Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = explosion bubble

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2236 KB  
Article
An Empirical Investigation of Explosive Price Behavior in U.S. State-Level Electricity Markets Across Consumer Segments
by Merve Mert Saritas, Gokhan Konat, Levent Dalyanci and Veli Yilanci
Energies 2025, 18(21), 5689; https://doi.org/10.3390/en18215689 - 29 Oct 2025
Viewed by 481
Abstract
This study investigates speculative bubbles in U.S. state-level electricity markets across commercial, industrial, and residential segments. Using monthly data (2005–2025) from the U.S. Energy Information Administration and employing the Generalized Supremum Augmented Dickey–Fuller test, evidence of localized explosive price behavior was observed predominantly [...] Read more.
This study investigates speculative bubbles in U.S. state-level electricity markets across commercial, industrial, and residential segments. Using monthly data (2005–2025) from the U.S. Energy Information Administration and employing the Generalized Supremum Augmented Dickey–Fuller test, evidence of localized explosive price behavior was observed predominantly in Florida, Hawaii, Pennsylvania, and Oregon, among others. These bubbles, often tied to market disruptions such as fuel price volatility and post-pandemic recovery, were mainly short-lived and region-specific. The findings highlight the need for tailored, state-specific regulatory strategies to address unique market dynamics, ensuring stability amidst the ongoing energy transition. Full article
Show Figures

Figure 1

21 pages, 343 KB  
Proceeding Paper
Detecting Financial Bubbles with Tail-Weighted Entropy
by Omid M. Ardakani
Comput. Sci. Math. Forum 2025, 11(1), 3; https://doi.org/10.3390/cmsf2025011003 - 25 Jul 2025
Viewed by 848
Abstract
This paper develops a novel entropy-based framework to quantify tail risk and detect speculative bubbles in financial markets. By integrating extreme value theory with information theory, I introduce the Tail-Weighted Entropy (TWE) measure, which captures how information scales with extremeness in asset price [...] Read more.
This paper develops a novel entropy-based framework to quantify tail risk and detect speculative bubbles in financial markets. By integrating extreme value theory with information theory, I introduce the Tail-Weighted Entropy (TWE) measure, which captures how information scales with extremeness in asset price distributions. I derive explicit bounds for TWE under heavy-tailed models and establish its connection to tail index parameters, revealing a phase transition in entropy decay rates during bubble formation. Empirically, I demonstrate that TWE-based signals detect crises in equities, commodities, and cryptocurrencies days earlier than traditional variance-ratio tests, with Bitcoin’s 2021 collapse identified weeks prior to the peak. The results show that entropy decay—not volatility explosions—serves as the primary precursor to systemic risk, offering policymakers a robust tool for preemptive crisis management. Full article
(This article belongs to the Proceedings of The 11th International Conference on Time Series and Forecasting)
32 pages, 5641 KB  
Review
Review of the Research on Underwater Explosion Ice-Breaking Technology
by Xiao Huang, Zi-Xian Zhong, Xiao Luo and Yuan-Dong Wang
J. Mar. Sci. Eng. 2025, 13(7), 1359; https://doi.org/10.3390/jmse13071359 - 17 Jul 2025
Cited by 2 | Viewed by 3117
Abstract
Underwater explosion ice-breaking technology is critical for Arctic development and ice disaster prevention due to its high efficiency, yet it faces challenges in understanding the coupled dynamics of shock waves, pulsating bubbles, and heterogeneous ice fracture. This review synthesizes theoretical models, experimental studies, [...] Read more.
Underwater explosion ice-breaking technology is critical for Arctic development and ice disaster prevention due to its high efficiency, yet it faces challenges in understanding the coupled dynamics of shock waves, pulsating bubbles, and heterogeneous ice fracture. This review synthesizes theoretical models, experimental studies, and numerical simulations investigating damage mechanisms. Key findings establish that shock waves initiate brittle fracture via stress superposition while bubble pulsation drives crack propagation through pressure oscillation; optimal ice fragmentation depends critically on charge weight, standoff distance, and ice thickness. However, significant limitations persist in modeling sea ice heterogeneity, experimental replication of polar conditions, and computational efficiency. Future advancements require multiscale fluid–structure interaction models integrating brine migration effects, enhanced experimental diagnostics for transient processes, and optimized numerical algorithms to enable reliable predictions for engineering applications. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 2059 KB  
Article
Co-Extrusive Magma Transport and Volcanic Dome Formation: Implications for Triggering Explosive Volcanic Eruptions
by Charles R. Carrigan and John C. Eichelberger
Geosciences 2025, 15(5), 185; https://doi.org/10.3390/geosciences15050185 - 21 May 2025
Viewed by 874
Abstract
Polymer co-extrusion experiments are described simulating the dynamics of two different magmas (e.g., silicic and mafic having different viscosities) flowing simultaneously in a vertical volcanic pipe or conduit which results in the effusion of composite lava domes on the surface. These experiments, involving [...] Read more.
Polymer co-extrusion experiments are described simulating the dynamics of two different magmas (e.g., silicic and mafic having different viscosities) flowing simultaneously in a vertical volcanic pipe or conduit which results in the effusion of composite lava domes on the surface. These experiments, involving geologically realistic conduit length-to-diameter aspect ratios of 130:1 or 380:1, demonstrate that co-extrusion of magmas having different viscosities can explain not only the observed normal zoning observed in planar dikes and the pipelike conduits that evolve from dikes but also the compositional layering of effused lava domes. The new results support earlier predictions, based on observations of induced core-annular flow (CAF), that dike and conduit zoning along with dome layering are found to depend on the viscosity contrast of the non-Newtonian (shear-thinning) magmas. Any magma properties creating viscosity differences, such as crystal content, bubble content, water content and temperature may also give rise to the CAF regime. Additionally, codependent flow behavior involving the silicic and mafic magmas may play a significant role in modifying the nature of volcanic eruptions. For example, lubrication of the flow by an annulus of a more mafic, lower-viscosity component allows a more viscous but more volatile-charged magma to be injected rapidly to greater vertical distances along a dike into a lower pressure regime that initiates exsolving of a gas phase, further assisting ascent to the surface. The rapid ascent of magmas exsolving volatiles in a dike or conduit is associated with explosive silicic eruptions. Full article
Show Figures

Figure 1

22 pages, 8283 KB  
Article
Correction Method for Initial Conditions of Underwater Explosion
by Zeyu Jin, Wentao Xu, Caiyu Yin, Zhiyang Lei and Xiangshao Kong
J. Mar. Sci. Eng. 2025, 13(4), 759; https://doi.org/10.3390/jmse13040759 - 10 Apr 2025
Cited by 2 | Viewed by 1340
Abstract
In numerical simulations of underwater explosions, inaccuracies in the parameters of the Jones–Wilkins–Lee (JWL) equation of state often result in significant deviations between predicted shock wave pressure peaks or bubble pulsation periods and experimental or empirical results. To achieve the precise forecasting of [...] Read more.
In numerical simulations of underwater explosions, inaccuracies in the parameters of the Jones–Wilkins–Lee (JWL) equation of state often result in significant deviations between predicted shock wave pressure peaks or bubble pulsation periods and experimental or empirical results. To achieve the precise forecasting of underwater explosion loads, a corrected method for adjusting the initial conditions of explosives is proposed. This method regulates explosion loads by correcting the initial density and initial internal energy per unit mass of the explosive, offering a straightforward implementation and easy extension to complex scenarios. In addition, the accuracy and feasibility of the proposed method were validated through comparisons with experimental data and empirical formulas from international studies. The numerical framework employs the Runge–Kutta Discontinuous Galerkin (RKDG) method to solve the one-dimensional Euler equations. The spatial discretization of the Euler domain is achieved using the discontinuous Galerkin (DG) method, while temporal discretization utilizes a third-order Runge–Kutta (RK) method. The results demonstrate that the proposed correction method effectively compensates for load discrepancies caused by inaccuracies in the JWL equation of state parameters. After correction, the maximum error in the shock wave pressure peak is reduced to less than 4.5%, and the maximum error in the bubble pulsation period remains below 1.9%. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 513 KB  
Article
Explosive Episodes and Time-Varying Volatility: A New MARMA–GARCH Model Applied to Cryptocurrencies
by Alain Hecq and Daniel Velasquez-Gaviria
Econometrics 2025, 13(2), 13; https://doi.org/10.3390/econometrics13020013 - 24 Mar 2025
Cited by 2 | Viewed by 2057
Abstract
Financial assets often exhibit explosive price surges followed by abrupt collapses, alongside persistent volatility clustering. Motivated by these features, we introduce a mixed causal–noncausal invertible–noninvertible autoregressive moving average generalized autoregressive conditional heteroskedasticity (MARMA–GARCH) model. Unlike standard ARMA processes, our model admits roots inside [...] Read more.
Financial assets often exhibit explosive price surges followed by abrupt collapses, alongside persistent volatility clustering. Motivated by these features, we introduce a mixed causal–noncausal invertible–noninvertible autoregressive moving average generalized autoregressive conditional heteroskedasticity (MARMA–GARCH) model. Unlike standard ARMA processes, our model admits roots inside the unit disk, capturing bubble-like episodes and speculative feedback, while the GARCH component explains time-varying volatility. We propose two estimation approaches: (i) Whittle-based frequency-domain methods, which are asymptotically equivalent to Gaussian likelihood under stationarity and finite variance, and (ii) time-domain maximum likelihood, which proves to be more robust to heavy tails and skewness—common in financial returns. To identify causal vs. noncausal structures, we develop a higher-order diagnostics procedure using spectral densities and residual-based tests. Simulation results reveal that overlooking noncausality biases GARCH parameters, downplaying short-run volatility reactions to news (α) while overstating volatility persistence (β). Our empirical application to Bitcoin and Ethereum enhances these insights: we find significant noncausal dynamics in the mean, paired with pronounced GARCH effects in the variance. Imposing a purely causal ARMA specification leads to systematically misspecified volatility estimates, potentially underestimating market risks. Our results emphasize the importance of relaxing the usual causality and invertibility assumption for assets prone to extreme price movements, ultimately improving risk metrics and expanding our understanding of financial market dynamics. Full article
Show Figures

Figure 1

17 pages, 1632 KB  
Review
A Comprehensive Review of the Influence of Sensitizers on the Detonation Properties of Emulsion Explosives
by Andrzej Maranda, Dorota Markowska, Bożena Kukfisz and Weronika Jakubczak
Appl. Sci. 2025, 15(5), 2417; https://doi.org/10.3390/app15052417 - 24 Feb 2025
Cited by 3 | Viewed by 7108
Abstract
Emulsion explosives are extensively utilized in the global mining industry due to their superior water resistance, high safety standards, cost-efficiency, and robust performance. The basic component of these explosives is a water-in-oil emulsion matrix, which, in its initial state, lacks the capacity for [...] Read more.
Emulsion explosives are extensively utilized in the global mining industry due to their superior water resistance, high safety standards, cost-efficiency, and robust performance. The basic component of these explosives is a water-in-oil emulsion matrix, which, in its initial state, lacks the capacity for detonation. The sensitization process, achieved through either physical or chemical means, is a critical step that enhances the emulsion’s sensitivity to detonation, thereby improving its operational efficiency in blasting applications. This review presents a comprehensive and systematic analysis of the current scientific literature and experimental investigations concerning the impact of key sensitizing methods and agents on the detonation characteristics of emulsion explosives. Particular emphasis is placed on the classification of sensitizers, their physicochemical properties, and their interactions with the emulsion matrix. By examining various sensitization mechanisms, this study provides insights into the role and efficacy of both established and emerging sensitizing agents. The findings of this review highlight the pivotal role of sensitizer selection in defining the detonation performance of emulsion explosives, with implications for enhancing safety standards and ensuring the protection of both industrial operations and public safety. The most optimal sensitization method is chemical, utilizing cost-effective components that generate gas bubbles within the matrix. A key advantage is the in situ production of emulsion explosives, which eliminates the need for their transport on public roads, thereby enhancing safety and reducing the risk of terrorist threats. Full article
(This article belongs to the Special Issue Advanced Blasting Technology for Mining)
Show Figures

Figure 1

23 pages, 10651 KB  
Article
Dynamic Behavior of Submerged Cylindrical Shells Under Combined Underwater Explosion, Bubble Pulsation, and Hydrostatic Pressure
by Ruyi Fan, Gaojian Lin, Hang Zhang, Longfei Zhang and Weifu Sun
Materials 2025, 18(4), 818; https://doi.org/10.3390/ma18040818 - 13 Feb 2025
Cited by 4 | Viewed by 2033
Abstract
Understanding the dynamic response of cylindrical shells subjected to underwater explosion is crucial for designing safe underwater vehicles, especially in deep-water environments where the shell structures are prestressed by hydrostatic pressure. The complex combination of external loading crossing different temporal scales—from underwater explosive [...] Read more.
Understanding the dynamic response of cylindrical shells subjected to underwater explosion is crucial for designing safe underwater vehicles, especially in deep-water environments where the shell structures are prestressed by hydrostatic pressure. The complex combination of external loading crossing different temporal scales—from underwater explosive shock waves to bubble pulsation and hydrostatic pressure—results in a synergic damaging effect on the target structures. In this work, the dynamic responses and buckling failure mechanisms of deeply immersed (≥1300 m) cylindrical shells subjected to underwater explosion were investigated through a numerical approach using the finite element method. A convenient and reliable routine for imposing hydrostatic pressure in the Coupled Eulerian–Lagrangian model was developed and validated. Three-dimensional models, composed of spherical charges and shell targets under deep-water conditions, were established to reveal the influences of key factors, including explosion depth and explosion distance, on the failure modes. The results show that the numerical models presented in this work are capable of simulating the complex synergic effect of hydrostatic pressure, the bubble pulsation process, and shock waves on the failure mechanisms of deeply immersed cylindrical shells. This work could provide valuable guidance for the design of safer deep-water marine structures. Full article
Show Figures

Figure 1

20 pages, 3293 KB  
Article
Study of the Effects of Different Dielectric Environments on the Characteristics of Electro-Explosive Discharge of Metal Wires and Shock Waves
by Jiawei Liu, Jin Wang, Qilong Xue, Yuanyuan Zhang, Hufeng Li and Song Fang
Appl. Sci. 2025, 15(1), 218; https://doi.org/10.3390/app15010218 - 30 Dec 2024
Viewed by 1271
Abstract
The electrical explosive fragmentation technique has attracted widespread attention due to its environmental friendliness and high efficiency. However, the mechanism by which dielectrics influence rock fragmentation remains unclear. This study innovatively selected seven types of environmentally friendly dielectrics to systematically investigate their roles [...] Read more.
The electrical explosive fragmentation technique has attracted widespread attention due to its environmental friendliness and high efficiency. However, the mechanism by which dielectrics influence rock fragmentation remains unclear. This study innovatively selected seven types of environmentally friendly dielectrics to systematically investigate their roles in the metallic wire electrical explosive rock fragmentation process. By precisely characterizing the crack morphology of concrete blocks, shock wave–strain responses, and discharge signal characteristics, the diverse mechanisms by which different dielectrics modulate rock fragmentation were revealed. The results indicate that oxide dielectrics release energy continuously through thermochemical reactions, highly conductive solutions accelerate energy deposition, and reductant suspensions generate strong secondary shock waves—all significantly outperforming tap water in terms of rock fragmentation performance. Notably, the energy deposition efficiency shows a nonlinear relationship with fragmentation effectiveness, influenced by factors such as energy release modes, dielectric composition, and bubble dynamics. The energy conversion mechanism of the electrical explosive rock fragmentation process studied in this paper provides a theoretical foundation for the fine-tuning, customization, and greening of electrical explosive rock fragmentation strategies in engineering practice. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

15 pages, 5375 KB  
Article
Investigation of Gas-Liquid Mass Transfer in the Fuel Scrubbing Inerting Process Using Mixed Inert Gas
by Chaoyue Li, Sha Liu and Guannan Liu
Processes 2024, 12(10), 2157; https://doi.org/10.3390/pr12102157 - 3 Oct 2024
Cited by 2 | Viewed by 1354
Abstract
This study investigates the dynamics of mass transfer between gas and liquid during the fuel scrubbing inerting process, utilizing a mixed inert gas (MIG) composed of CO2, N2, and trace amounts of O2. The goal is to [...] Read more.
This study investigates the dynamics of mass transfer between gas and liquid during the fuel scrubbing inerting process, utilizing a mixed inert gas (MIG) composed of CO2, N2, and trace amounts of O2. The goal is to lower oxygen concentrations in aircraft fuel tanks, thereby reducing the risk of explosions. The experiments were conducted on a fuel scrubbing inerting platform, where an MIG was utilized to deoxygenate aviation fuel. Changes in the oxygen concentration in the ullage (OCU) and the dissolved oxygen concentration in the fuel (DOCF) were measured during the scrubbing process. Validated by these experimental data, Computational Fluid Dynamics (CFD) simulations demonstrated the reliability of the model. The discrepancies between CFD predictions and experimental measurements were 4.11% for OCU and 5.23% for DOCF. The influence of the MIG bubble diameter, MIG flow rate, and fuel loading rate on DOCF, gas holdup (GH), and the oxygen volumetric mass transfer coefficient (OVMTC) was comprehensively examined. The results reveal that larger MIG bubble diameters lead to an increased DOCF but reduced GH and OVMTC. In contrast, a higher MIG flow rate decreases DOCF while boosting GH and OVMTC. Additionally, a greater fuel loading rate increases DOCF but decreases GH and OVMTC. These findings offer important insights for optimizing fuel scrubbing inerting systems, underscoring the necessity of selecting suitable operating parameters to enhance oxygen displacement and ensure aircraft safety. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

25 pages, 5521 KB  
Article
Damage Characteristics of Structure under Underwater Explosion and Bubble Flooding Loads
by Qin Li, Xiao Luo, Zi-Xian Zhong, Guo-Hui Zhang, Zhong Wang, Hai-Bao Hu and Xiao Huang
J. Mar. Sci. Eng. 2024, 12(10), 1709; https://doi.org/10.3390/jmse12101709 - 27 Sep 2024
Cited by 5 | Viewed by 3488
Abstract
Numerous studies have shown that explosive sequence loads can cause serious damage to underwater vehicles, especially the bubble surge in the later stage of the explosion, which poses a huge threat to the internal structure of the vehicle. This study explores the damage [...] Read more.
Numerous studies have shown that explosive sequence loads can cause serious damage to underwater vehicles, especially the bubble surge in the later stage of the explosion, which poses a huge threat to the internal structure of the vehicle. This study explores the damage characteristics of cylindrical shell structures under complete sequence loads based on the Arbitrary Lagrangian–Eulerian (ALE) method. By conducting experiments on the surge characteristics near the damaged plate under explosive action and comparing them with numerical results, the effectiveness of the method is verified. Subsequently, the damage characteristics of single- and double-layered cylindrical shell structures under underwater explosion sequence loads (shock waves, bubbles, surges) were explored, and the failure modes of cylindrical shell structures under various loads were summarized. The results indicate that the damage of shock waves to single-layer cylindrical shell structures is most severe at a blast distance of 0.5 m. For double-layer cylindrical shells, increasing the blast distance will reduce the impact of bubble surge on the pressure-resistant shell. The stress and strain in the central area of the pressure-resistant shell also decrease, and the deflection and Z-direction velocity also decrease accordingly. This study laid the foundation for enhancing the impact resistance of underwater vehicles. Full article
Show Figures

Figure 1

11 pages, 1001 KB  
Article
Thermal Safety Study of Emulsion Explosive Matrix under the Coupled Effects of Environmental Pressure and Bubble Content with Internal Heat Source
by Yi-Bo Zhang, Qian Liu and Xiao-Cen Shi
Processes 2024, 12(8), 1677; https://doi.org/10.3390/pr12081677 - 10 Aug 2024
Cited by 4 | Viewed by 1882
Abstract
Emulsion explosives have become a hot topic in various studies due to their explosive combustion characteristics and detonation performance under different environmental pressures. The thermal safety of an emulsified matrix was studied with ignition energy as the characterization. A minimum ignition energy test [...] Read more.
Emulsion explosives have become a hot topic in various studies due to their explosive combustion characteristics and detonation performance under different environmental pressures. The thermal safety of an emulsified matrix was studied with ignition energy as the characterization. A minimum ignition energy test experimental system for emulsion matrices was established in this research. The system simulated the occurrence of hot spots inside emulsion matrices using an electric heating wire. The effect of bubbles on the thermal safety of the emulsified matrix was studied by adding expanded perlite additive to the emulsified matrix. This study investigated the variation trend in the minimum ignition energy of the emulsion matrix under the coupled effect of bubbles and ambient pressure using the orthogonal experimental method. The impacts of two factors on the thermal safety of the emulsion matrix were studied at different hot-spot temperatures. Coupled analysis experiments were conducted on emulsion matrices containing 0%, 1.5%, and 3% expanded perlite under pressure environments of 1 atm, 2 atm, and 3 atm. The critical hot-spot temperature of the emulsion matrix significantly decreases with increasing bubble content at 1 atm and 2 atm pressures, as revealed by intuitive analysis and analysis of variance. However, at 3 atm of pressure, the bubble content in the emulsion matrix has no significant effect on its critical hot-spot temperature. The results show that the thermal safety of the emulsified matrix decreases with the increase in the content of expanded perlite and environmental pressure, and the influence of environmental pressure is more significant than that of the bubble content. This paper’s research content serves as a reference for a safe emulsified matrix and as an experimental basis for establishing a production line for developing new equipment. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

14 pages, 7277 KB  
Article
Planetary Nebula Morphologies Indicate a Jet-Driven Explosion of SN 1987A and Other Core-Collapse Supernovae
by Noam Soker
Galaxies 2024, 12(3), 29; https://doi.org/10.3390/galaxies12030029 - 6 Jun 2024
Cited by 14 | Viewed by 1972
Abstract
I demonstrate the usage of planetary nebulae (PNe) to infer that a pair of jets shaped the ejecta of the core-collapse supernova (CCSN) SN 1987A. The main structure of the SN 1987A inner ejecta, the ‘keyhole’, comprises two low-intensity zones. The northern one [...] Read more.
I demonstrate the usage of planetary nebulae (PNe) to infer that a pair of jets shaped the ejecta of the core-collapse supernova (CCSN) SN 1987A. The main structure of the SN 1987A inner ejecta, the ‘keyhole’, comprises two low-intensity zones. The northern one has a bright rim on its front, while the southern one has an elongated nozzle. An earlier comparison of the SN 1987A ‘keyhole’ with bubbles in the galaxy group NGC 5813 led to its identification as a jet-shaped rim–nozzle structure. Here, I present rim–nozzle asymmetry in planetary nebulae (PNe), thought to be shaped by jets, which solidifies the claim that jets powered the ejecta of SN 1987A and other CCSNe. This finding for the iconic SN 1987A with its unique properties strengthens the jittering-jets explosion mechanism (JJEM) of CCSNe. In a few hundred years, the CCSN 1987A will have a complicated structure with two main symmetry axes, one along the axis of the three circumstellar rings that was shaped by two opposite 20,000-year pre-explosion jets, and the other along the long axis of the ‘keyhole’ that was shaped by the main (but not the only) jet pair of the exploding jets of SN 1987A in the frame of the JJEM. Full article
(This article belongs to the Special Issue Origins and Models of Planetary Nebulae)
Show Figures

Figure 1

22 pages, 11161 KB  
Article
Pressure Characteristics in the Nitrogen-Sealed Power Transformers under Internal Faults
by Jiansheng Li, Zheng Jia, Shengquan Wang and Shiming Liu
Processes 2024, 12(6), 1167; https://doi.org/10.3390/pr12061167 - 6 Jun 2024
Cited by 3 | Viewed by 4170
Abstract
The explosion-proof performance is an important index for oil-immersed transformers. The nitrogen-sealed transformer is a new type of transformer with nitrogen gas in the upper space, which can buffer against internal stress increase caused by arc faults. However, the pressure changes in the [...] Read more.
The explosion-proof performance is an important index for oil-immersed transformers. The nitrogen-sealed transformer is a new type of transformer with nitrogen gas in the upper space, which can buffer against internal stress increase caused by arc faults. However, the pressure changes in the transformer under internal faults are unclear. The authors of this study propose a method based on finite element simulation to analyze the pressure changes and the stress on the tank. First, the calculation process of arc energy and the pressure of the bubbles caused by the arc are derived. Second, the dynamic pressure wave propagation model and acoustic-solid coupling model are established. Last, the finite element simulation model is built to analyze the pressure characteristics. Taking the winding turn-to-turn and phase-to-phase short circuit faults as the analysis situations, the pressure changes in the 110 kV/20 MVA nitrogen-sealed transformer are simulated. Due to the pressure wave refraction and reflection, the pressure changes show oscillatory characteristics with time after the occurrence of an internal short circuit fault. The pressure wave travels from the arc fault position to the periphery. Compared to the conventional transformer, the pressure changes with slower variations under an internal short circuit fault and the tank suffer less stress, which indicates that the nitrogen-sealed transformer is more effective in the explosion-proof performance. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 5919 KB  
Article
Dynamic Response of a Warship’s Metal-Jet-Damaged Double-Layer Plates Subjected to the Subsequent Underwater Explosion
by Xiao Huang, Jia-Wei Mao, Xiao Luo, Peng Du and Abdellatif Ouahsine
J. Mar. Sci. Eng. 2024, 12(6), 854; https://doi.org/10.3390/jmse12060854 - 22 May 2024
Cited by 6 | Viewed by 1550
Abstract
This paper examines the response characteristics of a warship’s double-layer plates under a secondary near-field explosion after the ship’s outer plate has been perforated by shaped metal jets. First, the effectiveness of the Coupled Eulerian–Lagrangian (CEL) method was validated, showing numerical simulations to [...] Read more.
This paper examines the response characteristics of a warship’s double-layer plates under a secondary near-field explosion after the ship’s outer plate has been perforated by shaped metal jets. First, the effectiveness of the Coupled Eulerian–Lagrangian (CEL) method was validated, showing numerical simulations to be well aligned with experimental results. Subsequently, the damage inflicted on the outer plate by metal jets was simplified to a prefabricated orifice, further studying the explosive impact response of double-layer plates under different inter-compartmental water levels and charge distances. Our findings indicated the following: (1) shockwave and bubble pulsation loads are the main causes of deformation in the outer plate; (2) the driving of the outer plate and the flooding water between compartments are the main causes of deformation in the inner plate; and (3) deformation in the outer plate will decrease as the water level in the compartment increases, while deformation in the inner plate will increase with the increasing water level. Consequently, under certain specific damage, the ingress of water into a compartment effectively enhances the explosion resistance of the double-layer plates. Full article
Show Figures

Figure 1

Back to TopTop