Genomic Insights into Emerging Multidrug-Resistant Chryseobacterium indologenes Strains: First Report from Thailand
Abstract
1. Introduction
2. Results
2.1. The Bacteria Collection Demographic and Clinical Characteristics
2.2. Antimicrobial Susceptibility
2.3. Whole Genome Sequences and General Characteristics of C. indologenes Genome
2.4. Orthologous Genes Analysis
2.5. SNPs in C. indologenes Genomes
2.6. Comparative Genome Analysis
2.6.1. Phylogenetic Analysis
2.6.2. Pangenome and Average Nucleotide Identity (ANI) Analyses
2.6.3. Pairwise Single Nucleotide Polymorphism (SNP) Comparison
2.7. Antimicrobial Resistance Gene Profiles
2.8. Virulence Associated Gene Profiles
2.9. Mobile Genetic Element Gene Profiles Within the Genome of C. indologenes
2.9.1. Genomic Islands
2.9.2. Insertion Sequences
2.9.3. Integrative Conjugative Elements
2.9.4. Integron, Plasmid, and CRISPR-Cas Analysis
3. Discussion
4. Materials and Methods
4.1. Bacterial Collection, Identification, Culture, and Clinical Information
4.2. Antibiotic Susceptibility
4.3. DNA Extraction, Whole Genome Sequencing, and Sequence Quality Control
4.4. Genome Assembly, Annotation, and Genome Submission
4.5. Gene Ontology and Variant Calling Analysis
4.6. Comparative Phylogenetic Analysis, Pangenome Analysis, and Pairwise SNPs Analysis
4.7. Identification of Antimicrobial Resistance and Virulence-Associated Genes
4.8. Identification of Genomic Islands, Insertion Sequences, and Other Mobile Genetic Elements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, J.; Kim, S.; Kwak, Y.G.; Um, T.H.; Cho, C.R.; Song, J.E. Clinical and Microbiological Characteristics of Chryseobacterium indologenes Bacteremia: A 20-Year Experience in a Single University Hospital. Infect. Chemother. 2023, 55, 322–327. [Google Scholar] [CrossRef] [PubMed]
- McKew, G. Severe sepsis due to Chryseobacterium indologenes in an immunocompetent adventure traveler. J. Clin. Microbiol. 2014, 52, 4100–4101. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.G.; Tong, T.; Chew, J. Chryseobacterium indologenes and Chryseobacterium gleum interact and multiply intracellularly in Acanthamoeba castellanii. Exp. Parasitol. 2020, 211, 107862. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.; Pathak, A. Emerging Chryseobacterium indologenes Infection in Indian Neonatal Intensive Care Units: A Case Report. Antibiotics 2018, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Nemli, S.A.; Demirdal, T.; Ural, S. A Case of Healthcare Associated Pneumonia Caused by Chryseobacterium indologenes in an Immunocompetent Patient. Case Rep. Infect. Dis. 2015, 2015, 483923. [Google Scholar] [PubMed]
- Yadav, V.S.; Das, B.K.; Gautam, H.; Sood, S.; Kapil, A.; Mohapatra, S. Chryseobacterium indologenes: An emerging uropathogen among hematological malignancy patients. S. Asian J. Cancer 2018, 7, 218. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, R.; Limbu, T.; Chaudhary, R.; Gautam, K.; Dahal, P. Phenotypical Detection of β-Lactamases in a Multidrug-Resistant and Extensively Drug-Resistant Chryseobacterium indologenes: A Rare Human Pathogen With Special References to Risk Factor. Microbiol. Insights 2023, 16, 11786361221150755. [Google Scholar] [CrossRef] [PubMed]
- Zeba, B.; De Luca, F.; Dubus, A.; Delmarcelle, M.; Simporé, J.; Nacoulma, O.G.; Rossolini, G.M.; Frère, J.M.; Docquier, J.D. IND-6, a highly divergent IND-type metallo-β-lactamase from Chryseobacterium indologenes strain 597 isolated in Burkina Faso. Antimicrob. Agents Chemother. 2009, 53, 4320–4326. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, V.C.; Bono, E.; Pipitò, L. A case of hospital-acquired pneumonia associated with Chryseobacterium indologenes infection in a patient with HIV infection and review of the literature. AIDS Res. Ther. 2025, 22, 53. [Google Scholar] [CrossRef] [PubMed]
- Rather, M.A.; Gupta, K.; Mandal, M. Microbial biofilm: Formation, architecture, antibiotic resistance, and control strategies. Braz. J. Microbiol. 2021, 52, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Mwanza, E.P.; Hugo, A.; Charimba, G.; Hugo, C.J. Pathogenic Potential and Control of Chryseobacterium Species from Clinical, Fish, Food and Environmental Sources. Microorganisms 2022, 10, 895. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Kakati, B.; Khanduri, S. Severe Sepsis Due to Chryseobacterium indologenes, a Possible Emergent Multidrug-Resistant Organism in Intensive Care Unit-Acquired Infections. Indian J. Crit. Care Med. 2018, 22, 817–819. [Google Scholar] [CrossRef] [PubMed]
- Geremia, N.; Marino, A.; De Vito, A.; Giovagnorio, F.; Stracquadanio, S.; Colpani, A.; Di Bella, S.; Madeddu, G.; Parisi, S.G.; Stefani, S.; et al. Rare or Unusual Non-Fermenting Gram-Negative Bacteria: Therapeutic Approach and Antibiotic Treatment Options. Antibiotics 2025, 14, 306. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, M.; Gao, Z.; Ma, H.; Chong, Y.; Hong, J.; Wu, J.; Wu, D.; Xi, D.; Deng, W. Advances in Whole Genome Sequencing: Methods, Tools, and Applications in Population Genomics. Int. J. Mol. Sci. 2025, 26, 372. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chen, M.; Jiang, Y.; Wang, W.; Wang, H.; Deng, L.; Zhao, Z. Study on the Genome and Mechanism of Tigecycline Resistance of a Clinical Chryseobacterium indologenes Strain. Microb. Drug Resist. 2023, 29, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, T.; Rolain, J.M. Whole genome sequencing for deciphering the resistome of Chryseobacterium indologenes, an emerging multidrug-resistant bacterium isolated from a cystic fibrosis patient in Marseille, France. New Microbes New Infect. 2016, 12, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Damas, M.S.F.; Ferreira, R.L.; Campanini, E.B.; Soares, G.G.; Campos, L.C.; Laprega, P.M.; Soares da Costa, A.; Freire, C.C.M.; Pitondo-Silva, A.; Cerdeira, L.T.; et al. Whole genome sequencing of the multidrug-resistant Chryseobacterium indologenes isolated from a patient in Brazil. Front. Med. 2022, 9, 931379. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024. [Google Scholar]
- Lin, Y.T.; Jeng, Y.Y.; Lin, M.L.; Yu, K.W.; Wang, F.D.; Liu, C.Y. Clinical and microbiological characteristics of Chryseobacterium indologenes bacteremia. J. Microbiol. Immunol. Infect. 2010, 43, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Alon, D.; Karniel, E.; Zohar, I.; Stein, G.Y. Chryseobacterium indologenes Bacteremia: Clinical and Microbiological Characteristics of an Emerging Infection. Int. J. Clin. Med. 2018, 9, 520–527. [Google Scholar] [CrossRef]
- Jain, V.; Sahu, C.; Afzal Hussain, N.A.F.; Ghar, M.; Prasad, K.N. The Era of Device Colonizers: Chryseobacterium indologenes Infections from a Tertiary Care Center in North India. Indian J. Crit. Care Med. 2018, 22, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.L.; Wang, G.C.; Teng, S.O.; Ou, T.Y.; Yu, F.L.; Lee, W.S. Clinical and epidemiological features of Chryseobacterium indologenes infections: Analysis of 215 cases. J. Microbiol. Immunol. Infect. 2013, 46, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, X.; Xu, S.; Li, Y. Clinical Characteristics and Risk Factors for Intra-Abdominal Infection with Chryseobacterium indologenes after Orthotopic Liver Transplantation. Pathogens 2022, 11, 1126. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom, S.; Schumacher, F.; Siddiq, A. Characterizing associations and SNP-environment interactions for GWAS-identified prostate cancer risk markers--results from BPC3. PLoS ONE 2011, 6, e17142. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.K.; Li, Z.H.; Huang, Y.T.; Liu, P.Y. COVID-19 Associated Bacteremia with Chryseobacterium indologenes Co-Harboring blaIND-2, blaCIA and blaCcrA. Infect. Drug Resist. 2022, 15, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.H.; Xu, Y.H.; Cheng, J.; Li, T.; Wang, Z.X. Heterogeneity of blaIND metallo-β-lactamase-producing Chryseobacterium indologenes isolates detected in Hefei, China. Int. J. Antimicrob. Agents 2008, 32, 398–400. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Tariq, M.; Basharat, Z. Genomic analysis of Chryseobacterium indologenes and conformational dynamics of the selected DD-peptidase. Res. Microbiol. 2023, 174, 103990. [Google Scholar] [CrossRef] [PubMed]
- Baquero, F.; Martínez, J.L.; Lanza, F.V. Evolutionary Pathways and Trajectories in Antibiotic Resistance. Clin. Microbiol. Rev. 2021, 34, e0005019. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Pu, Y.; Cui, Y. Elongation factor Tu promotes the onset of periodontitis through mediating bacteria adhesion. npj Biofilms Microbiomes 2025, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Sivaranjani, M.; Leskinen, K.; Aravindraja, C. Deciphering the Antibacterial Mode of Action of Alpha-Mangostin on Staphylococcus epidermidis RP62A Through an Integrated Transcriptomic and Proteomic Approach. Front. Microbiol. 2019, 10, 150. [Google Scholar] [CrossRef] [PubMed]
- McCormick, L.A.; Mertz, S.B.; Park, C.; Wise, J.G. Transport Dynamics of MtrD: An RND Multidrug Efflux Pump from Neisseria gonorrhoeae. Biochemistry 2021, 60, 3019–3032. [Google Scholar] [CrossRef] [PubMed]
- bd El-Rahman, O.A.; Rasslan, F.; Hassan, S.S.; Ashour, H.M.; Wasfi, R. The RND Efflux Pump Gene Expression in the Biofilm Formation of Acinetobacter baumannii. Antibiotics 2023, 12, 419. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Aggarwal, S.; Singh, D.V. Efflux pumps: Gatekeepers of antibiotic resistance in Staphylococcus aureus biofilms. Microb. Cell 2024, 11, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, L.L.; Li, C.J.; Jiang, X.W.; Zhi, X.Y. Chryseobacterium paridis sp. nov., an endophytic bacterial species isolated from the root of Paris polyphylla Smith var. yunnanensis. Arch. Microbiol. 2021, 203, 4777–4783. [Google Scholar] [CrossRef] [PubMed]
- Tokuda, M.; Shintani, M. Microbial evolution through horizontal gene transfer by mobile genetic elements. Microb. Biotechnol. 2024, 17, e14408. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.T.; Sharma, S.; Sivakumar, N.; Jayakumar, K. Genomic islands and the evolution of livestock-associated Staphylococcus aureus genomes. Biosci. Rep. 2020, 40, BSR20202287. [Google Scholar] [CrossRef] [PubMed]
- Ramamurthy, T.; Ghosh, A.; Chowdhury, G.; Mukhopadhyay, A.K.; Dutta, S.; Miyoshi, S.I. Deciphering the genetic network and programmed regulation of antimicrobial resistance in bacterial pathogens. Front. Cell. Infect. Microbiol. 2022, 12, 952491. [Google Scholar] [CrossRef] [PubMed]
- Muraya, A.; Kyany’a, C.; Kiyaga, S.; Smith, H.J.; Kibet, C.; Martin, M.J.; Kimani, J.; Musila, L. Antimicrobial Resistance and Virulence Characteristics of Klebsiella pneumoniae Isolates in Kenya by Whole-Genome Sequencing. Pathogens 2022, 11, 545. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sapula, S.A.; Whittall, J.J.; Blaikie, J.M.; Lomovskaya, O.; Venter, H. Identification and characterization of CIM-1, a carbapenemase that adds to the family of resistance factors against last resort antibiotics. Commun. Biol. 2024, 7, 282. [Google Scholar] [CrossRef] [PubMed]
- Schultz, E.; Barraud, O.; Madec, J.Y.; Haenni, M.; Cloeckaert, A.; Ploy, M.C.; Doublet, B. Multidrug Resistance Salmonella Genomic Island 1 in a Morganella morganii subsp. morganii Human Clinical Isolate from France. mSphere 2017, 2, e00118-17. [Google Scholar] [PubMed]
- Bellais, S.; Poirel, L.; Leotard, S.; Naas, T.; Nordmann, P. Genetic diversity of carbapenem-hydrolyzing metallo-beta-lactamases from Chryseobacterium (Flavobacterium) indologenes. Antimicrob. Agents Chemother. 2000, 44, 3028–3034. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Ma, S.; He, C.; Yang, Y.; Li, P.; Lu, L. Unveiling the genetic architecture and transmission dynamics of a novel multidrug-resistant plasmid harboring blaNDM-5 in E. Coli ST167: Implications for antibiotic resistance management. BMC Microbiol. 2024, 24, 178. [Google Scholar] [CrossRef] [PubMed]
- Dutta, C.; Pan, A. Horizontal gene transfer and bacterial diversity. J. Biosci. 2002, 27, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Mussi, M.A.; Limansky, A.S.; Relling, V.; Ravasi, P.; Arakaki, A.; Actis, L.A.; Viale, A.M. Horizontal gene transfer and assortative recombination within the Acinetobacter baumannii clinical population provide genetic diversity at the single carO gene, encoding a major outer membrane protein channel. J. Bacteriol. 2011, 193, 4736–4748. [Google Scholar] [CrossRef] [PubMed]
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Pseudomonas aeruginosa’s Resistome: Pan-Genomic Plasticity, the Impact of Transposable Elements and Jumping Genes. Antibiotics 2025, 14, 353. [Google Scholar] [CrossRef] [PubMed]
- Carraro, N.; Burrus, V. The dualistic nature of integrative and conjugative elements. Mob. Genet. Elem. 2015, 5, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, R.A.; Waldor, M.K. A toxin-antitoxin system promotes the maintenance of an integrative conjugative element. PLoS Genet. 2009, 5, e1000439. [Google Scholar] [CrossRef] [PubMed]
- Guglielmini, J.; Quintais, L.; Garcillan-Barcia, M.P.; De La Cruz, F.; Rocha, E.P. The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet. 2011, 7, e1002222. [Google Scholar] [CrossRef] [PubMed]
- Burrus, V.; Waldor, M.K. Shaping bacterial genomes with integrative and conjugative elements. Res. Microbiol. 2004, 155, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Andreu, N.; Zelmer, A.; Wiles, S. Noninvasive biophotonic imaging for studies of infectious disease. FEMS Microbiol. Rev. 2011, 35, 360–394. [Google Scholar] [CrossRef] [PubMed]
- Sentchilo, V.; Ravatn, R.; Werlen, C.; Zehnder, A.J.; van der Meer, J.R. Unusual integrase gene expression on the clc genomic island in Pseudomonas sp. strain B13. J. Bacteriol. 2003, 185, 4530–4538. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, R.A.; Waldor, M.K. Integrative and conjugative elements: Mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat. Rev. Microbiol. 2010, 8, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Juhas, M.; van der Meer, J.R.; Gaillard, M.; Harding, R.M.; Hood, D.W.; Crook, D.W. Genomic islands: Tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol. Rev. 2009, 33, 376–393. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.; Hensel, M. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 2006, 19, 257. [Google Scholar] [CrossRef]
- Bellanger, X.; Payot, S.; Leblond-Bourget, N.; Guédon, G. Conjugative and mobilizable genomic islands in bacteria: Evolution and diversity. FEMS Microbiol. Rev. 2014, 38, 720–760. [Google Scholar] [CrossRef] [PubMed]
- Mingoia, M.; Morici, E.; Brenciani, A.; Giovanetti, E.; Varaldo, P.E. Genetic basis of the association of resistance genes mef(I) (macrolides) and catQ (chloramphenicol) in streptococci. Front. Microbiol. 2015, 5, 747. [Google Scholar] [CrossRef] [PubMed]
- Hensel, M. Evolution of pathogenicity islands of Salmonella enterica. Int. J. Med. Microbiol. 2004, 294, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef] [PubMed]
- Stokes, H.W.; Gillings, M.R. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol. Rev. 2011, 35, 790–819. [Google Scholar] [CrossRef] [PubMed]
- San Millan, A. Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. Trends Microbiol. 2018, 26, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, 34, D32–D36. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.M.; Grossman, A.D. Integrative and Conjugative Elements (ICEs): What They Do and How They Work. Annu. Rev. Genet. 2015, 49, 577–601. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Hughes, D. Antibiotic resistance and its cost: Is it possible to reverse resistance? Nat. Rev. Microbiol. 2010, 8, 260–271. [Google Scholar] [CrossRef] [PubMed]
- van Houte, S.; Ekroth, A.K.; Broniewski, J.M. The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 2016, 532, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Westra, E.R.; Buckling, A.; Fineran, P.C. CRISPR-Cas systems: Beyond adaptive immunity. Nat. Rev. Microbiol. 2014, 12, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Domingues, S.; Harms, K.; Fricke, W.F. Natural transformation facilitates transfer of transposons, integrons and gene cassettes between bacterial species. PLoS Pathog. 2012, 8, e1002837. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- De Maio, N.; Shaw, L.P.; Hubbard, A.; George, S.; Sanderson, N.D.; Swann, J.; Wick, R.; AbuOun, M.; Stubberfield, E.; Hoosdally, S.J.; et al. Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. Microb. Genom. 2019, 5, e000294. [Google Scholar] [CrossRef] [PubMed]
- Modi, A.; Vai, S.; Caramelli, D.; Lari, M. The Illumina Sequencing Protocol and the NovaSeq 6000 System. Methods Mol. Biol. 2021, 2242, 15–42. [Google Scholar] [PubMed]
- Wang, Y.; Zhao, Y.; Bollas, A.; Wang, Y.; Au, K.F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 2021, 39, 1348–1365. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb. Genom. 2017, 3, e000132. [Google Scholar] [CrossRef]
- Antipov, D.; Korobeynikov, A.; McLean, J.S.; Pevzner, P.A. hybridSPAdes: An algorithm for hybrid assembly of short and long reads. Bioinformatics 2016, 32, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Li, H. Minimap and miniasm: Fast mapping and de novo assembly for noisy long sequences. Bioinformatics 2016, 32, 2103–2110. [Google Scholar] [CrossRef] [PubMed]
- Vaser, R.; Sovic, I.; Nagarajan, N.; Sikic, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017, 27, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Chklovski, A.; Parks, D.H.; Woodcroft, B.J.; Tyson, G.W. CheckM2: A rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 2023, 20, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Galperin, M.Y.; Makarova, K.S.; Wolf, Y.I.; Koonin, E.V. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 2015, 43, D261–D269. [Google Scholar] [CrossRef] [PubMed]
- Aramaki, T.; Blanc-Mathieu, R.; Endo, H.; Ohkubo, K.; Kanehisa, M.; Goto, S.; Ogata, H. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020, 36, 2251–2252. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Eren, A.M.; Esen, Ö.C.; Quince, C.; Vineis, J.H.; Morrison, H.G.; Sogin, M.L.; Delmont, T.O. Anvi’o: An advanced analysis and visualization platform for ‘omics data. PeerJ 2015, 3, e1319. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, D.; Chen, G.L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.J. Hidden Markov Models and their Applications in Biological Sequence Analysis. Curr. Genom. 2009, 10, 402–415. [Google Scholar] [CrossRef] [PubMed]
- Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.R.; Maciejewski, A.; Wishart, D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016, 44, W147–W153. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef] [PubMed]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for Predictions of Phenotypes from Genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.M. ARG-ANNOT, a New Bioinformatic Tool to Discover Antibiotic Resistance Genes in Bacterial Genomes. Antimicrob. Agents Chemother. 2014, 58, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.Y.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A Reference Database for Bacterial Virulence Factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef] [PubMed]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Simon Fraser University Research Computing Group; Lau, B.Y.; Hoad, G.; Winsor, G.L.; Brinkman, F.S. IslandViewer 4: Expanded Prediction of Genomic Islands for Larger-Scale Datasets. Nucleic Acids Res. 2017, 45, W30–W35. [Google Scholar] [CrossRef] [PubMed]
- Néron, B.; Littner, E.; Haudiquet, M.; Perrin, A.; Cury, J.; Rocha, E.P.C. IntegronFinder 2.0: Identification and Analysis of Integrons across Bacteria, with a Focus on Antibiotic Resistance in Klebsiella. Microorganisms 2022, 10, 700. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Hasman, H. PlasmidFinder and In Silico pMLST: Identification and Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS). Methods Mol. Biol. 2020, 2075, 285–294. [Google Scholar] [PubMed]
Antibiotic | MIC Range | MIC50 | MIC90 | No. of Isolate | ||
---|---|---|---|---|---|---|
S (%) | I (%) | R (%) | ||||
Piperacillin/Tazobactam | >64–>64 | >64 | >64 | 0 | 0 | 12 (100) |
Ceftazidime | >32–>32 | >32 | >32 | 0 | 1 (8.33) | 11 (91.67) |
Ceftriaxone | >32–>32 | >32 | >32 | 0 | 1 (8.33) | 11 (91.67) |
Cefotaxime | >32–>32 | >32 | >32 | 0 | 0 | 12 (100) |
Cefepime | >32–>32 | >32 | >32 | 0 | 0 | 12 (100) |
Imipenem | >16–>16 | >16 | >16 | 0 | 0 | 12 (100) |
Meropenem | >16–>16 | >16 | >16 | 0 | 0 | 12 (100) |
Amikacin | 8–>32 | >32 | >32 | 1 (8.33) | 1 (8.33) | 10 (83.33) |
Gentamicin | 8–>8 | >8 | >8 | 0 | 1 (8.33) | 11 (91.67) |
Ciprofloxacin | 1–>2 | >2 | >2 | 1 (8.33) | 0 | 11 (91.67) |
Levofloxacin | 0.5–>8 | >8 | >8 | 1 (8.33) | 0 | 11 (91.67) |
Trimethoprim/sulfamethoxazole | ≤1–≤1 | ≤1 | ≤1 | 12 (100) | 0 | 0 |
Isolate Name | Accession No. | Total Sequence Length (bp) | CDS | GC Content (%) | No. of rRNA | No. of tRNA | No. of tmRNA |
---|---|---|---|---|---|---|---|
CMCI01 | CP187257.1 | 4,976,911 | 4474 | 37.17 | 18 | 86 | 1 |
CMCI05 | CP187307.1 | 4,951,596 | 4344 | 37.17 | 18 | 87 | 1 |
CMCI10 | CP192273.1 | 4,958,362 | 4338 | 37.18 | 18 | 86 | 1 |
CMCI11 | CP192274.1 | 4,976,633 | 4362 | 37.17 | 18 | 87 | 1 |
CMCI12 | CP192275.1 | 4,831,670 | 4232 | 37.16 | 18 | 84 | 1 |
CMCI13 | CP192276.1 | 5,001,564 | 4411 | 37.35 | 18 | 88 | 1 |
CMCI14 | CP192277.1 | 4,975,598 | 4359 | 37.17 | 18 | 87 | 1 |
CMCI23 | CP192278.1 | 4,978,254 | 4359 | 37.17 | 18 | 86 | 1 |
CMCI46 | CP192279.1 | 4,962,489 | 4472 | 37.18 | 18 | 88 | 1 |
CMCI56 | CP192280.1 | 4,980,883 | 4480 | 37.17 | 18 | 88 | 1 |
CMCI60 | CP192281.1 | 4,980,418 | 4488 | 37.15 | 18 | 86 | 1 |
CMCI63 | CP192282.1 | 4,951,582 | 4453 | 37.20 | 18 | 87 | 1 |
Antibiotic Class | Putative Antibiotic Resistance Genes | Isolates | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CMCI01 | CMCI05 | CMCI10 | CMCI11 | CMCI12 | CMCI13 | CMCI14 | CMCI23 | CMCI46 | CMCI56 | CMCI60 | CMCI63 | ||
Carbapenem | blaIND | blaIND-2 | blaIND-2 | blaIND-2 | blaIND-2 | blaIND-2 | blaIND-2 | blaIND-2 | blaIND-2 | blaIND-2 | blaIND-2 | blaIND-2 | blaIND-2 |
Penicillin beta-lactam | blaOXA | OXA-347 | OXA-347 | OXA-347 | OXA-347 | OXA-347 | - | OXA-347 | OXA-347 | OXA-347 | OXA-347 | OXA-347 | OXA-347 |
Carbapenem, cephalosporin | blaCIA | CIA-4 | CIA-4 | CIA-4 | CIA-4 | CIA-4 | CIA-4 | CIA-4 | CIA-4 | CIA-4 | CIA-4 | CIA-4 | CIA-4 |
Macrolide | erm | ermF (2) * | ermF (2) | ermF (2) | ermF (2) | ermF (2) | - | ermF (2) | ermF (2) | ermF (2) | ermF (2) | ermF | ermF (2) |
Aminoglycosides | aad | aadS (2) | aadS (2) | aadS (2) | aadS (2) | aadS (2) | - | aadS (2) | aadS (2) | aadS (2) | aadS (2) | aadS (2) | aadS (2) |
Quinolone | ade | adeF (2) | adeF (2) | adeF (2) | adeF (2) | adeF (2) | adeF (2) | adeF (2) | adeF (2) | adeF (2) | adeF (2) | adeF (2) | adeF (2) |
Quaternary ammonium compounds | qac | qacG | qacG | qacG | qacG | qacG | qacG | qacG | qacG | qacG | qacG | qacG | qacG |
Tetracycline | tet | tetX | tetX | tetX | tetX | tetX | - | tetX | tetX | tetX | tetX | tetX | tetX |
Vancomycin | vanT gene in vanG cluster | vanT | vanT | vanT | vanT | vanT | vanT | vanT | vanT | vanT | vanT | vanT | vanT |
Total genes | 9 | 9 | 9 | 9 | 9 | 5 | 9 | 9 | 9 | 9 | 9 | 9 | |
Total positions | 12 | 12 | 12 | 12 | 12 | 6 | 12 | 12 | 12 | 12 | 11 | 12 |
VF Class | Virulence Factors | Putative Genes | Reference Organisms |
---|---|---|---|
Adherence and invasion | Type IV pili biosynthesis | pilR | - |
Hsp60 | htpB | Legionella sp. | |
Polar flagella | flmH | Aeromonas sp. | |
Elongation Factor-Tu | tuf | Francisella sp. | |
Colonization and immune evasion | Capsular polysaccharide | rmlA, rmlB, rmlC, wcaJ, capL, epsH | Vibrio sp., Staphylococcus sp., Streptococcus sp. |
Capsule biosynthesis and transport | glf | Campylobacter sp. | |
Exopolysaccharide | galE, pgi | Haemophilus sp. | |
Enzyme | Hemolytic phospholipase C | plcH | - |
Enolase | eno | Streptococcus sp. | |
Iron uptake | Pyoverdine | pvdD, pvdI | - |
Heme biosynthesis | hemB, hemL | Haemophilus sp. | |
Secretion system | Hcp secretion island-1 encoded type VI secretion system (H-T6SS) | clpV1 | - |
T6SS-II | clpB | Klebsiella sp. | |
Acid resistance | Urease | ureB, ureG | Helicobacter sp. |
Endotoxin and serum resistance | LPS | acpXL | Brucella sp. |
LPS O-antigen | Undetermined | Pseudomonas aeruginosa | |
LPS rfb locus | rmlA | Klebsiella sp. | |
Lipid and fatty acid metabolism | Isocitrate lyase | icl | Mycobacterium sp. |
Pantothenate synthesis | panD | Mycobacterium sp. | |
Stress adaptation | Catalase–peroxidase | katG | Mycobacterium sp. |
Catalase | katA | Neisseria sp. |
Strain | Sequences Producing Significant Alignments | IS Family | Group | Origin | Score (bits) * | E-Value ** |
---|---|---|---|---|---|---|
CMCI01, CMCI05, CMCI10, CMCI11, CMCI12, CMCI14, CMCI23, CMCI46, CMCI56, CMCI60, CMCI63 | IS1272 | IS1182 | - | Staphylococcus haemolyticus | 61.9 | 9 × 10−6 |
ISElsp1 | IS3 | IS3 | Elizabethkingia sp. | 56.0 | 6 × 10−4 | |
ISLpn9 | IS4 | IS10 | Legionella pneumophila | 56.0 | 6 × 10−4 | |
ISMsp1 | IS1182 | Microscilla sp. | 54.0 | 0.002 | ||
CMCI13 | ISEIan2 | IS256 | - | Elisabethkingia anophelis | 1713.0 | 0.0 |
IS1272 | IS1182 | - | Staphylococcus haemolyticus | 61.9 | 1 × 10−5 | |
ISElsp1 | IS3 | IS3 | Elisabethkingia sp. | 56.0 | 6 × 10−4 | |
ISLpn9 | IS4 | IS10 | Legionella pneumophila | 56.0 | 6 × 10−4 | |
ISBun1 | IS1595 | ISNwI1 | Bacteroides uniformis | 56.0 | 6 × 10−4 | |
ISMsp1 | IS1182 | - | Microscilla sp. | 54.0 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yinsai, O.; Yuantrakul, S.; Srisithan, P.; Zhou, W.; Chittaprapan, S.; Intajak, N.; Kruayoo, T.; Khamnoi, P.; Tongjai, S.; Daungsonk, K. Genomic Insights into Emerging Multidrug-Resistant Chryseobacterium indologenes Strains: First Report from Thailand. Antibiotics 2025, 14, 746. https://doi.org/10.3390/antibiotics14080746
Yinsai O, Yuantrakul S, Srisithan P, Zhou W, Chittaprapan S, Intajak N, Kruayoo T, Khamnoi P, Tongjai S, Daungsonk K. Genomic Insights into Emerging Multidrug-Resistant Chryseobacterium indologenes Strains: First Report from Thailand. Antibiotics. 2025; 14(8):746. https://doi.org/10.3390/antibiotics14080746
Chicago/Turabian StyleYinsai, Orathai, Sastra Yuantrakul, Punnaporn Srisithan, Wenting Zhou, Sorawit Chittaprapan, Natthawat Intajak, Thanakorn Kruayoo, Phadungkiat Khamnoi, Siripong Tongjai, and Kwanjit Daungsonk. 2025. "Genomic Insights into Emerging Multidrug-Resistant Chryseobacterium indologenes Strains: First Report from Thailand" Antibiotics 14, no. 8: 746. https://doi.org/10.3390/antibiotics14080746
APA StyleYinsai, O., Yuantrakul, S., Srisithan, P., Zhou, W., Chittaprapan, S., Intajak, N., Kruayoo, T., Khamnoi, P., Tongjai, S., & Daungsonk, K. (2025). Genomic Insights into Emerging Multidrug-Resistant Chryseobacterium indologenes Strains: First Report from Thailand. Antibiotics, 14(8), 746. https://doi.org/10.3390/antibiotics14080746