heatwave (6 Consecutive Days Above the Tmax p90 Threshold) | O3 Extremes (6 Consecutive Days Above the MD8A-O3 p90 Threshold) | Compound Events |
---|---|---|
7–12 February 2003 | 1–7 September 1999 | 10–16 October 2002 1 |
31 January to 8 February 2010 | 8–14 October 2014 | 25 February to 3 March 2003 2 |
22–30 January 2011 | 12–20 January 2015 | 3–8 February 2012 3 |
27 January to 4 February 2014 | 8–18 November 2023 | 5–11 February 2014 4 |
9–14 January 2015 | ||
28 January to 2 February 2019 | ||
22–27 September 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, V.S.B.; Silva, P.d.N.; Freitas, A.A.d.; Tenório, V.L.d.S.R.; Reboita, M.S.; Albuquerque, T.T.d.A.; Martins, L.D. Occurrence and Atmospheric Patterns Associated with Individual and Compound Heatwave–Ozone Events in São Paulo Megacity. Atmosphere 2025, 16, 822. https://doi.org/10.3390/atmos16070822
Carvalho VSB, Silva PdN, Freitas AAd, Tenório VLdSR, Reboita MS, Albuquerque TTdA, Martins LD. Occurrence and Atmospheric Patterns Associated with Individual and Compound Heatwave–Ozone Events in São Paulo Megacity. Atmosphere. 2025; 16(7):822. https://doi.org/10.3390/atmos16070822
Chicago/Turabian StyleCarvalho, Vanessa Silveira Barreto, Paola do Nascimento Silva, Aline Araújo de Freitas, Vitor Lucas dos Santos Rosa Tenório, Michelle Simões Reboita, Taciana Toledo de Almeida Albuquerque, and Leila Droprinchinski Martins. 2025. "Occurrence and Atmospheric Patterns Associated with Individual and Compound Heatwave–Ozone Events in São Paulo Megacity" Atmosphere 16, no. 7: 822. https://doi.org/10.3390/atmos16070822
APA StyleCarvalho, V. S. B., Silva, P. d. N., Freitas, A. A. d., Tenório, V. L. d. S. R., Reboita, M. S., Albuquerque, T. T. d. A., & Martins, L. D. (2025). Occurrence and Atmospheric Patterns Associated with Individual and Compound Heatwave–Ozone Events in São Paulo Megacity. Atmosphere, 16(7), 822. https://doi.org/10.3390/atmos16070822