Co-Extrusive Magma Transport and Volcanic Dome Formation: Implications for Triggering Explosive Volcanic Eruptions
Abstract
:1. Introduction
1.1. Normal Zoning of Mafic and Silicic Magmas in Conduits, and Core-Annular Flow (CAF)
1.2. Dike/Conduit Inlet Condition: Simultaneous Injection of Compositionally Distinct Magmas
2. Materials and Methods
Experiment Simulating Two-Component Flow in a Vertical Conduit or Dike
3. Results
3.1. Co-Extrusion Involving Fluids Having Same Viscosity
3.2. Co-Extrusion Involving Fluids Having Contrasting Viscosity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAF | Core Annular Flow |
Re | Reynolds number: ud/ν (dimensionless) |
d | Inner diameter of co-extrusion tube or magma conduit (m) |
g | Gravitational acceleration (m/s2) |
l | Length of co-extrusion tube or magma conduit (m) |
pmag | Pressure in source magma chamber (kg/m·s2) |
ρdike | Bulk density in conduit column (kg/m3) |
u | Characteristic flow speed in co-extrusion tube or magma conduit (m/s) |
ν | Characteristic kinematic viscosity (m2/s) |
References
- Gibson, I.L.; Walker, G.P.L. Some composite rhyolite/basalt lavas and related composite dykes in eastern Iceland. Proc. Geol. Assoc. 1964, 74, 301–318. [Google Scholar] [CrossRef]
- Walker, G.P.L.; Skelhorn, R.R. Some associations of acid and basic igneous rocks. Earth-Sci. Rev. 1966, 2, 93–109. [Google Scholar] [CrossRef]
- Blake, S.; Campbell, I.H. The dynamics of magma-mixing during flow in volcanic conduits. Contrib. Mineral. Petrol. 1986, 94, 72–81. [Google Scholar] [CrossRef]
- Vogel, T.A.; Eichelberger, J.C.; Younker, L.W.; Schuraytz, B.C.; Horowitz, J.P.; Stockman, H.W.; Westrich, H.R. Petrology and emplacement dynamics of intrusive and extrusive rhyolites of Obsidian Dome, Inyo Craters volcanic chain, eastern California. J. Geophys. Res. 1989, 94, 17937–17956. [Google Scholar] [CrossRef]
- Carrigan, C.R.; Eichelberger, J.C. Zoning of magmas by viscosity in volcanic conduits. Nature 1990, 343, 248–251. [Google Scholar] [CrossRef]
- Carrigan, C.R. Two-component magma transport and the origin of composite intrusions and lava flows. In Magmatic Systems, 1st ed.; Ryan, M.P., Ed.; Academic Press: New York, NY, USA, 1994; pp. 319–354. [Google Scholar] [CrossRef]
- Kavanagh, J.L.; Engwell, S.L.; Martin, S.A. A review of laboratory and numerical modelling in volcanology. Solid Earth 2018, 9, 531–571. [Google Scholar] [CrossRef]
- Poppe, S.; Gilchrist, J.T.; Breard, E.C.P.; Graettinger, A.; Pansino, S. Analog experiments in volcanology: Towards multimethod, upscaled, and integrated models. Bull. Volcanol. 2022, 84, 52. [Google Scholar] [CrossRef]
- Han, C.D. A study of co-extrusion in a circular die. J. Appl. Polym. Sci. 1975, 19, 1875–1883. [Google Scholar] [CrossRef]
- Trial, A.F.; Spera, F.J.; Greer, J.; Yuen, D. Simulations of magma withdrawal from compositionally zoned bodies. J. Geophys. Res. 1992, 97, 6713–6733. [Google Scholar] [CrossRef]
- Pansino, S.; Taisne, B. How magmatic storage regions attract and repel propagating dikes. J. Geophys. Res. 2018, 124, 274–290. [Google Scholar] [CrossRef]
- Urbani, S.; Acocella, V.; Rivalta, E. What drives the lateral versus vertical propagation of dikes? Insights from analogue models. J. Geophys. Res. Solid Earth 2018, 123, 3680–3697. [Google Scholar] [CrossRef]
- Jones, T.J.; Lewellin, E.W.; Mader, H.M. The use of a shear-thinning polymer as a bubbly magma analogue for scaled laboratory experiments. J. Volcanol. Geotherm. Res. 2020, 392, 106768. [Google Scholar] [CrossRef]
- Skelhorn, R.R.; MacDougall, J.D.S.; Longland, P.J.N. The Tertiary igneous geology of the Isle of Mull. In Geologists’ Association Guides; No. 20; Benham and Co., Ltd.: London, UK, 1969; 35p. [Google Scholar]
- Stockman, H.W.; Stockman, C.T.; Carrigan, C.R. Modelling viscous segregation in immiscible fluids using lattice-gas automata. Nature 1990, 348, 523–525. [Google Scholar] [CrossRef]
- Carrigan, C.R.; Schubert, G.; Eichelberger, J.C. Thermal and dynamical regimes of single- and two-phase magmatic flow in dikes. J. Geophys. Res. 1992, 97, 17377–17392. [Google Scholar] [CrossRef]
- Pallister, J.S.; Hoblitt, R.P.; Reyes, A.G. A basalt trigger for the 1991 eruptions of Pinatubo volcano. Nature 1992, 356, 426–428. [Google Scholar] [CrossRef]
- Takeuchi, S.; Nakamura, M. Role of precursory less-viscous mixed magma in the eruption of phenocryst-rich magma: Evidence from the Hokkaido-Komagatake 1929 eruption. Bull. Volcanol. 2001, 63, 365–376. [Google Scholar] [CrossRef]
- Leonard, G.S.; Cole, J.S.; Nairn, I.A.; Self, S. Basalt triggering of the c. AD 1305 Kaharoa rhyolite eruption, Tarawera Volcanic Complex, New Zealand. J. Volcanol. Geotherm. Res. 2002, 115, 461–486. [Google Scholar] [CrossRef]
- Devine, J.D.; Rutherford, M.J.; Norton, G.E.; Young, S.R. Magma storage region processes inferred from geochemistry of Fe-Ti oxides in andesitic magma, Soufriere Hills Volcano, Montserrat, WI. J. Petrol. 2003, 44, 1375–1400. [Google Scholar] [CrossRef]
- Spence, D.A.; Turcotte, D.L. Magma-driven propagation of cracks. J. Geophys. Res. 1985, 90, 575–580. [Google Scholar] [CrossRef]
- Lister, J.R.; Kerr, R.C. Fluid-mechanical models of crack propagation and their application to magma transport in dykes. J. Geophys. Res. 1991, 96, 10049–10077. [Google Scholar] [CrossRef]
- Eichelberger, J.C.; Carrigan, C.R.; Westrich, H.R.; Price, R.H. Nonexplosive silicic volcanism. Nature 1986, 323, 598–602. [Google Scholar] [CrossRef]
- Jaupart, C.; Allegre, C.J. Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet. Sci. Lett. 1991, 102, 413–429. [Google Scholar] [CrossRef]
- Mangan, M.; Mastin, L.; Sisson, T. Gas evolution in eruptive conduits: Combining insights from high temperature and pressure decompression experiments with steady-state flow modeling. J. Volcanol. Geotherm. Res. 2004, 129, 23–36. [Google Scholar] [CrossRef]
- Koyaguchi, T.; Takada, A. An experimental study on the formation of composite intrusions from zoned magma chambers. J. Volcanol. Geotherm. Res. 1994, 59, 261–267. [Google Scholar] [CrossRef]
- Joseph, D.D.; Renardy, Y.; Renardy, M. Instability of the flow of two immiscible liquids with different viscosities in a pipe. J. Fluid Mech. 1984, 141, 309–317. [Google Scholar] [CrossRef]
- Preziosi, L.; Chen, K.; Joseph, D.D. Lubricated pipelining: Stability of core-annular flow. J. Fluid Mech. 1989, 201, 323–356. [Google Scholar] [CrossRef]
- Minagawa, N.; White, J.L. Co-extrusion of unfilled and TiO2-filled Polyethylene: Influence of viscosity and die cross-section on interface shape. Polym. Eng. Sci. 1975, 15, 825–830. [Google Scholar] [CrossRef]
- Gonnermann, H.M.; Manga, M. The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech. 2007, 39, 321–356. [Google Scholar] [CrossRef]
- Papale, P. Strain-induced magma fragmentation in explosive eruptions. Nature 1999, 397, 425–428. [Google Scholar] [CrossRef]
- Sparks, R.S.J. Forecasting volcanic eruptions. Earth Planet. Sci. Lett. 2003, 210, 1–15. [Google Scholar] [CrossRef]
- Wilson, L.; Sparks, R.S.J.; Walker, G.P.L. Explosive volcanic eruptions—IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys. J. Int. 1980, 63, 117–148. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrigan, C.R.; Eichelberger, J.C. Co-Extrusive Magma Transport and Volcanic Dome Formation: Implications for Triggering Explosive Volcanic Eruptions. Geosciences 2025, 15, 185. https://doi.org/10.3390/geosciences15050185
Carrigan CR, Eichelberger JC. Co-Extrusive Magma Transport and Volcanic Dome Formation: Implications for Triggering Explosive Volcanic Eruptions. Geosciences. 2025; 15(5):185. https://doi.org/10.3390/geosciences15050185
Chicago/Turabian StyleCarrigan, Charles R., and John C. Eichelberger. 2025. "Co-Extrusive Magma Transport and Volcanic Dome Formation: Implications for Triggering Explosive Volcanic Eruptions" Geosciences 15, no. 5: 185. https://doi.org/10.3390/geosciences15050185
APA StyleCarrigan, C. R., & Eichelberger, J. C. (2025). Co-Extrusive Magma Transport and Volcanic Dome Formation: Implications for Triggering Explosive Volcanic Eruptions. Geosciences, 15(5), 185. https://doi.org/10.3390/geosciences15050185