Planetary Nebula Morphologies Indicate a Jet-Driven Explosion of SN 1987A and Other Core-Collapse Supernovae
Abstract
:1. Introduction
2. The Rim–Nozzle Asymmetry
3. Rim–Nozzle Asymmetry in Planetary Nebulae
4. Other CCSNRs with Rim–Nozzle Asymmetry
4.1. A Multi-Rim CCSNR
4.2. A Point-Symmertric CCSNR
4.3. Crescents (Arcs) That Are the Projection of a Barrel-Shaped Structure
5. Discussion and Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akashi, M.; Bear, E.; Soker, N. Forming H-shaped and barrel-shaped nebulae with interacting jets. Mon. Not. R. Astron. Soc. 2018, 475, 4794. [Google Scholar] [CrossRef]
- Akashi, M.; Soker, N. Shaping “Ears” in Planetary Nebulae by Early Jets. Astrophys. J. 2021, 913, 91. [Google Scholar] [CrossRef]
- Andresen, H.; O’Connor, E.P.; Eggenberger Andersen, O.; Couch, S.M. Grey Two-moment Neutrino Transport: Comprehensive Tests and Improvements for Supernova Simulations. arXiv 2024, arXiv:2402.18303. [Google Scholar]
- Aschenbach, B.; Egger, R.; Trumper, J. Discovery of explosion fragments outside the Vela supernova remnant shock-wave boundary. Nature 1995, 373, 587. [Google Scholar] [CrossRef]
- Balick, B. The evolution of planetary nebulae. I-Structures, ionizations, and morphological sequences. Astron. J. 1987, 94, 671. [Google Scholar] [CrossRef]
- Bear, E.; Grichener, A.; Soker, N. The imprints of the last jets in core collapse supernovae. Mon. Not. R. Astron. Soc. 2017, 472, 1770. [Google Scholar] [CrossRef]
- Birzan, L.; Rafferty, D.A.; McNamara, B.R.; Wise, M.W.; Nulsen, P.E.J. A Systematic Study of Radio-induced X-ray Cavities in Clusters, Groups, and Galaxies. Astrophys. J. 2004, 607, 800–809. [Google Scholar] [CrossRef]
- Boccioli, L.; Roberti, L. The physics of Core-Collapse Supernovae: Explosion mechanism and explosive nucleosynthesis. Universe 2024, 10, 148. [Google Scholar] [CrossRef]
- Boffin, H.M.J.; Miszalski, B.; Rauch, T.; Jones, D.; Corradi, R.L.M.; Napiwotzki, R.; Day-Jones, A.C.; Koppen, J. An Interacting Binary System Powers Precessing Outflows of an Evolved Star. Science 2012, 338, 773. [Google Scholar] [PubMed]
- Burrows, A.; Vartanyan, D. Core-collapse supernova explosion theory. Nature 2021, 589, 29. [Google Scholar] [CrossRef]
- Burrows, A.; Wang, T.; Vartanyan, D.; Coleman, M.S.B. A Theory for Neutron Star and Black Hole Kicks and Induced Spins. Astrophys. J. 2024, 963, 63. [Google Scholar] [CrossRef]
- Chiotellis, A.; Boumis, P.; Spetsieri, Z.T. ‘Ears’ formation in supernova remnants: Overhearing an interaction history with bipolar circumstellar structures. Mon. Not. R. Astron. Soc. 2021, 502, 176. [Google Scholar] [CrossRef]
- Chiotellis, A.; Zapartas, E.; Meyer, D.M.A. On the origin of mixed morphology supernova remnants: Linking their properties to the evolution of a red supergiant progenitor star. arXiv 2024, arXiv:2403.19743. [Google Scholar] [CrossRef]
- Chu, Y.-H.; Jacoby, G.H.; Arendt, R. Multiple-Shell Planetary Nebulae. I. Morphologies and Frequency of Occurrence. Astrophys. J. Suppl. Ser. 1987, 64, 529. [Google Scholar] [CrossRef]
- Corradi, R.L.M.; Schwarz, H.E. Morphological populations of planetary nebulae: Which progenitors? I. Comparative properties of bipolar nebulae. Astron. Astrophys. 1995, 293, 871. [Google Scholar]
- Corradi, R.L.M.; Villaver, E.; Mampaso, A.; Perinotto, M. A new, evolved bipolar planetary nebula. Astron. Astrophys. 1997, 324, 276. [Google Scholar]
- Danehkar, A.; Karovska, M.; Maksym, W.P.; Montez, R. Mapping Excitation in the Inner Regions of the Planetary Nebula NGC 5189 Using HST WFC3 Imaging. Astrophys. J. 2018, 852, 87. [Google Scholar] [CrossRef]
- Dohi, A.; Greco, E.; Nagataki, S.; Ono, M.; Miceli, M.; Orlando, S.; Olmi, B. Investigating the Time Evolution of the Thermal Emission from the Putative Neutron Star in SN 1987A for 50+ Years. Astrophys. J. 2023, 949, 97. [Google Scholar] [CrossRef]
- Fang, X.; Guerrero, M.A.; Miranda, L.F.; Riera, A.; Velazquez, P.F.; Raga, A.C. Hu 1-2: A metal-poor bipolar planetary nebula with fast collimated outflows. Mon. Not. R. Astron. Soc. 2015, 452, 2445. [Google Scholar] [CrossRef]
- Fesen, R.A.; Drechsler, M.; Strottner, X.; Falls, B.; Sainty, Y.; Martino, N.; Galli, R.; Ludgate, M.; Blauensteiner, M.; Reich, W.; et al. Deep Optical Emission-Line Images of Nine Known and Three New Galactic Supernova Remnants. arXiv 2024, arXiv:2403.00317. [Google Scholar] [CrossRef]
- Fesen, R.A.; Weil, K.E.; Cisneros, I.A.; Blair, W.P.; Raymond, J.C. The Cygnus Loop’s distance, properties, and environment driven morphology. Mon. Not. R. Astron. Soc. 2018, 481, 1786. [Google Scholar] [CrossRef]
- Fransson, C.; Barlow, M.J.; Kavanagh, P.J.; Larsson, J.; Jones, O.C.; Sargent, B.; Meixner, M.; Bouchet, P.; Temim, T.; Wright, G.S.; et al. Emission lines due to ionizing radiation from a compact object in the remnant of Supernova 1987A. Science 2024, 383, 898. [Google Scholar] [CrossRef] [PubMed]
- Fryer, C.L.; Burns, E.; Hungerford, A.; Safi-Harb, S.; Wollaeger, R.T.; Miller, R.S.; Negro, M.; Anandagoda, S.; Hartmann, D.H. Multimessenger Diagnostics of the Engine behind Core-collapse Supernovae. Astrophys. J. 2023, 956, 19. [Google Scholar] [CrossRef]
- Fryer, C.L.; Olejak, A.; Belczynski, K. The Effect of Supernova Convection on Neutron Star and Black Hole Masses. Astrophys. J. 2022, 931, 94. [Google Scholar] [CrossRef]
- Gaensler, B.M.; Green, A.J.; Manchester, R.N. G309.2-00.6 and jets in supernova remnants. Mon. Not. R. Astron. Soc. 1998, 299, 812. [Google Scholar] [CrossRef]
- Gilkis, A.; Soker, N. Triggering jet-driven explosions of core-collapse supernovae by accretion from convective regions. Mon. Not. R. Astron. Soc. 2014, 439, 4011. [Google Scholar] [CrossRef]
- Gitti, M.; O’Sullivan, E.; Giacintucci, S.; David, L.P.; Vrtilek, J.; Raychaudhury, S.; Nulsen, P.E.J. Cavities and Shocks in the Galaxy Group HCG 62 as Revealed by Chandra, XMM-Newton, and Giant Metrewave Radio Telescope Data. Astrophys. J. 2010, 714, 758. [Google Scholar] [CrossRef]
- Greco, E.; Miceli, M.; Orlando, S.; Olmi, B.; Bocchino, F.; Nagataki, S.; Ono, M.; Dohi, A.; Peres, G. Indication of a Pulsar Wind Nebula in the Hard X-ray Emission from SN 1987A. Astrophys. J. Lett. 2021, 908, L45. [Google Scholar] [CrossRef]
- Grichener, A.; Soker, N. Core collapse supernova remnants with ears. Mon. Not. R. Astron. Soc. 2017, 468, 1226. [Google Scholar] [CrossRef]
- Guerrero, M.A.; Cazzoli, S.; Rechy-García, J.S.; Ramos-Larios, G.; Montoro-Molina, B.; Gómez-González, V.M.A.; Toalá, J.A.; Fang, X. Tomography of the Unique Ongoing Jet in the Planetary Nebula NGC 2392. Astrophys. J. 2021, 909, 44. [Google Scholar] [CrossRef]
- Hajian, A.R.; Movit, S.M.; Trofimov, D.; Balick, B.; Terzian, Y.; Knuth, K.H.; Granquist-Fraser, D.; Huyser, K.A.; Jalobeanu, A.; McIntosh, D.; et al. An Atlas of [N II] and [O III] Images and Spectra of Planetary Nebulae. Astrophys. J. Suppl. Ser. 2007, 169, 289. [Google Scholar] [CrossRef]
- Janka, H.-T.; Kresse, D. Interplay between Neutrino Kicks and Hydrodynamic Kicks of Neutron Stars and Black Holes. arXiv 2024, arXiv:2401.13817. [Google Scholar]
- Jones, O.C.; Kavanagh, P.J.; Barlow, M.J.; Temim, T.; Fransson, C.; Larsson, J.; Blommaert, J.A.D.L.; Meixner, M.; Lau, R.M.; Sargent, B.; et al. Ejecta, Rings, and Dust in SN 1987A with JWST MIRI/MRS. Astrophys. J. 2023, 958, 95. [Google Scholar] [CrossRef]
- Kwok, S.; Su, K.Y.L. Discovery of Multiple Coaxial Rings in the Quadrupolar Planetary Nebula NGC 6881. Astrophys. J. 2005, 635, L49. [Google Scholar] [CrossRef]
- Larsson, J.; Fransson, C.; Sargent, B.; Jones, O.C.; Barlow, M.J.; Bouchet, P.; Meixner, M.; Blommaert, J.A.D.L.; Coulais, A.; Fox, O.D.; et al. JWST NIRSpec Observations of Supernova 1987A-From the Inner Ejecta to the Reverse Shock. Astrophys. J. 2023, 949, L27. [Google Scholar] [CrossRef]
- Lopez, J.A.; Meaburn, J.; Rodriguez, L.F.; Vazquez, R.; Steffen, W.; Bryce, M. The Formation of a Multiple Planetary Nebula:Hubble Space Telescope/WFPC2 Observations of KJPN 8. Astrophys. J. 2000, 538, 233. [Google Scholar] [CrossRef]
- Manchado, A.; Guerrero, M.A.; Stanghellini, L.; Serra-Ricart, M. The IAC Morphological Catalog of Northern Galactic Planetary Nebulae; Instituto de Astrofisica de Canarias (IAC): La Laguna, Spain, 1996; ISBN 8492180609. [Google Scholar]
- Matsuura, M.; Boyer, M.; Arendt, R.G.; Larsson, J.; Fransson, C.; Rest, A.; Ravi, A.P.; Park, S.; Cigan, P.; Temim, T.; et al. Deep JWST/NIRCam imaging of Supernova 1987A. arXiv 2024, arXiv:2404.10042. [Google Scholar]
- Mayer, M.G.F.; Becker, W.; Predehl, P.; Sasaki, M.A. detailed look at the thermal and nonthermal X-ray emission from the Vela supernova remnant with SRG/eROSITA. Astron. Astrophys. 2023, 676, A68. [Google Scholar] [CrossRef]
- Meaburn, J. The morphology and dynamics of a multi-lobed supernova remnant in the LMC (DEM 34a, N 11L). Mon. Not. R. Astron. Soc. 1987, 229, 457. [Google Scholar] [CrossRef]
- Mezzacappa, A. Toward Realistic Models of Core Collapse Supernovae: A Brief Review. Proc. Int. Astron. Union 2023, 362, 215. [Google Scholar] [CrossRef]
- Moraga Baez, P.; Kastner, J.H.; Balick, B.; Montez, R.; Bublitz, J. Panchromatic HST/WFC3 Imaging Studies of Young, Rapidly Evolving Planetary Nebulae. II. NGC 7027. Astrophys. J. 2023, 942, 15. [Google Scholar] [CrossRef]
- Morris, M. Mechanisms for mass loss from cool stars. Publ. Astron. Soc. Pac. 1987, 99, 1115. [Google Scholar] [CrossRef]
- Muller, B. Supernova Simulations. arXiv 2024, arXiv:2403.18952. [Google Scholar]
- Orlando, S.; Wongwathanarat, A.; Janka, H.-T.; Miceli, M.; Ono, M.; Nagataki, S.; Bocchino, F.; Peres, G. The fully developed remnant of a neutrino-driven supernova. Astron. Astrophys. 2021, 645, A66. [Google Scholar] [CrossRef]
- Palen, S.; Balick, B.; Hajian, A.R.; Terzian, Y.; Bond, H.E.; Panagia, N. Hubble Space Telescope Expansion Parallaxes of the Planetary Nebulae NGC 6578, NGC 6884, NGC 6891, and IC 2448. Astron. J. 2002, 123, 2666. [Google Scholar] [CrossRef]
- Papish, O.; Soker, N. Exploding core collapse supernovae with jittering jets. Mon. Not. R. Astron. Soc. 2011, 416, 1697. [Google Scholar] [CrossRef]
- Parker, Q.A. Planetary nebulae and how to find them: A concise review. Front. Astron. Space Sci. 2022, 9, 895287. [Google Scholar] [CrossRef]
- Parker, Q.A.; Bojicic, I.S.; Frew, D.J. HASH: The Hong Kong/AAO/Strasbourg Hα planetary nebula database. J. Phys. Conf. Ser. 2016, 728, 032008. [Google Scholar] [CrossRef]
- Petruk, O.; Beshley, V.; Orlando, S.; Bocchino, F.; Miceli, M.; Nagataki, S.; Ono, M.; Loru, S.; Pellizzoni, A.; Egron, E. Polarized radio emission unveils the structure of the pre-supernova circumstellar magnetic field and the radio emission in SN1987A. Mon. Not. R. Astron. Soc. 2023, 518, 6377. [Google Scholar] [CrossRef]
- Ramos-Larios, G.; Guerrero, M.A.; Miranda, L.F. Signposts of Multiple Events of Bipolar Ejection in a Planetary Nebula. Astron. J. 2008, 135, 1441. [Google Scholar] [CrossRef]
- Randall, S.W.; Forman, W.R.; Giacintucci, S.; Nulsen, P.E.J.; Sun, M.; Jones, C.; Churazov, E.; David, L.P.; Kraft, R.; Donahue, M.; et al. Shocks and Cavities from Multiple Outbursts in the Galaxy Group NGC 5813: A Window to Active Galactic Nucleus Feedback. Astrophys. J. 2011, 726, 86. [Google Scholar] [CrossRef]
- Ravi, A.P.; Park, S.; Zhekov, S.A.; Orlando, S.; Miceli, M.; Frank, K.A.; Broos, P.S.; Burrows, D.N. Latest Evolution of the X-ray Remnant of SN 1987A: Beyond the Inner Ring. Astrophys. J. 2024, 966, 147. [Google Scholar] [CrossRef]
- Reichert, M.; Obergaulinger, M.; Aloy, M.A.; Gabler, M.; Arcones, A.; Thielemann, F.K. Magnetorotational supernovae: A nucleosynthetic analysis of sophisticated 3D models. Mon. Not. R. Astron. Soc. 2023, 518, 1557. [Google Scholar] [CrossRef]
- Ritter, A.; Parker, Q.A.; Sabin, L.; Le Du, P.; Mulato, L.; Patchick, D. Grantecan spectroscopic observations and confirmations of planetary nebulae candidates in the Northern Galactic Plane. Mon. Not. R. Astron. Soc. 2023, 520, 773. [Google Scholar] [CrossRef]
- Rodriguez, O.; Nakar, E.; Maoz, D. Stripped-envelope supernova light curves argue for central engine activity. arXiv 2024, arXiv:2404.10846. [Google Scholar] [CrossRef] [PubMed]
- Rosu, S.; Larsson, J.; Fransson, C.; Challis, P.; Kangas, T.; Kirshner, R.P.; Lawrence, S.S.; Lundqvist, P.; Matsuura, M.; Sollerman, J.; et al. Hubble Space Telescope Images of SN 1987A: Evolution of the Ejecta and the Equatorial Ring from 2009 to 2022. Astrophys. J. 2024, 966, 238. [Google Scholar] [CrossRef]
- Sahai, R.; Bujarrabal, V.; Castro-Carrizo, A.; Zijlstra, A. The structure and momentum of multiple collimated outflows in the protoplanetary nebula Frosty Leo. Astron. Astrophys. 2000, 360, L9. [Google Scholar]
- Sahai, R.; Morris, M.R.; Villar, G.G. Young Planetary Nebulae: Hubble Space Telescope Imaging and a New Morphological Classification System. Astron. J. 2011, 141, 134. [Google Scholar] [CrossRef]
- Sahai, R.; Trauger, J.T. Low-Excitation Planetary Nebulae: Toward a New Understanding of the Formation and Shaping of Planetary Nebulae. Astron. J. 1998, 116, 1357. [Google Scholar] [CrossRef]
- Sapienza, V.; Miceli, M.; Peres, G.; Bocchino, F.; Orlando, S.; Greco, E.; Combi, J.A.; García, F.; Sasaki, M. X-ray emitting structures in the Vela SNR: Ejecta anisotropies and progenitor stellar wind residuals. Astron. Astrophys. 2021, 649, A56. [Google Scholar] [CrossRef]
- Schwarz, H.E.; Corradi, R.L.M.; Melnick, J.A. Catalogue of narrow band images of planetary nebulae. Astron. Astrophys. Suppl. Ser. 1992, 96, 23. [Google Scholar]
- Shishkin, D.; Soker, N. Supplying angular momentum to the jittering jets explosion mechanism using inner convection layers. Mon. Not. R. Astron. Soc. 2021, 508, L43. [Google Scholar] [CrossRef]
- Soker, N. On the Formation of Ansae in Planetary Nebulae. Astron. J. 1990, 99, 1869. [Google Scholar] [CrossRef]
- Soker, N. Jets launched at magnetar birth cannot be ignored. New Astron. 2016, 47, 88. [Google Scholar] [CrossRef]
- Soker, N. The Role of Jets in Exploding Supernovae and in Shaping their Remnants. Res. Astron. Astrophys. 2022, 22, 122003. [Google Scholar] [CrossRef]
- Soker, N. The Neutron Star to Black Hole Mass Gap in the Frame of the Jittering Jets Explosion Mechanism (JJEM). Res. Astron. Astrophys. 2023, 23, 095020. [Google Scholar] [CrossRef]
- Soker, N. Classifying Core Collapse Supernova Remnants by Their Morphology as Shaped by the Last Exploding Jets. Res. Astron. Astrophys. 2023, 23, 115017. [Google Scholar] [CrossRef]
- Soker, N. Jet—Counter-jet asymmetry in the jittering jets explosion mechanism of supernovae. Open J. Astrophys. 2024, 7, 12. [Google Scholar] [CrossRef]
- Soker, N. Supernovae in 2023 (review): Possible breakthroughs by late observations. arXiv 2024, arXiv:231117732. [Google Scholar] [CrossRef]
- Soker, N. Comparing jet-shaped point symmetry in cluster cooling flows and supernovae. arXiv 2024, arXiv:2403.08544. [Google Scholar]
- Soker, N.; Gilkis, A. Magnetar-powered Superluminous Supernovae Must First Be Exploded by Jets. Astrophys. J. 2017, 851, 95. [Google Scholar] [CrossRef]
- Soker, N.; Kashi, A. Formation of Bipolar Planetary Nebulae by Intermediate-luminosity Optical Transients. Astrophys. J. 2012, 746, 100. [Google Scholar] [CrossRef]
- Tan, S.; Parker, Q.A.; Zijlstra, A.; Ritter, A. Morphologies and Central Stars of Planetary Nebulae in the Galactic bulge from VLT, HST and Pan-STARRS imaging. Mon. Not. R. Astron. Soc. 2023, 519, 1049. [Google Scholar] [CrossRef]
- Timmerman, R.; van Weeren, R.J.; Callingham, J.R.; Cotton, W.D.; Perley, R.; Morabito, L.K.; Gizani, N.A.B.; Bridle, A.H.; O’Dea, C.P.; Baum, S.A.; et al. Origin of the ring structures in Hercules A-Sub-arcsecond 144 MHz to 7 GHz observations. Astron. Astrophys. 2022, 658, A5. [Google Scholar] [CrossRef]
- Utrobin, V.P.; Wongwathanarat, A.; Janka, H.-T.; Muller, E.; Ertl, T.; Menon, A.; Heger, A. Supernova 1987A: 3D Mixing and Light Curves for Explosion Models Based on Binary-merger Progenitors. Astrophys. J. 2021, 914, 4. [Google Scholar] [CrossRef]
- van Baal, B.; Jerkstrand, A.; Wongwathanarat, A.; Janka, T. Diagnostics of 3D explosion asymmetries of stripped-envelope supernovae by nebular line profiles. arXiv 2024, arXiv:2404.01763. [Google Scholar]
- Velazquez, P.F.; Meyer, D.M.A.; Chiotellis, A.; Cruz-Alvarez, A.E.; Schneiter, E.M.; Toledo-Roy, J.C.; Reynoso, E.M.; Esquivel, A. The sculpting of rectangular and jet-like morphologies in supernova remnants by anisotropic equatorially confined progenitor stellar winds. Mon. Not. R. Astron. Soc. 2023, 519, 5358. [Google Scholar] [CrossRef]
- Wongwathanarat, A.; Janka, H.-T.; Muller, E. Three-dimensional neutrino-driven supernovae: Neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products. Astron. Astrophys. 2013, 552, A126. [Google Scholar] [CrossRef]
- Zanardo, G.; Staveley-Smith, L.; Ng, C.-Y.; Gaensler, B.M.; Potter, T.M.; Manchester, R.N.; Tzioumis, A.K. High-resolution Radio Observations of the Remnant of SN 1987A at High Frequencies. Astrophys. J. 2013, 767, 98. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soker, N. Planetary Nebula Morphologies Indicate a Jet-Driven Explosion of SN 1987A and Other Core-Collapse Supernovae. Galaxies 2024, 12, 29. https://doi.org/10.3390/galaxies12030029
Soker N. Planetary Nebula Morphologies Indicate a Jet-Driven Explosion of SN 1987A and Other Core-Collapse Supernovae. Galaxies. 2024; 12(3):29. https://doi.org/10.3390/galaxies12030029
Chicago/Turabian StyleSoker, Noam. 2024. "Planetary Nebula Morphologies Indicate a Jet-Driven Explosion of SN 1987A and Other Core-Collapse Supernovae" Galaxies 12, no. 3: 29. https://doi.org/10.3390/galaxies12030029
APA StyleSoker, N. (2024). Planetary Nebula Morphologies Indicate a Jet-Driven Explosion of SN 1987A and Other Core-Collapse Supernovae. Galaxies, 12(3), 29. https://doi.org/10.3390/galaxies12030029