Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (359)

Search Parameters:
Keywords = expandable polystyrene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1974 KB  
Article
Structural Performance of Textile-Reinforced Concrete Sandwich Panels Utilizing GFRP Shear Connectors
by Lukas Steffen, Ismael Viejo, Belén Hernández-Gascón, Mario Stelzmann, Klaus Holschemacher and Robert Böhm
Constr. Mater. 2025, 5(4), 92; https://doi.org/10.3390/constrmater5040092 - 18 Dec 2025
Abstract
Textile-reinforced concrete (TRC) sandwich panels with lightweight cores are a promising solution for sustainable and slender building envelopes. However, their structural performance depends strongly on the shear connection between the outer shells. This study investigates the flexural behavior of TRC sandwich panels with [...] Read more.
Textile-reinforced concrete (TRC) sandwich panels with lightweight cores are a promising solution for sustainable and slender building envelopes. However, their structural performance depends strongly on the shear connection between the outer shells. This study investigates the flexural behavior of TRC sandwich panels with glass fiber-reinforced polymer (GFRP) rod connectors under four-point bending. Three full-scale specimens were manufactured with high-performance concrete (HPC) face layers, an expanded polystyrene (EPS) core, and 12 mm GFRP rods as shear connectors. The panels were tested up to failure, with measurements of load–deflection behavior, crack development, and interlayer slip. Additionally, a linear-elastic finite element model was developed to complement the experimental campaign, capturing the global stiffness of the system and providing complementary insight into the internal stress distribution. The experimental results revealed stable load-bearing behavior with ductile post-cracking response. A degree of composite interaction of γ = 0.33 was obtained, indicating partially composite action. Slip measurements confirmed effective shear transfer by the GFRP connectors, while no brittle failure or connector rupture was observed. The numerical analysis confirmed the elastic response observed in the tests and highlighted the key role of the GFRP connectors in coupling the TRC shells, extending the interpretation beyond experimental results. Overall, the study demonstrates the potential of TRC sandwich panels with mechanical connectors as a safe and reliable structural solution. Full article
22 pages, 5815 KB  
Article
Study on Distribution Law of Vertical Earth Pressure on the Top of High-Fill Box Culvert in Gully Terrain Under Expanded Polystyrene Board Unloading
by Conglin Guo, Zhongju Feng, Siqi Wang, Jikun Wang, Wei Wang and Xiqing Wang
Appl. Sci. 2025, 15(24), 13169; https://doi.org/10.3390/app152413169 - 15 Dec 2025
Viewed by 132
Abstract
This study quantifies vertical earth pressure on the roofs of box culverts under high fills in valley terrain using centrifuge model tests with expanded polystyrene (EPS) geofoam for load mitigation. We compare buried-type culverts with valley-terrain high-fill culverts and isolate the effects of [...] Read more.
This study quantifies vertical earth pressure on the roofs of box culverts under high fills in valley terrain using centrifuge model tests with expanded polystyrene (EPS) geofoam for load mitigation. We compare buried-type culverts with valley-terrain high-fill culverts and isolate the effects of the EPS installation height and panel thickness on the roof pressure and the associated concentration factor. The analysis of fill settlement elucidates the terrain-dependent load reduction mechanism and the efficacy of EPS panels. The results show that the roof pressure increases with EPS installation height but decreases and then plateaus once the panel thickness exceeds 75 cm; the load reduction benefit weakens when the installation height exceeds 2 m. Optimal performance is achieved with panels installed at 2 m and with a 75 cm thickness, which lowers applied loads while maintaining structural stability. These findings clarify soil–structure interactions in complex topography and provide practical guidance for deploying EPS in high-fill valley projects. Full article
Show Figures

Figure 1

13 pages, 5292 KB  
Article
Synthesis of Ceramic Foams, Development of Insulating Panels, and Energy Performance Evaluation for Social Housing Using Thermal Simulation
by Nahyr Michelle Tercero-González, Daniel Lardizábal-Gutiérrez, Jorge Escobedo-Bretado, Ivan Vásquez-Duarte, Ricardo Beltran-Chacon and Caleb Carreño-Gallardo
Ceramics 2025, 8(4), 153; https://doi.org/10.3390/ceramics8040153 - 11 Dec 2025
Viewed by 193
Abstract
The growing energy demand in the residential sector, driven by the extensive use of air conditioning systems, poses serious environmental and economic challenges. A sustainable alternative is the use of efficient insulating materials derived from waste resources. This study presents the synthesis of [...] Read more.
The growing energy demand in the residential sector, driven by the extensive use of air conditioning systems, poses serious environmental and economic challenges. A sustainable alternative is the use of efficient insulating materials derived from waste resources. This study presents the synthesis of glass–ceramic foams produced from recycled glass (90 wt%), pumice (5 wt%), and limestone (5 wt%), sintered at 800 °C for 10 min. The resulting foams exhibited a low apparent density of 684 kg/m3 and thermal conductivity of 0.09 W/m·K. These were incorporated into composite insulating panels composed of 70 wt% ceramic pellets and 30 wt% Portland cement, achieving a thermal conductivity of 0.18 W/m·K. The panels were evaluated in a 64.8 m2 social housing model located in Chihuahua, Mexico, using TRNSYS v.17 to simulate annual energy performance. Results showed that applying a 1.5-inch ceramic foam panel reduced the annual energy demand by 16.9% and the total energy cost by 14.7%, while increasing the panel thickness to 2 in improved savings to 18.4%. Compared with expanded polystyrene (EPS), which achieved 24.9% savings, the proposed ceramic panels offer advantages in fire resistance, durability, local availability, and environmental sustainability. This work demonstrates an effective, low-cost, and circular-economy-based solution for improving thermal comfort and energy efficiency in social housing. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

28 pages, 12396 KB  
Article
An Integrated Spatial Assessment of Macro-, Meso-, and Microplastic Pollution Along Cox’s Bazar Beach in Bangladesh
by Kazi Arafat, Helmut Yabar and Takeshi Mizunoya
Recycling 2025, 10(6), 223; https://doi.org/10.3390/recycling10060223 - 10 Dec 2025
Viewed by 822
Abstract
Bangladesh generates approximately 3000 tons of plastic waste daily, and high mismanagement leads to substantial discharge into soils, rivers, and oceans. Limited research exists on plastic pollution along Cox’s Bazar in southeastern Bangladesh, with no studies spanning the entire coast; this study provides [...] Read more.
Bangladesh generates approximately 3000 tons of plastic waste daily, and high mismanagement leads to substantial discharge into soils, rivers, and oceans. Limited research exists on plastic pollution along Cox’s Bazar in southeastern Bangladesh, with no studies spanning the entire coast; this study provides the first comprehensive assessment of the full coastline. This study investigates the abundance, types, and distribution of macro-, meso-, and microplastics in sediments from 23 stations covering Tourism, Active, and Less Active areas. Plastics were classified by size, shape, color, and polymer composition using stereomicroscopy and Fourier Transform Infrared Spectroscopy (FTIR), while spatial patterns of microplastic polymers were analyzed using Inverse Distance Weighted (IDW) interpolation. A total of 11,558 plastic particles were identified, with microplastics dominating (409.04 particles/m2), followed by mesoplastics (60.7 particles/m2) and macroplastics (32.8 particles/m2). Expanded polystyrene (EPS) and fragments were the most prevalent shapes, while transparent-white particles dominated in color. Polystyrene (PS), polypropylene (PP), and polyethylene (PE) comprised over 95% of polymers. IDW mapping highlighted Tourism, urban, and industrial zones as microplastic hotspots, with higher abundances in tourism areas. These findings provide a baseline for monitoring coastal plastic pollution and emphasize improved plastic management and recycling, contributing globally to understanding contamination in rapidly urbanizing, tourism-driven developing regions. Full article
Show Figures

Figure 1

22 pages, 4764 KB  
Article
Study on the Influence Mechanism of Metro-Induced Vibrations on Adjacent Tunnels and Vibration Isolation Measures
by Qige Ye, Bin Zhang, Xingjia Tang, Yixuan Zheng and Jie Yuan
Buildings 2025, 15(24), 4412; https://doi.org/10.3390/buildings15244412 - 6 Dec 2025
Viewed by 178
Abstract
To investigate the effectiveness of vibration mitigation and isolation measures for adjacent tunnels in a metro-induced vibration environment, this study employed a similarity theory-based scaled model test at a ratio of 1:15. The prototype was the Guangzhou 500 kV Suixi-Chuting power transmission tunnel [...] Read more.
To investigate the effectiveness of vibration mitigation and isolation measures for adjacent tunnels in a metro-induced vibration environment, this study employed a similarity theory-based scaled model test at a ratio of 1:15. The prototype was the Guangzhou 500 kV Suixi-Chuting power transmission tunnel project. The experimental methodology was designed to simulate the vibration impact on adjacent tunnels from metro loading and to evaluate the performance of various countermeasures. The vibration response mechanisms induced by different mitigation materials were analyzed. The results demonstrate the theoretical feasibility of the overall design of the scaled model test, which accurately reproduces the vibration influence on adjacent tunnels from metro loads. Both Expanded Polystyrene (EPS) and rubber particles were found to provide measurable vibration reduction. However, the attenuation achieved by EPS was significantly greater than that of rubber particles, indicating the superior performance of EPS as a vibration isolation material. Furthermore, the isolation mechanisms of both materials were discussed based on observations of their behavioral changes during the vibration isolation process. The findings of this study offer valuable insights and a reference for selecting appropriate vibration mitigation materials in practical engineering applications. Full article
Show Figures

Figure 1

13 pages, 3931 KB  
Communication
Promoting Biofilm Formation by Serratia marcescens on Three Types of Artificially Aged Microplastics Under Marine Conditions
by Manildo Marcião de Oliveira, Nikolas Gomes Silveira de Souza, Rachel Ann Hauser-Davis, Renato Matos Lopes, Victor Barbosa Saraiva, Ocimar Ferreira de Andrade, Jader Lugon, Antônio Silva Neto, Carla C. C. R. de Carvalho and Ramiro Neves
Microplastics 2025, 4(4), 95; https://doi.org/10.3390/microplastics4040095 - 1 Dec 2025
Viewed by 270
Abstract
Bacterial biofilms on different types of microplastics in aquatic environments have become an increasing ecological and public health concern. In this context, this study investigated biofilm formation on virgin and aged microplastics under marine conditions. Serratia marcescens biofilm formation was observed on both [...] Read more.
Bacterial biofilms on different types of microplastics in aquatic environments have become an increasing ecological and public health concern. In this context, this study investigated biofilm formation on virgin and aged microplastics under marine conditions. Serratia marcescens biofilm formation was observed on both virgin and aged polyethylene particles after 7 days, with no significant changes by day 14. Concerning polypropylene microplastics, biofilms developed on aged particles but were not detectable on virgin particles, likely due to interference from the polypropylene red color matching S. marcescens cells. In contrast, expanded polystyrene spheres showed an initial biofilm formation that dissipated by day 14, potentially due to toxic residues from photooxidation, including potential styrene monomers and other chemical additives, inhibiting biofilm persistence. These findings indicate differences in biofilm formation across microplastics types, which may influence microplastic buoyancy and ecological impacts. Thus, microplastic color and additives should be considered in future studies on microplastics biofilm formation and biofouling. Full article
Show Figures

Figure A1

19 pages, 6292 KB  
Article
A Novel Biocomposite Made of Citrus Peel Waste and Mushroom Mycelium: Mechanical, Thermal, and Bio-Repellency Studies
by Natalia Fernández, Ana Valentina Basso, Lucas Ernesto Peisino, Sandra López, Alejandro Tapia and Jerónimo Kreiker
Recycling 2025, 10(6), 216; https://doi.org/10.3390/recycling10060216 - 30 Nov 2025
Viewed by 260
Abstract
The growing environmental pollution and the imminent depletion of natural resources highlight the need for alternative building materials derived from renewable sources, including those that promote waste recycling and biodegradability. One promising alternative is biocomposites produced from filamentous fungal mycelium. In Argentina, orange [...] Read more.
The growing environmental pollution and the imminent depletion of natural resources highlight the need for alternative building materials derived from renewable sources, including those that promote waste recycling and biodegradability. One promising alternative is biocomposites produced from filamentous fungal mycelium. In Argentina, orange and lemon peels are among the most abundant organic waste generated by the citrus industry. This study explores the development of a sustainable insulating biocomposite using Pleurotus ostreatus mycelium grown on mixtures of citrus peels, paper, and cardboard. The test specimens were prepared using varying concentrations of these components. The resulting fungal biocomposite exhibited a density approximately ten times higher than expanded polystyrene, with drying shrinkage ranging from 28% to 51%, depending on the formulation. Key properties were evaluated, including compressive strength (σ10 = 7–33 kPa), bulk density (ρ = 152–181 kg/m3), and thermal conductivity (λ = 0.29–0.36 W/mK), indicating advantageous performance for thermal insulation in construction applications. Specimens containing orange peel also demonstrated repellent activity against Triatoma infestans, main vector of transmission of Chagas’ disease, attributed to the residual limonene content retained from the citrus peels. This fungal biocomposite aligns with principles of green chemistry and circular economy, offering a biodegradable, low-impact solution with potential use in construction. The citrus waste proved to be an effective substrate for mycelial growth, producing a material with desirable mechanical and thermal properties, and added resistance to biodeterioration. Full article
Show Figures

Figure 1

21 pages, 2201 KB  
Review
The Future of Sustainable Packaging: Exploring Biodegradable Solutions Through Extrusion, Thermo-Expansion, 3D Printing and Supercritical Fluid from Agro-Industry Waste
by Lacan S. Rabelo, Fabrício C. Tanaka, Sidney S. dos Santos, Fauze A. Aouada and Márcia R. de Moura
Foods 2025, 14(23), 4027; https://doi.org/10.3390/foods14234027 - 24 Nov 2025
Viewed by 657
Abstract
Due to environmental disasters caused by the use of plastic packaging, particularly expanded polystyrene (EPS), there is an urgent need to identify sustainable alternatives. Biodegradable foams derived from renewable polysaccharides have emerged as highly promising candidates to replace EPS, given their comparable cushioning [...] Read more.
Due to environmental disasters caused by the use of plastic packaging, particularly expanded polystyrene (EPS), there is an urgent need to identify sustainable alternatives. Biodegradable foams derived from renewable polysaccharides have emerged as highly promising candidates to replace EPS, given their comparable cushioning and barrier properties. However, despite the rapid growth of research in this area, there has not yet been a comprehensive review addressing biodegradable foams as a specific class of packaging materials, particularly regarding their processing routes, raw materials, and functionalization. This work discusses conventional techniques for producing biodegradable foams, such as thermoforming and extrusion, as well as innovative methods, including supercritical fluids and 3D printing. It also examines key renewable polysaccharides and the incorporation of agro-industrial residues into foam matrices, aiming to improve performance and reduce costs. Furthermore, the article highlights advances in composite and nanocomposite foams, with particular emphasis on active properties such as ethylene absorption and antimicrobial activity capable of extending food shelf life. By directing attention to biodegradable foams as substitutes for expanded polystyrene, this review provides a unique contribution, filling a critical gap in the field and offering a foundation for future studies aimed at developing scalable, low-cost, and eco-friendly alternatives to plastics. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

19 pages, 2467 KB  
Article
A Comparative Evaluation of Bimetallic Alumina-Supported Catalysts: Synthesis, Characterization and Catalytic Performance in Pyrolysis of Expanded Polystyrene Waste
by Arantxa M. Gonzalez-Aguilar, José M. Riesco-Ávila, Merced Martínez-Rosales, María E. Tejeda-del-Cueto, Marco-Osvaldo Vigueras-Zuniga and José Hernández-Hernández
Catalysts 2025, 15(12), 1094; https://doi.org/10.3390/catal15121094 - 21 Nov 2025
Viewed by 659
Abstract
Plastics are essential to technological and industrial development, yet their prevalent single-use life and poor recycling rates are contributing to escalating environmental concerns. Expanded polystyrene (EPS), although valued for being lightweight, durable, and insulating, poses a significant challenge as it is typically disposed [...] Read more.
Plastics are essential to technological and industrial development, yet their prevalent single-use life and poor recycling rates are contributing to escalating environmental concerns. Expanded polystyrene (EPS), although valued for being lightweight, durable, and insulating, poses a significant challenge as it is typically disposed of after a single use. Furthermore, traditional recycling is limited because it requires clean, well-separated waste. Therefore, it remains necessary to develop recycling strategies that maximize the value of plastics. To address this issue, the present work aims to provide a comparative evaluation of the synthesis and characterization of FeMg/Al2O3 and Fe/Al2O3-MgO as catalysts, along with an analysis of their catalytic performance in the pyrolysis of EPS waste at varying temperatures and catalyst loadings. The results showed an advantage in using catalysts in the pyrolysis of EPS waste; however, the FeMg/Al2O3 (15 wt.%) catalyst demonstrated the best efficiency in the pyrolysis of EPS waste at 400 °C, achieving 96% liquid yield and reducing reaction times by up to 45% due to its high metal dispersion and strong metal-support interaction, which promotes faster and more efficient conversion. In contrast, Fe/Al2O3-MgO showed lower catalytic performance, although it can offer lower synthesis costs and good thermal stability, making it more viable on a large scale. These findings represent a significant advance in catalytic EPS recycling, offering promising strategies to promote the circular economy of EPS and extend its useful life. Full article
Show Figures

Graphical abstract

19 pages, 2056 KB  
Article
Evaluating the Performance and Efficiency of Sandwich-Insulated Concrete Block Products in the Saudi Market
by Hani Alanazi, Abdullah Alzlfawi and Mohammed Albuaymi
Buildings 2025, 15(22), 4172; https://doi.org/10.3390/buildings15224172 - 19 Nov 2025
Viewed by 582
Abstract
The sandwich-insulated concrete block is one of the innovative building units developed to enhance thermal insulation in buildings. However, there are still some drawbacks that hinder the optimum utilization of these types of insulating blocks. Therefore, this study aims to conduct a systematic [...] Read more.
The sandwich-insulated concrete block is one of the innovative building units developed to enhance thermal insulation in buildings. However, there are still some drawbacks that hinder the optimum utilization of these types of insulating blocks. Therefore, this study aims to conduct a systematic and comparative assessment of the performance of the sandwich-insulated concrete block available in the local market. To accurately assess the efficiency of the insulated concrete blocks, several samples from various sources available in the local market were collected and examined. Visual inspection, dimensional tolerance, compressive strength, physical properties, thermal performance, and environmental resistance tests have been conducted in accordance with local and international standards. The obtained experimental results revealed that the mixture proportion of the concrete shell plays a crucial role in the properties and performance of the whole insulated concrete block. Blocks with volcanic aggregates exhibited lower compressive strength, ranging between 3.19 and 5.26 MPa, but better thermal conductivity with an average of 0.25 W/m·K. In comparison, normal aggregate blocks showed higher compressive strength up to 8.12 MPa but slightly reduced thermal insulation around 0.44 W/m·K. Water absorption varied widely from 5% to 16%, and chloride contents in volcanic aggregates exceeded the permissible 1% limit. Broken edges and cracks were mainly observed in low-strength blocks, emphasizing the importance of proper curing and material selection. Durability assessments revealed that accelerated weathering experiments demonstrated the susceptibility of expanded and extruded polystyrene to UV-induced degradation. Nevertheless, all tested polystyrene samples showed high resistance to fungal attack, with varying antibacterial activity. Full article
(This article belongs to the Special Issue Advances in Green Building and Environmental Comfort)
Show Figures

Figure 1

25 pages, 4102 KB  
Article
Reusable 3D-Printed Thermoplastic Polyurethane Honeycombs for Mechanical Energy Absorption
by Alin Bustihan, Razvan Hirian and Ioan Botiz
Polymers 2025, 17(22), 3035; https://doi.org/10.3390/polym17223035 - 16 Nov 2025
Viewed by 742
Abstract
In this study, we investigate the mechanical energy absorption performance of reusable 3D-printed honeycomb structures fabricated using fused deposition modeling with three thermoplastic polyurethane variants: TPU 70A, TPU 85A, and TPU 95A. Prior to manufacturing, the mechanical properties of the TPU filaments were [...] Read more.
In this study, we investigate the mechanical energy absorption performance of reusable 3D-printed honeycomb structures fabricated using fused deposition modeling with three thermoplastic polyurethane variants: TPU 70A, TPU 85A, and TPU 95A. Prior to manufacturing, the mechanical properties of the TPU filaments were analyzed as a function of printing temperature to optimize tensile strength and layer adhesion. Four honeycomb configurations, including hexagonal and circular cell geometries, both with and without a 30° twist, were subjected to out-of-plane compression testing to evaluate energy absorption efficiency, specific energy absorption, and crushing load efficiency. The highest energy absorption efficiency, 47%, was achieved by the hexagonal honeycomb structure fabricated from TPU 95A, surpassing the expected values for expanded polystyrene and approaching the performance reported for high-cost advanced lattice structures. Additionally, twisted honeycomb configurations exhibited improved crushing load efficiency values (up to 73.5%), indicating better stress distribution and enhanced reusability. Despite variations in absorbed energy, TPU 95A demonstrated the best balance of elasticity, structural integrity, and reusability across multiple compression cycles. These findings suggest that TPU-based honeycomb structures could provide a viable, cost-effective alternative for energy-absorbing applications in impact protection systems, automotive safety, and sports equipment. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

17 pages, 10429 KB  
Article
Development of a Simulation Computational Model for Hole Detection and Generation of Robot Tool Movement for Fitting Mold Preparation Nozzles
by Martin Pollák and Karol Goryl
Machines 2025, 13(11), 1053; https://doi.org/10.3390/machines13111053 - 14 Nov 2025
Viewed by 460
Abstract
This article focuses on the design, development and optimization of a mechanical system with the aim of increasing the efficiency of the production process. The article describes the issues involved in the production of molds used for EPS (Expanded Polystyrene) and EPP (Expanded [...] Read more.
This article focuses on the design, development and optimization of a mechanical system with the aim of increasing the efficiency of the production process. The article describes the issues involved in the production of molds used for EPS (Expanded Polystyrene) and EPP (Expanded Polypropylene) materials, specifically the assembly of mold nozzles. Currently, the assembly of nozzles is performed manually, and the proposed solution aims to automate this process using software and robotics. The solution involves scanning the mounting holes and then modifying the mold model in Siemens NX, based on which a trajectory is generated in the virtual environment of RoboDK software. Communication between Siemens NX and RoboDK software is implemented via a Python algorithm using NXOpen and RoboDK API (Application Programming Interface) libraries. The proposed tool has flexible settings and is not dependent on a robotic arm or tool. The result is a prototype software tool for offline programming of automated assembly, which is adapted to different hole layouts, allowing its use in small-batch production in the future. The proposed tool has flexible settings and is not dependent on a specific robotic arm or tool. The solution was validated through comprehensive simulation testing in the RoboDK environment, demonstrating significant potential for time reduction and process optimization. Full article
(This article belongs to the Special Issue Advances in Computer-Aided Technology, 3rd Edition)
Show Figures

Figure 1

23 pages, 6706 KB  
Article
Mechanical and Microstructural Evaluation of Compacted Mixtures of Tropical Soils with Expanded Polystyrene (EPS) Waste for Sustainable Construction Applications
by Gian Fonseca dos Santos, Heraldo Nunes Pitanga, Klaus Henrique de Paula Rodrigues, Gustavo Henrique Nalon and Taciano Oliveira da Silva
Buildings 2025, 15(22), 4037; https://doi.org/10.3390/buildings15224037 - 9 Nov 2025
Viewed by 396
Abstract
Expanded polystyrene (EPS), a lightweight thermoplastic polymer widely used in packaging and insulation, has become a growing environmental concern due to its non-biodegradable nature and escalating global consumption. Although EPS waste shows potential in construction applications, previous studies have primarily incorporated it into [...] Read more.
Expanded polystyrene (EPS), a lightweight thermoplastic polymer widely used in packaging and insulation, has become a growing environmental concern due to its non-biodegradable nature and escalating global consumption. Although EPS waste shows potential in construction applications, previous studies have primarily incorporated it into mortars, concrete, or soil–cement mixtures, often relying on the addition of cement to improve its mechanical performance. This approach compromises sustainability and has generally overlooked the role of microstructural interactions in the behavior of soil–EPS waste mixes without cement. This study differs from prior works by exploring the mechanical and microstructural properties of soil–EPS waste mixtures without cementitious binders under different compaction energies. Experimental tests were carried out for the technical characterization of soils, ground EPS waste, and mixtures of soil and different contents of EPS waste (0%, 20%, 30%, and 40% of the total apparent volume of the composite), using different compaction energies (Intermediate and Modified Proctor). The mixtures were subjected to Unconfined Compressive Strength (UCS), California Bearing Ratio (CBR), and direct shear strength tests, in addition to physical and microstructural characterization. The results indicated that both soil type and compaction energy influenced the engineering behavior of the mixtures. The clayey soil exhibited superior mechanical performance, while the sandy soil showed reductions in all mechanical properties. The UCS values of the clayey soil with the addition of EPS did not change significantly (297 kPa to 286 kPa at intermediate energy and 514 kPa to 505 kPa at modified energy), while for the sandy soil, there was a decrease in values (from 167 kPa to 46 kPa at intermediate energy and from 291 kPa to 104 kPa at modified energy). In the CBR tests, only the 20% and 30% addition of EPS to the clayey soil, using the Modified Proctor energy, showed an increase (from 18% to 20% for both percentages). This behavior was primarily attributed to adhesion mechanisms at the soil–EPS waste interface, with friction playing a secondary role, thereby suggesting that clayey soils may offer better mechanical response. The lower dry density of these mixtures compared to compacted natural soils presents a technical benefit for use as backfill in areas with low bearing capacity, where minimizing the load from the fill material is critical. Full article
Show Figures

Figure 1

25 pages, 4403 KB  
Systematic Review
Affordable Housing in Developing Regions: A Systematic Review of Materials, Methods and Critical Success Factors with Case Insights
by Fatimah Z. Muhammed, Kentaro Yamaguchi, Kusumaningdyah Nurul Handayani and Aya Hagishima
Buildings 2025, 15(22), 4015; https://doi.org/10.3390/buildings15224015 - 7 Nov 2025
Cited by 1 | Viewed by 1480
Abstract
Rapid urbanization in developing regions presents a critical challenge to the provision of affordable housing. This systematic review, conducted following the PRISMA 2020 guidelines, analyzed 91 studies (2013–2024) from Scopus and Google Scholar to identify cost-effective materials and innovative techniques suitable for the [...] Read more.
Rapid urbanization in developing regions presents a critical challenge to the provision of affordable housing. This systematic review, conducted following the PRISMA 2020 guidelines, analyzed 91 studies (2013–2024) from Scopus and Google Scholar to identify cost-effective materials and innovative techniques suitable for the developing context. Findings reveal that achieving affordability in developing regions requires a holistic approach that integrates material innovation with human capacity building. The analysis of critical success factors (CSFs) in the Rumah Unggul Sistem Panel Instant (RUSPIN) system from Indonesia and the Recycled Plastic Formwork (RPF) system from South Africa exemplifies this integration. Both systems show high potential for scalability and technological transfer using local materials and labor training. The review also highlights that materials commonly used in developed countries (e.g., autoclaved aerated concrete, expanded polystyrene, and light steel gauge framing) face adoption barriers in developing regions due to challenges related to supply chains, industry capacity, and regulatory frameworks. Conversely, locally available materials (e.g., earth, bamboo, and recycled waste) require ongoing research to enhance their availability and structural performance. Ultimately, achieving affordable housing depends on an integrated approach that combines locally sourced materials, innovative construction techniques, and the strategic application of critical success factors. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

30 pages, 4136 KB  
Article
Performance of EPS-Modified Lightweight Geopolymer and Cement Mortars Under Different Thermal and Cooling Regimes: A Comparative Study
by A. Y. F. Ali, Mohamed K. Ismail, Sabry A. Ahmed, Passant Youssef and M. S. El-Feky
Buildings 2025, 15(21), 3991; https://doi.org/10.3390/buildings15213991 - 5 Nov 2025
Viewed by 416
Abstract
The risk of explosive spalling in high-strength cement-based materials during fire exposure poses a significant threat to structural integrity. To help mitigate this issue, this study explores the use of expanded polystyrene (EPS) beads as both a lightweight filler and a potential spalling-reduction [...] Read more.
The risk of explosive spalling in high-strength cement-based materials during fire exposure poses a significant threat to structural integrity. To help mitigate this issue, this study explores the use of expanded polystyrene (EPS) beads as both a lightweight filler and a potential spalling-reduction agent in lightweight geopolymer and conventional cementitious mortars. Two EPS-containing mortars were developed: a lightweight alkali-activated slag (LWAS) mortar and a conventional lightweight Portland cement (LWPC) mortar, both incorporating EPS beads as a 50% volumetric replacement for sand. Specimens from both mortars were subjected to elevated temperatures of 200 °C, 400 °C, and 600 °C at a heating rate of 10 °C/min to simulate a rapid-fire scenario. Following thermal exposure, two cooling regimes were employed: gradual cooling within the furnace and rapid cooling by water immersion. Mechanical performance was evaluated through compressive, splitting tensile, and impact tests at room and elevated temperatures. Microstructural analysis was also conducted to examine internal changes and heat-induced damage. The results indicated that LWAS showed remarkable resistance to spalling, remaining intact up to 600 °C due to its nanoporous geopolymer structure, which allowed controlled steam release, while LWPC failed explosively at 550 °C despite EPS pores. At 400 °C, EPS beads enhanced thermal insulation in LWAS, lowering internal temperature by over 100 °C, but increased porosity led to faster strength loss. Both mortars gained strength at 200 °C from continued curing, yet LWAS retained strength better at high temperatures than LWPC. Microscopy revealed that EPS created beneficial fine cracks in the slag matrix but harmful voids in cement. Overall, LWAS composites offer excellent spalling resistance for fire-prone environments, though reinforcement is recommended to mitigate strength loss. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop