Unveiling Spatiotemporal Differences and Responsive Mechanisms of Seamless Hourly Ozone in China Using Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Period
2.2. Data Sources
2.2.1. Ground-Based Observations
2.2.2. Remote Sensing Measurements
2.2.3. Meteorological and Auxiliary Data
2.3. Machine Learning Estimates Surface O3
2.3.1. XGBoost Model
2.3.2. Model Development and Validation
2.3.3. Interpretability Analysis of Model
2.4. WRF-Chem Simulation
3. Results
3.1. Performance Analysis of Model
3.2. Spatiotemporal Differences of XGBoost Model Surface O3 Estimation
3.3. Spatial Analysis of the Short-Term Severe O3 Pollution Event
3.4. Spatial Disparity Caused by Meteorology and Emission
4. Discussion
4.1. Comparison with Other O3 Modeling
4.2. Differences in O3 Levels During Multistage COVID-19
4.3. Uncertainty Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
UVB | Downward UV radiation |
BLH | Planetary boundary layer height |
T2M | 2 m temperature |
D2M | 2 m dewpoint temperature |
E | Evaporation |
LAI_HV | Leaf area index, high vegetation |
LAI_LV | Leaf area index, low vegetation |
ASN | Snow albedo |
SP | Surface pressure |
SSR | Surface net solar radiation |
STR | Surface net thermal radiation |
ASN | Snow albedo |
TSN | Temperature of snow layer |
TCO3 | Total column ozone |
TP | Total precipitation |
U10 | 10 m eastward wind |
V10 | 10 m northward wind |
References
- Gharibzadeh, M.; Bidokhti, A.A.; Alam, K. The interaction of ozone and aerosol in a semi-arid region in the Middle East: Ozone formation and radiative forcing implications. Atmos. Environ. 2021, 245, 118015. [Google Scholar] [CrossRef]
- Ito, K.; De Leon, S.F.; Lippmann, M. Associations Between Ozone and Daily Mortality: Analysis and Meta-Analysis. Epidemiology 2005, 16, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Emberson, L.D.; Pleijel, H.; Ainsworth, E.A.; Berg, M.v.D.; Ren, W.; Osborne, S.; Mills, G.; Pandey, D.; Dentener, F.; Büker, P.; et al. Ozone effects on crops and consideration in crop models. Eur. J. Agron. 2018, 100, 19–34. [Google Scholar] [CrossRef]
- Sillmann, J.; Aunan, K.; Emberson, L.; Bueker, P.; Van Oort, B.; OnEill, C.; Otero, N.; Pandey, D.; Brisebois, A. Combined impacts of climate and air pollution on human health and agricultural productivity. Environ. Res. Lett. 2021, 16, 093004. [Google Scholar] [CrossRef]
- Lu, X.; Hong, J.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Wang, T.; Gao, M.; Zhao, Y.; Zhang, Y. Severe Surface Ozone Pollution in China: A Global Perspective. Environ. Sci. Technol. Lett. 2018, 5, 487–494. [Google Scholar] [CrossRef]
- Li, M.; Huang, X.; Yan, D.; Lai, S.; Zhang, Z.; Zhu, L.; Lu, Y.; Jiang, X.; Wang, N.; Wang, T.; et al. Coping with the concurrent heatwaves and ozone extremes in China under a warming climate. Sci. Bull. 2024, 69, 2938–2947. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Wang, X.; Gao, M.; Li, K.; Zhang, Y.; Yue, X.; Zhang, Y. Rapid Increases in Warm-Season Surface Ozone and Resulting Health Impact in China Since 2013. Environ. Sci. Technol. Lett. 2020, 7, 240–247. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, L.; Liao, H.; Yang, H.; Yang, Y.; Yue, X. Enhanced PM2.5 Decreases and O3 Increases in China During COVID-19 Lockdown by Aerosol-Radiation Feedback. Geophys. Res. Lett. 2021, 48, e2020GL090260. [Google Scholar] [CrossRef]
- Zuo, P.; Zong, Z.; Zheng, B.; Bi, J.; Zhang, Q.; Li, W.; Zhang, J.; Yang, X.; Chen, Z.; Yang, H.; et al. New Insights into Unexpected Severe PM2.5 Pollution during the SARS and COVID-19 Pandemic Periods in Beijing. Environ. Sci. Technol. 2022, 56, 155–164. [Google Scholar] [CrossRef]
- Xia, C.; Liu, C.; Cai, Z.; Duan, X.; Hu, Q.; Zhao, F.; Liu, H.; Ji, X.; Zhang, C.; Liu, Y. Improved Anthropogenic SO2 Retrieval from High-Spatial-Resolution Satellite and its Application during the COVID-19 Pandemic. Environ. Sci. Technol. 2021, 55, 11538–11548. [Google Scholar] [CrossRef]
- Cooper, M.J.; Martin, R.V.; Hammer, M.S.; Levelt, P.F.; Veefkind, P.; Lamsal, L.N.; Krotkov, N.A.; Brook, J.R.; McLinden, C.A. Global fine-scale changes in ambient NO2 during COVID-19 lockdowns. Nature 2022, 601, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Kroll, J.H.; Heald, C.L.; Cappa, C.D.; Farmer, D.K.; Fry, J.L.; Murphy, J.G.; Steiner, A.L. The complex chemical effects of COVID-19 shutdowns on air quality. Nat. Chem. 2020, 12, 777–779. [Google Scholar] [CrossRef] [PubMed]
- Dutheil, F.; Baker, J.S.; Navel, V. COVID-19 as a factor influencing air pollution? Environ. Pollut. 2020, 263, 114466. [Google Scholar] [CrossRef]
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef]
- Ryu, Y.; Hodzic, A.; Descombes, G.; Hu, M.; Barré, J. Toward a Better Regional Ozone Forecast Over CONUS Using Rapid Data Assimilation of Clouds and Meteorology in WRF-Chem. J. Geophys. Res. Atmos. 2019, 124, 13576–13592. [Google Scholar] [CrossRef]
- Neiburger, M. the role of meteorology in the study and control of air pollution. Bull. Am. Meteorol. Soc. 1969, 50, 957–966. [Google Scholar] [CrossRef]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total. Environ. 2020, 735, 139542. [Google Scholar] [CrossRef] [PubMed]
- Gettelman, A.; Lamboll, R.; Bardeen, C.G.; Forster, P.M.; Watson-Parris, D. Climate Impacts of COVID-19 Induced Emission Changes. Geophys. Res. Lett. 2021, 48, e2020GL091805. [Google Scholar] [CrossRef]
- Yan, D.; Jin, Z.; Zhou, Y.; Li, M.; Zhang, Z.; Wang, T.; Zhuang, B.; Li, S.; Xie, M. Anthropogenically and meteorologically modulated summertime ozone trends and their health implications since China’s clean air actions. Environ. Pollut. 2024, 343, 123234. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H.; Yang, S. Atmospheric pollution assessment near potential source of natural aerosols in the South Gobi Desert region, China. GIScience Remote. Sens. 2020, 57, 227–244. [Google Scholar] [CrossRef]
- Krotkov, N.A.; McLinden, C.A.; Li, C.; Lamsal, L.N.; Celarier, E.A.; Marchenko, S.V.; Swartz, W.H.; Bucsela, E.J.; Joiner, J.; Duncan, B.N.; et al. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos. Chem. Phys. 2016, 16, 4605–4629. [Google Scholar] [CrossRef]
- Kwon, H.-A.; Park, R.J.; Jeong, J.I.; Lee, S.; Abad, G.G.; Kurosu, T.P.; Palmer, P.I.; Chance, K. Sensitivity of formaldehyde (HCHO) column measurements from a geostationary satellite to temporal variation of the air mass factor in East Asia. Atmos. Meas. Tech. 2017, 17, 4673–4686. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Li, K.; Dickerson, R.R.; Pinker, R.T.; Wang, J.; Liu, X.; Sun, L.; Xue, W.; Cribb, M. Full-coverage mapping and spatiotemporal variations of ground-level ozone pollution from 2013 to 2020 across China. Remote. Sens. Environ. 2022, 270, 112775. [Google Scholar] [CrossRef]
- Chen, B.; Hu, J.; Wang, Y. Synergistic observation of FY-4A&4B to estimate CO concentration in China: Combining interpretable machine learning to reveal the influencing mechanisms of CO variations. npj Clim. Atmos. Sci. 2024, 7, 9. [Google Scholar] [CrossRef]
- Shen, Y.; de Hoogh, K.; Schmitz, O.; Clinton, N.; Tuxen-Bettman, K.; Brandt, J.; Christensen, J.H.; Frohn, L.M.; Geels, C.; Karssenberg, D.; et al. Europe-wide air pollution modeling from 2000 to 2019 using geographically weighted regression. Environ. Int. 2022, 168, 107485. [Google Scholar] [CrossRef]
- Pernak, R.; Alvarado, M.; Lonsdale, C.; Mountain, M.; Hegarty, J.; Nehrkorn, T. Forecasting Surface O3 in Texas Urban Areas Using Random Forest and Generalized Additive Models. Aerosol Air Qual. Res. 2019, 9, 2815–2826. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.; Lee, M.; Kim, G.; Im, J.; Song, C. Air Quality Forecasts Improved by Combining Data Assimilation and Machine Learning With Satellite AOD. Geophys. Res. Lett. 2022, 49, e2021GL096066. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Z.; Li, C.-Y.; Zheng, T.; Peng, Z.-R. Assessing neighborhood variations in ozone and PM2.5 concentrations using decision tree method. Build. Environ. 2021, 188, 107479. [Google Scholar] [CrossRef]
- Olson, D.A.; Riedel, T.P.; Offenberg, J.H.; Lewandowski, M.; Long, R.; Kleindienst, T.E. Quantifying wintertime O3 and NOx formation with relevance vector machines. Atmos. Environ. 2021, 259, 118538. [Google Scholar] [CrossRef]
- Lovrić, M.; Pavlović, K.; Vuković, M.; Grange, S.K.; Haberl, M.; Kern, R. Understanding the true effects of the COVID-19 lockdown on air pollution by means of machine learning. Environ. Pollut. 2021, 274, 115900. [Google Scholar] [CrossRef]
- Sun, H.; Shin, Y.M.; Xia, M.; Ke, S.; Wan, M.; Yuan, L.; Guo, Y.; Archibald, A.T. Spatial Resolved Surface Ozone with Urban and Rural Differentiation during 1990–2019: A Space–Time Bayesian Neural Network Downscaler. Environ. Sci. Technol. 2022, 56, 7337–7349. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Luo, Y.Z.; Deng, X.F.; Grieneisen, M.L.; Zhang, M.H.; Di, B.F. Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environ. Pollut. 2018, 233, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Cui, L.; Hongbo, F.; Li, J.; Zhao, Y.; Chen, J. Satellite-based estimation of full-coverage ozone (O3) concentration and health effect assessment across Hainan Island. J. Clean. Prod. 2020, 244, 118773. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Lu, X.; Lu, K.; Zhang, L.; Tham, Y.J.; Shi, Z.; Aikin, K.; Fan, S.; Brown, S.S.; et al. Increased night-time oxidation over China despite widespread decrease across the globe. Nat. Geosci. 2023, 16, 217–223. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- van Geffen, J.; Boersma, K.F.; Eskes, H.; Sneep, M.; Ter Linden, M.; Zara, M.; Veefkind, J.P. S5P TROPOMI NO2 slant column retrieval: Method, stability, uncertainties and comparisons with OMI. Atmos. Meas. Tech. 2020, 13, 1315–1335. [Google Scholar] [CrossRef]
- Su, W.; Liu, C.; Chan, K.L.; Hu, Q.; Liu, H.; Ji, X.; Zhu, Y.; Liu, T.; Zhang, C.; Chen, Y.; et al. An improved TROPOMI tropospheric HCHO retrieval over China. Atmos. Meas. Tech. 2020, 13, 6271–6292. [Google Scholar] [CrossRef]
- De Smedt, I.; Pinardi, G.; Vigouroux, C.; Compernolle, S.; Bais, A.; Benavent, N.; Boersma, F.; Chan, K.-L.; Donner, S.; Eichmann, K.-U.; et al. Comparative assessment of TROPOMI and OMI formaldehyde observations and validation against MAX-DOAS network column measurements. Atmos. Chem. Phys. 2021, 21, 12561–12593. [Google Scholar] [CrossRef]
- Levelt, P.F.; Joiner, J.; Tamminen, J.; Veefkind, J.P.; Bhartia, P.K.; Zweers, D.C.S.; Duncan, B.N.; Streets, D.G.; Eskes, H.; Van Der A, R.; et al. The Ozone Monitoring Instrument: Overview of 14 years in space. Atmos. Chem. Phys. 2018, 18, 5699–5745. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, H.; Jiang, F.; Feng, S.; Jia, M.; Ju, W. Anthropogenic NOx emissions of China, the U.S. and Europe from 2019 to 2022 inferred from TROPOMI observations. Environ. Res. Lett. 2024, 19, 054024. [Google Scholar] [CrossRef]
- Palmer, P.I.; Jacob, D.J.; Fiore, A.M.; Martin, R.V.; Chance, K.; Kurosu, T.P. Mapping isoprene emissions over North America using formaldehyde column observations from space. J. Geophys. Res. Atmos. 2003, 108, e2002JD002153. [Google Scholar] [CrossRef]
- Sillman, S. The use of NO, H2O2, and HNO3 as indicators for O3-NO-hydrocarbon sensitivity in urban locations. J. Geophys. Res. Atmos. 1995, 100, 14175–14188. [Google Scholar] [CrossRef]
- Jin, X.; Holloway, T. Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument. J. Geophys. Res. Atmos. 2015, 120, 7229–7246. [Google Scholar] [CrossRef]
- Badia, A.; Vidal, V.; Ventura, S.; Curcoll, R.; Segura, R.; Villalba, G. Modelling the impacts of emission changes on O3 sensitivity, atmospheric oxidation capacity and pollution transport over the Catalonia region. EGUsphere 2023, 23, 10751–10774. [Google Scholar] [CrossRef]
- Duncan, B.N.; Yoshida, Y.; Olson, J.R.; Sillman, S.; Martin, R.V.; Lamsal, L.; Hu, Y.; Pickering, K.E.; Retscher, C.; Allen, D.J.; et al. Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation. Atmos. Environ. 2010, 44, 2213–2223. [Google Scholar] [CrossRef]
- Gerges, F.; Llaguno-Munitxa, M.; Zondlo, M.A.; Boufadel, M.C.; Bou-Zeid, E. Weather and the City: Machine Learning for Predicting and Attributing Fine Scale Air Quality to Meteorological and Urban Determinants. Environ. Sci. Technol. 2024, 58, 6313–6325. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Lyapustin, A.; Wang, J.; Dubovik, O.; Schwartz, J.; Sun, L.; Li, C.; Liu, S.; Zhu, T. First close insight into global daily gapless 1 km PM2.5 pollution, variability, and health impact. Nat. Commun. 2023, 14, 1–11. [Google Scholar] [CrossRef]
- Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Lin, Y.L.; Farley, R.D.; Orville, H.D. Orville, Bulk Parameterization of the Snow Field in a Cloud Model. J. Appl. Meteorol. Climatol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Zhao, Q.; Carr, F.H. A Prognostic Cloud Scheme for Operational NWP Models. Mon. Weather. Rev. 1997, 125, 1931–1953. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Janjić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather. Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Xu, K.; Cederwall, R.T.; Donner, L.J.; Grabowski, W.W.; Guichard, F.; Johnson, D.E.; Khairoutdinov, M.; Krueger, S.K.; Petch, J.C.; Randall, D.A.; et al. An intercomparison of cloud-resolving models with the atmospheric radiation measurement summer 1997 intensive observation period data. Q. J. R. Meteorol. Soc. 2002, 128, 593–624. [Google Scholar] [CrossRef]
- Stockwell, W.R.; Middleton, P.; Chang, J.S.; Tang, X. The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res. Atmos. 1990, 95, 16343–16367. [Google Scholar] [CrossRef]
- Guenther, A.B.; Monson, R.K.; Fall, R. Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development. J. Geophys. Res. Atmos. 1991, 96, 10799–10808. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Zheng, B.; Tong, D.; Lei, Y.; Liu, F.; Hong, C.; Kang, S.; Yan, L.; Zhang, Y.; et al. Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: Drivers, speciation and ozone formation potential. Atmos. Chem. Phys. 2019, 19, 8897–8913. [Google Scholar] [CrossRef]
- Tan, Z.; Feng, M.; Liu, H.; Luo, Y.; Li, W.; Song, D.; Tan, Q.; Ma, X.; Lu, K.; Zhang, Y. Atmospheric Oxidation Capacity Elevated during 2020 Spring Lockdown in Chengdu, China: Lessons for Future Secondary Pollution Control. Environ. Sci. Technol. 2024, 58, 8815–8824. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote. Sens. Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- Lin, M.; Fiore, A.M.; Cooper, O.R.; Horowitz, L.W.; Langford, A.O.; Levy, H.; Johnson, B.J.; Naik, V.; Oltmans, S.J.; Senff, C.J. Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions. J. Geophys. Res. Atmos. 2012, 117, e2012JD018151. [Google Scholar] [CrossRef]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zeren, Y.; Guo, H.; Wang, Y.; Lyu, X.; Zhou, B.; Gao, H.; Yao, D.; Wang, Z.; Zhao, S.; et al. Wintertime ozone surges: The critical role of alkene ozonolysis. Environ. Sci. Ecotechnol. 2024, 22, 100477. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Gui, K.; Che, H.; Li, L.; Zheng, Y.; Zhang, X.; Zhang, X.; Zhang, P.; Zhang, X. Changes in aerosol loading before, during and after the COVID-19 pandemic outbreak in China: Effects of anthropogenic and natural aerosol. Sci. Total. Environ. 2023, 857, 159435. [Google Scholar] [CrossRef]
- Tonnesen, G.S.; Dennis, R.L. Analysis of radical propagation efficiency to assess ozone sensitivity to hydrocarbons and NO2. Long-lived species as indicators of ozone concentration sensitivity. J. Geophys. Res. Atmos. 2000, 105, 9227–9241. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.; Wang, R.; Li, G.; Zhang, Y.; Zhang, B.; He, K.; Tang, Z.; Xu, H.; Qu, L.; et al. A comprehensive study on ozone pollution in a megacity in North China Plain during summertime: Observations, source attributions and ozone sensitivity. Environ. Int. 2021, 146, 106279. [Google Scholar] [CrossRef]
- Li, M.; Wang, T.; Shu, L.; Qu, Y.; Xie, M.; Liu, J.; Wu, H.; Kalsoom, U. Rising surface ozone in China from 2013 to 2017: A response to the recent atmospheric warming or pollutant controls? Atmos. Environ. 2021, 246, 118130. [Google Scholar] [CrossRef]
- Romero-Alvarez, J.; Lupaşcu, A.; Lowe, D.; Badia, A.; Acher-Nicholls, S.; Dorling, S.; Reeves, C.E.; Butler, T. Sources of surface O3 in the UK: Tagging O3 within WRF-Chem. Atmos. Chem. Phys. 2022, 22, 13797–13815. [Google Scholar] [CrossRef]
- Mai, Z.; Shen, H.; Zhang, A.; Sun, H.Z.; Zheng, L.; Guo, J.; Liu, C.; Chen, Y.; Wang, C.; Ye, J.; et al. Convolutional Neural Networks Facilitate Process Understanding of Megacity Ozone Temporal Variability. Environ. Sci. Technol. 2024, 58, 15691–15701. [Google Scholar] [CrossRef]
- Li, G.; Chen, Q.; Zhu, Y.; Sun, W.; Guo, W.; Zhang, R.; Zhu, Y.; She, J. Effects of chemical boundary conditions on simulated O3 concentrations in China and their chemical mechanisms. Sci. Total. Environ. 2023, 857, 159500. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Chen, X.; Gao, Y.; Qiu, W.; Jing, S.; Wang, Q.; Lou, S.; Edwards, P.M.; Huang, C.; et al. Unexpected fast radical production emerges in cool seasons: Implications for ozone pollution control. Natl. Sci. Open 2022, 1, 13. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Qiu, Y.; Shen, L.; Zhai, S.; Bates, K.H.; Sulprizio, M.P.; Song, S.; Lu, X.; et al. Ozone pollution in the North China Plain spreading into the late-winter haze season. Proc. Natl. Acad. Sci. USA 2021, 118, e2015797118. [Google Scholar] [CrossRef]
- Kang, Y.; Choi, H.; Im, J.; Park, S.; Shin, M.; Song, C.-K.; Kim, S. Estimation of surface-level NO2 and O3 concentrations using TROPOMI data and machine learning over East Asia. Environ. Pollut. 2021, 288, 117711. [Google Scholar] [CrossRef]
- Xiong, K.; Xie, X.; Huang, L.; Hu, J. Improved O3 predictions in China by combining chemical transport model and multi-source data with machining learning techniques. Atmos. Environ. 2024, 318, 120269. [Google Scholar] [CrossRef]
- Capilla, C. Prediction of hourly ozone concentrations with multiple regression and multilayer perceptron models. Int. J. Sustain. Dev. Plan. 2016, 11, 558–565. [Google Scholar] [CrossRef]
- Yang, Q.; Kim, J.; Cho, Y.; Lee, W.-J.; Lee, D.-W.; Yuan, Q.; Wang, F.; Zhou, C.; Zhang, X.; Xiao, X.; et al. A synchronized estimation of hourly surface concentrations of six criteria air pollutants with GEMS data. npj Clim. Atmos. Sci. 2023, 6, 94. [Google Scholar] [CrossRef]
- Chen, B.; Wang, Y.; Huang, J.; Zhao, L.; Chen, R.; Song, Z.; Hu, J. Estimation of near-surface ozone concentration and analysis of main weather situation in China based on machine learning model and Himawari-8 TOAR data. Sci. Total. Environ. 2023, 864, 160928. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, H.; Yang, F.; Tan, W.; Wu, R.; Song, Y. First estimation of hourly full-coverage ground-level ozone from Fengyun-4A satellite using machine learning. Environ. Res. Lett. 2024, 19, 024040. [Google Scholar] [CrossRef]
- Li, S.; Song, G.; Xing, J.; Dong, J.; Zhang, M.; Fan, C.; Meng, S.; Yang, J.; Dong, L.; Gong, W. Unraveling overestimated exposure risks through hourly ozone retrievals from next-generation geostationary satellites. Nat. Commun. 2025, 16, 3364. [Google Scholar] [CrossRef]
- Xue, W.; Zhang, J.; Hu, X.; Yang, Z.; Wei, J. Hourly Seamless Surface O3 Estimates by Integrating the Chemical Transport and Machine Learning Models in the Beijing-Tianjin-Hebei Region. Int. J. Environ. Res. Public Health 2022, 19, 8511. [Google Scholar] [CrossRef]
Definition | Period | Abbreviation |
---|---|---|
Before COVID-19 | 20 January 2019–17 February 2019 | BC |
Lockdown Period | 20 January 2020–17 February 2020 | LP |
Control Period | 20 January 2021–17 February 2021 | CP |
Regulation Period | 20 January 2022–17 February 2022 | RP |
Data | Variable | Full Name | Temporal Resolution | Spatial Resolution |
---|---|---|---|---|
Ground-based | O3 | Near-surface ozone | hourly | — |
Remote sensing | S5P_O3 S5P_NO2 S5P_HCHO | Ozone Nitrogen dioxide Formaldehyde | daily | 5.5 km × 3.5 km 0.25° |
Meteorology | UVB | Downward UV radiation | hourly | 0.25° |
BLH | Planetary boundary layer height | hourly | 0.25° | |
T2M | 2 m temperature | hourly | 0.25° | |
D2M | 2 m dewpoint temperature | hourly | 0.25° | |
E | Evaporation | hourly | 0.25° | |
LAI_HV | Leaf area index, high vegetation | hourly | 0.25° | |
LAI_LV | Leaf area index, low vegetation | hourly | 0.25° | |
ASN | Snow albedo | hourly | 0.25° | |
SP | Surface pressure | hourly | 0.25° | |
SSR | Surface net solar radiation | hourly | 0.25° | |
STR | Surface net thermal radiation | hourly | 0.25° | |
ASN | Snow albedo | hourly | 0.25° | |
TSN | Temperature of snow layer | hourly | 0.25° | |
TCO3 | Total column ozone | hourly | 0.25° | |
TP | Total precipitation | hourly | 0.25° | |
U10 | 10 m eastward wind | hourly | 0.25° | |
V10 | 10 m northward wind | hourly | 0.25° | |
Emission | NOx | Nitric oxide | month | 0.25° |
VOCs | Volatile organic compounds | month | 0.25° | |
Geography | LON | Longitude | — | — |
LAT | Latitude | — | — | |
DEM | Digital elevation model | year | 30 m | |
LUCC | Land use-cover change | year | 500 m | |
NDVI | Normalized difference vegetation index | month | 1 km | |
Population economy | POP | Population density | year | 1 km |
NL | Nighttime light | year | 750 m |
Simulation | Meteorology | Emission |
---|---|---|
Base | BC | BC |
Base_LP | LP | LP |
EXP_LP | LP | BC |
Base_CP | CP | CP |
EXP_CP | CP | BC |
Base_RP | RP | RP |
EXP_RP | RP | BC |
Simulation | Lockdown | Control | Regulation | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | Emi | Met | Total | Emi | Met | Total | Emi | Met | |
China | 4.06 | 3.67 | 0.39 | 3.68 | 2.72 | 0.96 | 2.55 | 4.04 | −1.49 |
BTH | 13.32 | 15.96 | −2.64 | 9.43 | 13.25 | −3.80 | 13.01 | 15.57 | −2.56 |
YRD | 8.47 | 9.06 | −0.59 | 5.94 | 5.81 | 0.13 | 4.66 | 8.74 | −4.08 |
PRD | 10.27 | 12.96 | −2.69 | 17.63 | 9.27 | 8.36 | 4.63 | 13.46 | −8.83 |
FWP | 8.12 | 5.70 | 2.42 | 3.98 | 3.96 | 0.02 | 5.44 | 9.41 | −3.97 |
WC | 2.55 | 1.57 | 0.98 | 2.42 | 2.19 | 0.23 | 1.23 | 1.88 | −0.65 |
Study Case | Modeling | Regions | Resolution | R2 |
---|---|---|---|---|
Wei et al. [23] | STET | China | daily | 0.87 |
Kang et al. [73] | XGBoost | East Asia | daily | 0.65–0.78 |
Xiong et al. [74] | LightGBM | China | daily | 0.88 |
Capilla [75] | Neural network | Iberian Peninsula | hourly | 0.92–0.95 |
Yang et al. [76] | MORF | China | hourly | 0.94 |
Chen et al. [77] | Deep learning | China | hourly | 0.86–0.94 |
Gao et al. [78] | LightGBM | China | hourly | 0.95 |
Li et al. [79] | LightGBM | China | hourly | 0.94 |
Xue et al. [80] | RF | BTH | hourly | 0.94 |
This study | XGBoost | China | hourly | 0.96–0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Wang, T.; Wang, Q.; Li, M.; Xie, M.; Li, S.; Zhuang, B.; Kalsoom, U. Unveiling Spatiotemporal Differences and Responsive Mechanisms of Seamless Hourly Ozone in China Using Machine Learning. Remote Sens. 2025, 17, 2318. https://doi.org/10.3390/rs17132318
Fan J, Wang T, Wang Q, Li M, Xie M, Li S, Zhuang B, Kalsoom U. Unveiling Spatiotemporal Differences and Responsive Mechanisms of Seamless Hourly Ozone in China Using Machine Learning. Remote Sensing. 2025; 17(13):2318. https://doi.org/10.3390/rs17132318
Chicago/Turabian StyleFan, Jiachen, Tijian Wang, Qingeng Wang, Mengmeng Li, Min Xie, Shu Li, Bingliang Zhuang, and Ume Kalsoom. 2025. "Unveiling Spatiotemporal Differences and Responsive Mechanisms of Seamless Hourly Ozone in China Using Machine Learning" Remote Sensing 17, no. 13: 2318. https://doi.org/10.3390/rs17132318
APA StyleFan, J., Wang, T., Wang, Q., Li, M., Xie, M., Li, S., Zhuang, B., & Kalsoom, U. (2025). Unveiling Spatiotemporal Differences and Responsive Mechanisms of Seamless Hourly Ozone in China Using Machine Learning. Remote Sensing, 17(13), 2318. https://doi.org/10.3390/rs17132318