Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,025)

Search Parameters:
Keywords = extensively drug-resistant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 388 KiB  
Article
Evolution of Respiratory Pathogens and Antimicrobial Resistance over the COVID-19 Timeline: A Study of Hospitalized and Ambulatory Patient Populations
by Luigi Regenburgh De La Motte, Loredana Deflorio, Erika Stefano, Matteo Covi, Angela Uslenghi, Carmen Sommese and Lorenzo Drago
Antibiotics 2025, 14(8), 796; https://doi.org/10.3390/antibiotics14080796 - 5 Aug 2025
Viewed by 38
Abstract
Background: The COVID-19 pandemic has profoundly altered the clinical and microbiological landscape of respiratory tract infections (RTIs), potentially reshaping pathogen distribution and antimicrobial resistance (AMR) profiles across care settings. Objectives: The objective of this study was to assess temporal trends in respiratory bacterial [...] Read more.
Background: The COVID-19 pandemic has profoundly altered the clinical and microbiological landscape of respiratory tract infections (RTIs), potentially reshaping pathogen distribution and antimicrobial resistance (AMR) profiles across care settings. Objectives: The objective of this study was to assess temporal trends in respiratory bacterial pathogens, antimicrobial resistance, and polymicrobial infections across three pandemic phases—pre-COVID (2018–2019), COVID (2020–2022), and post-COVID (2022–2024)—in hospitalized and ambulatory patients. Methods: We retrospectively analyzed 1827 respiratory bacterial isolates (hospitalized patients, n = 1032; ambulatory patients, n = 795) collected at a tertiary care center in Northern Italy. Data were stratified by care setting, anatomical site, and pandemic phase. Species identification and susceptibility testing followed EUCAST guidelines. Statistical analysis included chi-square and Fisher’s exact tests. Results: In hospitalized patients, a significant increase in Pseudomonas aeruginosa (from 45.5% pre-COVID to 58.6% post-COVID, p < 0.0001) and Acinetobacter baumannii (from 1.2% to 11.1% during COVID, p < 0.0001) was observed, with 100% extensively drug-resistant (XDR) rates for A. baumannii during the pandemic. Conversely, Staphylococcus aureus significantly declined from 23.6% pre-COVID to 13.7% post-COVID (p = 0.0012). In ambulatory patients, polymicrobial infections peaked at 41.2% during COVID, frequently involving co-isolation of Candida spp. Notably, resistance to benzylpenicillin in Streptococcus pneumoniae reached 80% (4/5 isolates) in hospitalized patients during COVID, and carbapenem-resistant P. aeruginosa (CRPA) significantly increased post-pandemic in ambulatory patients (0% pre-COVID vs. 23.5% post-COVID, p = 0.0014). Conclusions: The pandemic markedly shifted respiratory pathogen dynamics and resistance profiles, with distinct trends observed in hospital and community settings. Persistent resistance phenotypes and frequent polymicrobial infections, particularly involving Candida spp. in outpatients, underscore the need for targeted surveillance and antimicrobial stewardship strategies. Full article
(This article belongs to the Section Antibiotic Therapy in Infectious Diseases)
Show Figures

Figure 1

26 pages, 1426 KiB  
Review
Mycobacteriophages in the Treatment of Mycobacterial Infections: From Compassionate Use to Targeted Therapy
by Magdalena Druszczynska, Beata Sadowska, Agnieszka Zablotni, Lesia Zhuravska, Jakub Kulesza and Marek Fol
Appl. Sci. 2025, 15(15), 8543; https://doi.org/10.3390/app15158543 (registering DOI) - 31 Jul 2025
Viewed by 331
Abstract
This review addresses the urgent need for alternative strategies to combat drug-resistant mycobacterial infections, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis, as well as non-tuberculous mycobacterial (NTM) diseases. Traditional antibiotics are increasingly limited by resistance, toxicity, and poor efficacy, particularly in immunocompromised [...] Read more.
This review addresses the urgent need for alternative strategies to combat drug-resistant mycobacterial infections, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis, as well as non-tuberculous mycobacterial (NTM) diseases. Traditional antibiotics are increasingly limited by resistance, toxicity, and poor efficacy, particularly in immunocompromised patients. A comprehensive literature search was conducted using PubMed, Scopus, and Google Scholar, covering publications primarily from 2000 to 2025. Only articles published in English were included to ensure consistency in data interpretation. Search terms included “mycobacteriophages,” “phage therapy,” “drug-resistant mycobacteria, “diagnostic phages,” and “phage engineering.” The review examines the therapeutic and diagnostic potential of mycobacteriophages—viruses that specifically infect mycobacteria—focusing on their molecular biology, engineering advances, delivery systems, and clinical applications. Evidence suggests that mycobacteriophages offer high specificity, potent bactericidal activity, and adaptability, positioning them as promising candidates for targeted therapy. Although significant obstacles remain—including immune interactions, limited host range, and regulatory challenges—rapid progress in synthetic biology and delivery platforms continues to expand their clinical potential. As research advances and clinical frameworks evolve, mycobacteriophages are poised to become a valuable asset in the fight against drug-resistant mycobacterial diseases, offering new precision-based solutions where conventional therapies fail. Full article
(This article belongs to the Special Issue Tuberculosis—a Millennial Disease in the Age of New Technologies)
Show Figures

Figure 1

19 pages, 1716 KiB  
Review
Combination Therapy Using Phytochemicals and PARP Inhibitors in Hybrid Nanocarriers: An Optimistic Approach for the Management of Colon Cancer
by Mohammad Javed Qureshi, Gurpreet Kaur Narde, Alka Ahuja, Dhanalekshmi Unnikrishnan Meenakshi and Khalid Al Balushi
Int. J. Mol. Sci. 2025, 26(15), 7350; https://doi.org/10.3390/ijms26157350 - 30 Jul 2025
Viewed by 345
Abstract
DNA damage repair is a hallmark of any cancer growth, eventually leading to drug resistance and death. The poly ADP-ribose polymerase (PARP) enzyme is vital in repairing damaged DNA in normal and cancer cells with mutated DNA damage response (DDR) genes. [...] Read more.
DNA damage repair is a hallmark of any cancer growth, eventually leading to drug resistance and death. The poly ADP-ribose polymerase (PARP) enzyme is vital in repairing damaged DNA in normal and cancer cells with mutated DNA damage response (DDR) genes. Inhibitors of the PARP enzyme aid in chemotherapy, as shown by drug combinations such as Olaparib and Irinotecan in breast cancer treatment. However, the effect of Olaparib in colon cancer has not been studied extensively. Synthetic drugs have a significant limitation in cancer treatment due to drug resistance, leading to colon cancer relapse. Bioavailability of Olaparib and other PARP inhibitors is limited due to their hydrophobicity, which poses a significant challenge. These limitations and challenges can be addressed by encapsulating Olaparib in nanoparticles that could possibly increase the bioavailability of the drug at the site of action. New age nanoparticles, such as hybrid nanoparticles, provide superior quality in terms of design and circulatory time of the drug in the plasma. The side effects of Olaparib as a chemotherapeutic pave the way for exploring phytochemicals that may have similar effects. The combined impact of Olaparib and phytochemicals such as genistein, resveratrol and others in nano-encapsulated form can be explored in the treatment of colon cancer. Full article
(This article belongs to the Special Issue Anticancer Drug Discovery Based on Natural Products)
Show Figures

Figure 1

20 pages, 15855 KiB  
Article
Resistance Response and Regulatory Mechanisms of Ciprofloxacin-Induced Resistant Salmonella Typhimurium Based on Comprehensive Transcriptomic and Metabolomic Analysis
by Xiaohan Yang, Jinhua Chu, Lulu Huang, Muhammad Haris Raza Farhan, Mengyao Feng, Jiapeng Bai, Bangjuan Wang and Guyue Cheng
Antibiotics 2025, 14(8), 767; https://doi.org/10.3390/antibiotics14080767 - 29 Jul 2025
Viewed by 325
Abstract
Background: Salmonella infections pose a serious threat to both animal and human health worldwide. Notably, there is an increasing trend in the resistance of Salmonella to fluoroquinolones, the first-line drugs for clinical treatment. Methods: Utilizing Salmonella Typhimurium CICC 10420 as the test strain, [...] Read more.
Background: Salmonella infections pose a serious threat to both animal and human health worldwide. Notably, there is an increasing trend in the resistance of Salmonella to fluoroquinolones, the first-line drugs for clinical treatment. Methods: Utilizing Salmonella Typhimurium CICC 10420 as the test strain, ciprofloxacin was used for in vitro induction to develop the drug-resistant strain H1. Changes in the minimum inhibitory concentrations (MICs) of various antimicrobial agents were determined using the broth microdilution method. Transcriptomic and metabolomic analyses were conducted to investigate alterations in gene and metabolite expression. A combined drug susceptibility test was performed to evaluate the potential of exogenous metabolites to restore antibiotic susceptibility. Results: The MICs of strain H1 for ofloxacin and enrofloxacin increased by 128- and 256-fold, respectively, and the strain also exhibited resistance to ceftriaxone, ampicillin, and tetracycline. A single-point mutation of Glu469Asp in the GyrB was detected in strain H1. Integrated multi-omics analysis showed significant differences in gene and metabolite expression across multiple pathways, including two-component systems, ABC transporters, pentose phosphate pathway, purine metabolism, glyoxylate and dicarboxylate metabolism, amino sugar and nucleotide sugar metabolism, pantothenate and coenzyme A biosynthesis, pyrimidine metabolism, arginine and proline biosynthesis, and glutathione metabolism. Notably, the addition of exogenous glutamine, in combination with tetracycline, significantly reduced the resistance of strain H1 to tetracycline. Conclusion: Ciprofloxacin-induced Salmonella resistance involves both target site mutations and extensive reprogramming of the metabolic network. Exogenous metabolite supplementation presents a promising strategy for reversing resistance and enhancing antibiotic efficacy. Full article
(This article belongs to the Section Mechanism and Evolution of Antibiotic Resistance)
Show Figures

Figure 1

22 pages, 5657 KiB  
Article
SUL-150 Limits Vascular Remodeling and Ventricular Failure in Pulmonary Arterial Hypertension
by Lysanne M. Jorna, Dalibor Nakládal, Johannes N. van Heuveln, Diederik E. van der Feen, Quint A. J. Hagdorn, Guido P. L. Bossers, Annemieke van Oosten, Michel Weij, Ludmila Tkáčiková, Soňa Tkáčiková, Robert H. Henning, Martin C. Harmsen, Rolf M. F. Berger and Guido Krenning
Int. J. Mol. Sci. 2025, 26(15), 7181; https://doi.org/10.3390/ijms26157181 - 25 Jul 2025
Viewed by 268
Abstract
Pulmonary arterial hypertension (PAH) is a rare, progressive, and incurable disease characterized by an elevated pulmonary blood pressure, extensive remodeling of the pulmonary vasculature, increased pulmonary vascular resistance, and culminating in right ventricular failure. Mitochondrial dysfunction has a major role in the pathogenesis [...] Read more.
Pulmonary arterial hypertension (PAH) is a rare, progressive, and incurable disease characterized by an elevated pulmonary blood pressure, extensive remodeling of the pulmonary vasculature, increased pulmonary vascular resistance, and culminating in right ventricular failure. Mitochondrial dysfunction has a major role in the pathogenesis of PAH and secondary right ventricular failure, and its targeting may offer therapeutic benefit. In this study, we provide proof-of-concept for the use of the mitochondrially active drug SUL-150 to treat PAH. PAH was induced in rats by monocrotaline, followed by the placement of an aortocaval shunt one week later. The mitoprotective compound SUL-150 (~6 mg·kg−1·day−1) or vehicle was administered intraperitoneally via osmotic minipump for 28 days, implanted at the time of aortocaval shunt placement. Vehicle-treated PAH rats had dyspnea and showed pulmonary artery remodeling with increased responsiveness to phenylephrine, in addition to remodeling of the intrapulmonary arterioles. SUL-150 administration mitigated the dyspnea and the remodeling responses. Vehicle-treated PAH rats developed right ventricular hypertrophy, fibrosis, and failure. SUL-150 administration precluded cardiomyocyte hypertrophy and inhibited ventricular fibrogenesis. Right ventricular failure in vehicle-treated PAH rats induced mitochondrial loss and dysfunction associated with a decrease in mitophagy. SUL-150 was unable to prevent the mitochondrial loss but improved mitochondrial health in the right ventricle, which culminated in the preservation of right ventricular function. We conclude that SUL-150 improves PAH-associated morbidity by the amelioration of pulmonary vascular remodeling and right ventricular failure and may be considered a promising therapeutic candidate to slow disease progression in pulmonary arterial hypertension and secondary right ventricular failure. Full article
Show Figures

Figure 1

23 pages, 6061 KiB  
Article
Genomic Insights into Emerging Multidrug-Resistant Chryseobacterium indologenes Strains: First Report from Thailand
by Orathai Yinsai, Sastra Yuantrakul, Punnaporn Srisithan, Wenting Zhou, Sorawit Chittaprapan, Natthawat Intajak, Thanakorn Kruayoo, Phadungkiat Khamnoi, Siripong Tongjai and Kwanjit Daungsonk
Antibiotics 2025, 14(8), 746; https://doi.org/10.3390/antibiotics14080746 - 24 Jul 2025
Viewed by 400
Abstract
Background: Chryseobacterium indologenes, an environmental bacterium, is increasingly recognized as an emerging nosocomial pathogen, particularly in Asia, and is often characterized by multidrug resistance. Objectives: This study aimed to investigate the genomic features of clinical C. indologenes isolates from Maharaj [...] Read more.
Background: Chryseobacterium indologenes, an environmental bacterium, is increasingly recognized as an emerging nosocomial pathogen, particularly in Asia, and is often characterized by multidrug resistance. Objectives: This study aimed to investigate the genomic features of clinical C. indologenes isolates from Maharaj Nakorn Chiang Mai Hospital, Thailand, to understand their mechanisms of multidrug resistance, virulence factors, and mobile genetic elements (MGEs). Methods: Twelve C. indologenes isolates were identified, and their antibiotic susceptibility profiles were determined. Whole genome sequencing (WGS) was performed using a hybrid approach combining Illumina short-reads and Oxford Nanopore long-reads to generate complete bacterial genomes. The hybrid assembled genomes were subsequently analyzed to detect antimicrobial resistance (AMR) genes, virulence factors, and MGEs. Results: C. indologenes isolates were primarily recovered from urine samples of hospitalized elderly male patients with underlying conditions. These isolates generally exhibited extensive drug resistance, which was subsequently explored and correlated with genomic determinants. With one exception, CMCI13 showed a lower resistance profile (Multidrug resistance, MDR). Genomic analysis revealed isolates with genome sizes of 4.83–5.00 Mb and GC content of 37.15–37.35%. Genomic characterization identified conserved resistance genes (blaIND-2, blaCIA-4, adeF, vanT, and qacG) and various virulence factors. Phylogenetic and pangenome analysis showed 11 isolates clustering closely with Chinese strain 3125, while one isolate (CMCI13) formed a distinct branch. Importantly, each isolate, except CMCI13, harbored a large genomic island (approximately 94–100 kb) carrying significant resistance genes (blaOXA-347, tetX, aadS, and ermF). The absence of this genomic island in CMCI13 correlated with its less resistant phenotype. No plasmids, integrons, or CRISPR-Cas systems were detected in any isolate. Conclusions: This study highlights the alarming emergence of multidrug-resistant C. indologenes in a hospital setting in Thailand. The genomic insights into specific resistance mechanisms, virulence factors, and potential horizontal gene transfer (HGT) events, particularly the association of a large genomic island with the XDR phenotype, underscore the critical need for continuous genomic surveillance to monitor transmission patterns and develop effective treatment strategies for this emerging pathogen. Full article
Show Figures

Figure 1

12 pages, 2266 KiB  
Article
Allosteric Inhibition of P-Glycoprotein-Mediated Efflux by DMH1
by Zhijun Wang, Chen Xie, Maggie Chou and Jijun Hao
Biomedicines 2025, 13(8), 1798; https://doi.org/10.3390/biomedicines13081798 - 23 Jul 2025
Viewed by 275
Abstract
Background/Objectives: P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, plays a key role in multidrug resistance by actively exporting chemotherapeutic agents and xenobiotics from cells. Overexpression of P-gp significantly reduces intracellular drug accumulation and compromises treatment efficacy. Despite extensive research, clinically approved P-gp inhibitors [...] Read more.
Background/Objectives: P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, plays a key role in multidrug resistance by actively exporting chemotherapeutic agents and xenobiotics from cells. Overexpression of P-gp significantly reduces intracellular drug accumulation and compromises treatment efficacy. Despite extensive research, clinically approved P-gp inhibitors remain elusive due to toxicity, poor specificity, and limited efficacy. This study investigates DMH1, a selective type I BMP receptor inhibitor, as a novel P-gp inhibitor. Methods: DMH1 cytotoxicity was assessed in P-gp-overexpressing (PC3-TxR, K562/Dox) and P-gp-deficient (PC3) cell lines using MTT assays. P-gp inhibition was evaluated using calcein AM retention and daunorubicin (DNR) accumulation assays. Kinetic analysis determined DMH1’s effect on P-gp-mediated transport (Vmax and Km). ATPase activity assays were performed to assess DMH1’s impact on ATP hydrolysis. Preliminary molecular docking (CB-Dock2) was used to predict DMH1’s binding site on the human P-gp structure (PDB ID: 6QEX). Results: DMH1 showed no cytotoxicity in P-gp-overexpressing or deficient cells. It significantly enhanced intracellular accumulation of Calcein AM and DNR, indicating effective inhibition of P-gp function. Kinetic data revealed that DMH1 reduced Vmax without affecting Km, consistent with noncompetitive, allosteric inhibition. DMH1 also inhibited ATPase activity in a dose-dependent manner. Docking analysis suggested DMH1 may bind to an allosteric site in the transmembrane domain, potentially stabilizing the inward-facing conformation. Conclusions: DMH1 is a promising noncompetitive, allosteric P-gp inhibitor that enhances intracellular drug retention without cytotoxicity, supporting its potential as a lead compound to overcome multidrug resistance and improve chemotherapeutic efficacy. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

26 pages, 1310 KiB  
Review
Combination Strategies with HSP90 Inhibitors in Cancer Therapy: Mechanisms, Challenges, and Future Perspectives
by Yeongbeom Kim, Su Yeon Lim, Hyun-Ouk Kim, Suk-Jin Ha, Jeong-Ann Park, Young-Wook Won, Sehyun Chae and Kwang Suk Lim
Pharmaceuticals 2025, 18(8), 1083; https://doi.org/10.3390/ph18081083 - 22 Jul 2025
Viewed by 553
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperone that plays a pivotal role in the stabilization and functional activation of numerous oncoproteins and signaling molecules essential for cancer cell survival and proliferation. Despite the extensive development and clinical evaluation of HSP90 inhibitors, [...] Read more.
Heat shock protein 90 (HSP90) is a molecular chaperone that plays a pivotal role in the stabilization and functional activation of numerous oncoproteins and signaling molecules essential for cancer cell survival and proliferation. Despite the extensive development and clinical evaluation of HSP90 inhibitors, their therapeutic potential as monotherapies has been limited by suboptimal efficacy, dose-limiting toxicity, and the emergence of drug resistance. Recent studies have demonstrated that combination therapies involving HSP90 inhibitors and other anticancer agents such as chemotherapeutics, targeted therapies, and immune checkpoint inhibitors can enhance anticancer activity, overcome resistance mechanisms, and modulate the tumor microenvironment. These synergistic effects are mediated by the concurrent degradation of client proteins, the disruption of signaling pathways, and the enhancement of antitumor immunity. However, the successful clinical implementation of such combination strategies requires the careful optimization of dosage, administration schedules, toxicity management, and patient selection based on predictive biomarkers. In this review, we provide a comprehensive overview of the mechanistic rationale, preclinical and clinical evidence, and therapeutic challenges associated with HSP90 inhibitor-based combination therapies. We also discuss future directions leveraging emerging technologies including multi-omics profiling, artificial intelligence, and nanoparticle-mediated delivery for the development of personalized and effective combination regimens in oncology. Full article
Show Figures

Graphical abstract

16 pages, 298 KiB  
Article
Antimicrobial-Resistant Staphylococcus spp. Harbored by Hedgehogs (Erinaceus europaeus) in Central Italy
by Fabrizio Bertelloni, Francesca Pauselli, Giulia Cagnoli, Roberto Biscontri, Renato Ceccherelli and Valentina Virginia Ebani
Antibiotics 2025, 14(7), 725; https://doi.org/10.3390/antibiotics14070725 - 18 Jul 2025
Viewed by 330
Abstract
Background/Objectives: European hedgehogs (Erinaceus europaeus) are present in areas where there is human activity; therefore, they can be a source of pathogens for other animals and humans. Methods: Eighteen hedgehog carcasses were collected and analyzed for Staphylococcus spp. Isolated strains were [...] Read more.
Background/Objectives: European hedgehogs (Erinaceus europaeus) are present in areas where there is human activity; therefore, they can be a source of pathogens for other animals and humans. Methods: Eighteen hedgehog carcasses were collected and analyzed for Staphylococcus spp. Isolated strains were typed and analyzed for exfoliative toxins genes and the phenotypic and genotypic characteristics of antimicrobial resistance. Results: A total of 54 strains were isolated and typed as S. aureus, S. xylosus, S. sciuri, S. pseudintermedius, S. simulans, S. chromogenes, S. epidermidis, S. hyicus, and S. lentus. No strains had the eta and etb genes coding for exfoliative toxins. Overall, 39/54 (72.20%) isolates showed phenotypic resistance to at least one antimicrobial and 21/54 (38.80%) showed more than one resistance. The lowest efficacy was observed for erythromycin, with 40/54 (74.08%) strains classified as intermediate and 6/54 (11.11%) classified as resistant. Among the 29 isolates shown to be penicillin-resistant, 11 (37.93%) were oxacillin-resistant, with a minimum inhibitory concentration (MIC). Among the 54 staphylococcal strains, 2 (3.70%) were resistant to vancomycin, both with an MIC value equal to the maximum concentration of the antibiotic tested (256 μg/mL) and 2 (3.70%) had an intermediate resistance profile with an 8 μg/mL MIC value. No strains had the genes vanA and vanB. Two of the 29 (6.90%) penicillin-resistant strains had the blaZ gene; 8 (27.13%) strains had the mecA gene. Overall, 2/54 (3.70%) isolates were classified as extensively drug-resistant (XDR) and 9/54 (16.66%) were classified as multidrug-resistant (MDR). Conclusions: Hedgehogs can harbor antimicrobial-resistant staphylococci and can be sources of these bacteria for other animals and humans. They can also serve as bioindicators of the pathogens and antimicrobial-resistant bacteria circulating in a given habitat. Full article
19 pages, 2160 KiB  
Article
Genetic Diversity and Phylogenetic Analysis Among Multidrug-Resistant Pseudomonas spp. Isolated from Solid Waste Dump Sites and Dairy Farms
by Tuhina Das, Arkaprava Das, Neha Das, Rittika Mukherjee, Mousumi Saha, Dipanwita Das and Agniswar Sarkar
Acta Microbiol. Hell. 2025, 70(3), 30; https://doi.org/10.3390/amh70030030 - 16 Jul 2025
Viewed by 375
Abstract
The excessive use of antimicrobials drives the emergence of multidrug resistance (MDR) in bacterial strains, which harbor resistance genes to survive under diverse drug pressures. Such resistance can result in life-threatening infections. The predominance of MDR Pseudomonas spp. poses significant challenges to public [...] Read more.
The excessive use of antimicrobials drives the emergence of multidrug resistance (MDR) in bacterial strains, which harbor resistance genes to survive under diverse drug pressures. Such resistance can result in life-threatening infections. The predominance of MDR Pseudomonas spp. poses significant challenges to public health and environmental sustainability, particularly in ecosystems affected by human activities. Characterizing MDR Pseudomonas spp. is crucial for developing effective diagnostic tools and biosecurity protocols, with broader implications for managing other pathogenic bacteria. Strains were diagnosed through 16S rRNA PCR and sequencing, complemented by phylogenetic analysis to evaluate local and global evolutionary connections. Antibiotic susceptibility tests revealed extensive resistance across multiple classes, with MIC values surpassing clinical breakpoints. This study examined the genetic diversity, resistance potential, and phylogenetic relationships among Pseudomonas aeruginosa strain DG2 and Pseudomonas fluorescens strain FM3, which were isolated from solid waste dump sites (n = 30) and dairy farms (n = 22) in West Bengal, India. Phylogenetic analysis reveals distinct clusters that highlight significant geographic linkages and genetic variability among the strains. Significant biofilm production under antibiotic exposure markedly increased resistance levels. RAPD-PCR profiling revealed substantial genetic diversity among the isolates, indicating variations in their genetic makeup. In contrast, SDS-PAGE analysis provided insights into the protein expression patterns that are activated by stress, which are closely linked to MDR. This dual approach offers a clearer perspective on their adaptive responses to environmental stressors. This study underscores the need for vigilant monitoring of MDR Pseudomonas spp. in anthropogenically impacted environments to mitigate risks to human and animal health. Surveillance strategies combining phenotypic and molecular approaches are essential to assess the risks posed by resilient pathogens. Solid waste and dairy farm ecosystems emerge as critical reservoirs for the evolution and dissemination of MDR Pseudomonas spp. Full article
Show Figures

Figure 1

12 pages, 300 KiB  
Article
Prevalence, Appropriateness, and Outcomes of Colistin Use in Multidrug-Resistant Pseudomonas aeruginosa Infections: Insights from Hospital Data
by Rana K. Abu-Farha, Savana Sobh, Khawla Abu Hammour, Feras Darwish El-Hajji, Sireen A. Shilbayeh and Rania Itani
Medicina 2025, 61(7), 1275; https://doi.org/10.3390/medicina61071275 - 15 Jul 2025
Viewed by 267
Abstract
Background and Objectives: This study aimed to assess the prevalence of colistin prescriptions among patients with multidrug-resistant (MDR) Pseudomonas aeruginosa (P. aeruginosa) infections admitted to a tertiary teaching hospital in Jordan. Additionally, the study evaluated the appropriateness of colistin prescriptions and [...] Read more.
Background and Objectives: This study aimed to assess the prevalence of colistin prescriptions among patients with multidrug-resistant (MDR) Pseudomonas aeruginosa (P. aeruginosa) infections admitted to a tertiary teaching hospital in Jordan. Additionally, the study evaluated the appropriateness of colistin prescriptions and assessed resistance levels of this strain. Materials and Methods: In this retrospective study, adult patients who were infected with MDR P. aeruginosa and were admitted to Jordan University Hospital between January 2018 and March 2024 were included. Data on demographics, clinical characteristics, sources of infection, antibiotic therapy, and clinical outcomes were collected. Results: Out of the 85 patients who met the inclusion criteria for having MDR P. aeruginosa, colistin was administered to 16 patients (18.8%). Notably, approximately two-thirds (68.7%) of the isolates from patients who received colistin were classified as extensively drug-resistant (XDR). Among the isolates, 15 out of 16 (93.8%) were resistant to both ciprofloxacin and imipenem. Among the patients requiring colistin, five (31.3%) discontinued therapy, while two (12.5%) remained on colistin despite the availability of safer alternatives. No significant difference was observed in 30-day all-cause mortality between patients treated with colistin (0%) and those who were not (4.3%, p = 1.00). Similarly, the incidence of acute kidney injury did not differ significantly between the colistin group (0%) and the non-colistin group (p = 1.00). No significant difference was found in the hospital stay between colistin-treated patients (median 10.5 days, IQR [5.0–14.0]) and those not treated with colistin (median 13.0 days, IQR [7.0–21.0]), (p = 0.22). Conclusions: This study demonstrated that colistin was selectively initiated in high-risk patients, particularly those with XDR P. aeruginosa. However, its inappropriate continuation despite safer alternatives, as well as its discontinuation when no other options existed, raise concerns about antibiotic de-escalation practices. Interestingly, no significant differences in mortality or acute kidney injury were observed between patients who were treated with colistin and those who were not. These findings emphasize the need for antimicrobial stewardship programs and highlight the importance of large-scale trials to evaluate colistin’s efficacy and safety in MDR infections. Full article
(This article belongs to the Section Infectious Disease)
13 pages, 1576 KiB  
Article
Trends of Antibiotic Resistance Patterns and Bacteriological Profiles of Pathogens Associated with Genitourinary Infections in Secondary Healthcare Facilities in the Volta Region of Ghana
by Hayford Odoi, Naodiah Opoku, Brigham Adusei, Kenneth Danquah, Gilbert Vordzogbe, Divine Mayer, Araba Hutton-Nyameaye, Jonathan Jato, Samuel O. Somuah, Emmanuel Orman, Inemesit O. Ben, Thelma A. Aku, Rita Sewornu, Preet Panesar, Yogini H. Jani and Cornelius C. Dodoo
Pathogens 2025, 14(7), 696; https://doi.org/10.3390/pathogens14070696 - 15 Jul 2025
Viewed by 444
Abstract
Urogenital infections contribute greatly to both hospital- and community-acquired infections. In Ghana, the prevalence of resistance to commonly used antibiotics is relatively high. This study sought to evaluate the antibiotic sensitivity of bacterial urogenital pathogens from patient samples in a regional and district [...] Read more.
Urogenital infections contribute greatly to both hospital- and community-acquired infections. In Ghana, the prevalence of resistance to commonly used antibiotics is relatively high. This study sought to evaluate the antibiotic sensitivity of bacterial urogenital pathogens from patient samples in a regional and district hospital in the Volta Region of Ghana. A retrospective cross-sectional study was conducted using data obtained between January and December 2023 from Volta Regional Hospital and Margret Marquart Catholic Hospital. Bacteria were isolated from urine, urethral swabs, and vaginal swabs from 204 patients. Data on culture and sensitivity assays performed using the Kirby–Bauer disc diffusion method were extracted and analyzed using WHONET. The most prevalent organisms isolated from the samples from both facilities were Escherichia coli (24.9%), Staphylococcus aureus (21.5%), and Klebsiella oxytoca (8.8%). The isolates were mostly resistant to amoxicillin/clavulanic acid (n = 75, 95% CI [91.8–99.9]), meropenem (n = 61, 95% CI [87.6–99.4]), cefuroxime (n = 54, 95% CI [78.9–96.5]), ampicillin (n = 124, 95% CI [61.2–77.9]), and piperacillin (n = 43, 95% CI [82.9–99.2]). Multidrug-resistant (MDR, 70 (34.1%)), extensively drug-resistant (XDR, 63 (30.7%)), and pandrug-resistant (PDR, 9 (4.3%)) strains of S. aureus, E. coli, and Pseudomonas aeruginosa were identified from the patient samples. The study highlights the presence of high-priority resistant urogenital pathogens of public health significance to varied antibiotic groups. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

23 pages, 1199 KiB  
Review
Dysregulation of Mitochondrial Function in Cancer Cells
by Ahmed Mahmoud Ahmed Mahmoud Awad and Norwahidah Abdul Karim
Int. J. Mol. Sci. 2025, 26(14), 6750; https://doi.org/10.3390/ijms26146750 - 14 Jul 2025
Viewed by 663
Abstract
In addition to their well-known role in ATP production, mitochondria are vital to cancer cell metabolism due to their involvement in redox regulation, apoptosis, calcium signaling, and biosynthesis. This review explores how cancer cells drive the extensive reprogramming of mitochondrial structure and function, [...] Read more.
In addition to their well-known role in ATP production, mitochondria are vital to cancer cell metabolism due to their involvement in redox regulation, apoptosis, calcium signaling, and biosynthesis. This review explores how cancer cells drive the extensive reprogramming of mitochondrial structure and function, enabling malignant cells to survive hostile microenvironments, evade therapy, and proliferate rapidly. While glycolysis (the Warburg effect) was once thought to be the dominant force behind cancer metabolism, recent updates underscore the pivotal contribution of mitochondrial oxidative phosphorylation (OXPHOS) to tumor development. Cancer cells often exhibit enhanced mitochondrial ATP production, metabolic flexibility, and the ability to switch between energy sources such as glucose, glutamine, and pyruvate. Equally important are changes in mitochondrial morphology and dynamics. Due to disruptions in fusion and fission processes, regulated by proteins like Drp1 and MFN1/2, cancer cells often display fragmented mitochondria, which are linked to increased motility, metastasis, and tumor progression. Moreover, structural mitochondrial alterations not only contribute to drug resistance but may also serve as biomarkers for therapeutic response. Emerging evidence also points to the influence of oncometabolites and retrograde signaling in reshaping mitochondrial behavior under oncogenic stress. Collectively, these insights position mitochondria as central regulators of cancer biology and attractive targets for therapy. By unraveling the molecular mechanisms underlying mitochondrial reprogramming—from energy production to structural remodeling—researchers can identify new approaches to disrupt cancer metabolism and enhance treatment efficacy. Full article
(This article belongs to the Special Issue Mitochondria: Central Players in Cancer)
Show Figures

Figure 1

31 pages, 1834 KiB  
Review
A Review of Polylactic Acid (PLA) and Poly(3-hydroxybutyrate) (PHB) as Bio-Sourced Polymers for Membrane Production Applications
by Lacrimioara Senila, Eniko Kovacs and Marin Senila
Membranes 2025, 15(7), 210; https://doi.org/10.3390/membranes15070210 - 14 Jul 2025
Viewed by 849
Abstract
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane [...] Read more.
In recent years, membranes have found extensive applications, primarily in wastewater purification and food packaging. However, petroleum-based membranes can be detrimental to the environment. For this reason, extensive studies are being conducted to identify environmentally friendly substitutes for the materials used in membrane composition. Among these materials, polylactic acid (PLA) and poly(3-hydroxybutyrate) (PHB) are two bio-sourced and biodegradable polymers that can be derived from lignocellulosic waste. These polymers also possess suitable characteristics, such as thermal resistance and mechanical strength, which make them potential candidates for replacing conventional plastics. This study provides an overview of recent advances in the production of PLA and PHB, with a focus on their extraction from lignocellulosic biomass, as well as the recent applications of these two biodegradable polymers as sustainable materials in membrane manufacturing. The advantages and limitations of membranes produced from these materials are also summarized. Lastly, an analysis of future trends is provided concerning new sources, production possibilities, and potential applications in water treatment (mainly for metal ions separation), gas separation, oil–water separation, medical applications, drug release control, and food packaging. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

21 pages, 3463 KiB  
Article
Hybrid Genome and Clinical Impact of Emerging Extensively Drug-Resistant Priority Bacterial Pathogen Acinetobacter baumannii in Saudi Arabia
by J. Francis Borgio
Life 2025, 15(7), 1094; https://doi.org/10.3390/life15071094 - 12 Jul 2025
Viewed by 427
Abstract
Acinetobacter baumannii is listed by the World Health Organization as an emerging bacterial priority pathogen, the prevalence and multidrug resistance of which have been increasing. This functional genomics study aimed to understand the drug-resistance mechanisms of an extensively drug-resistant (XDR) A. baumannii strain [...] Read more.
Acinetobacter baumannii is listed by the World Health Organization as an emerging bacterial priority pathogen, the prevalence and multidrug resistance of which have been increasing. This functional genomics study aimed to understand the drug-resistance mechanisms of an extensively drug-resistant (XDR) A. baumannii strain (IRMCBCU95U) isolated from a transtracheal aspirate sample from a female patient with end-stage renal disease in Saudi Arabia. The whole genome of IRMCBCU95U (4.3 Mbp) was sequenced using Oxford Nanopore long-read sequencing to identify and compare the antibiotic-resistance profile and genomic features of A. baumannii IRMCBCU95U. The antibiogram of A. baumannii IRMCBCU95U revealed resistance to multiple antibiotics, including cefepime, ceftazidime, ciprofloxacin, imipenem, meropenem and piperacillin/tazobactam. A comparative genomic analysis between IRMCBCU95U and A. baumannii K09-14 and ATCC 19606 identified significant genetic heterogeneity and mosaicism among the strains. This analysis also demonstrated the hybrid nature of the genome of IRMCBCU95U and indicates that horizontal gene transfer may have occurred between these strains. The IRMCBCU95U genome has a diverse range of genes associated with antimicrobial resistance and mobile genetic elements (ISAba1 and IS26) associated with the spread of multidrug resistance. The presence of virulence-associated genes that are linked to iron acquisition, motility and transcriptional regulation confirmed that IRMCBCU95U is a priority human pathogen. The plasmid fragment IncFIB(pNDM-Mar) observed in the strain is homologous to the plasmid in Klebsiella pneumoniae (439 bp; similarity: 99.09%), which supports its antimicrobial resistance. From these observations, it can be concluded that the clinical A. baumannii IRMCBCU95U isolate is an emerging extensively drug-resistant human pathogen with a novel combination of resistance genes and a plasmid fragment. The complex resistome of IRMCBCU95U highlights the urgent need for genomic surveillance in hospital settings in Saudi Arabia to fight against the spread of extensively drug-resistant A. baumannii. Full article
Show Figures

Figure 1

Back to TopTop