Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (157)

Search Parameters:
Keywords = exhaust gas recirculation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 482 KiB  
Proceeding Paper
Parameters Characterizing the Performance of Automotive Electronic Control Systems on Petrol Engine Emissions
by Hristo Konakchiev and Evgeni Dimitrov
Eng. Proc. 2025, 100(1), 41; https://doi.org/10.3390/engproc2025100041 - 15 Jul 2025
Viewed by 241
Abstract
It is evident that a novel engineering solution is required in order to elevate a greater number of polluting cars into a higher category. There appears to be a paucity of direct interest in upgrading Euro 1, 2, 3, 4, and 5 vehicles [...] Read more.
It is evident that a novel engineering solution is required in order to elevate a greater number of polluting cars into a higher category. There appears to be a paucity of direct interest in upgrading Euro 1, 2, 3, 4, and 5 vehicles to the highest possible level, primarily through software modifications of the parameters determining the performance of the internal combustion engine (ICE). The potential for advancement in this area is evidenced by the presence of systems that enhance environmental efficiency, even in Euro 2 vehicles. These include exhaust gas recirculation, catalytic converter, lambda sensor, electronic control fuel injection, and ignition timing. It is precisely these vehicles that are subject to optimization, a process which would allow the maximum service life of otherwise more reliable but older vehicles to be exploited. Full article
Show Figures

Figure 1

24 pages, 4757 KiB  
Article
Effect of Port-Injecting Isopropanol on Diesel Engine Performance and Emissions by Changing EGR Ratio and Charge Temperature
by Horng-Wen Wu, Po-Hsien He and Ting-Wei Yeh
Processes 2025, 13(7), 2224; https://doi.org/10.3390/pr13072224 - 11 Jul 2025
Viewed by 276
Abstract
Researchers have tended to blend isopropanol (IPA) with other fuels in diesel engines to reduce emissions and improve performance. However, low-reactivity controlled compression ignition via port injection at a low cetane number results in a well-mixed charge of low-reactivity fuel, air, and recirculated [...] Read more.
Researchers have tended to blend isopropanol (IPA) with other fuels in diesel engines to reduce emissions and improve performance. However, low-reactivity controlled compression ignition via port injection at a low cetane number results in a well-mixed charge of low-reactivity fuel, air, and recirculated exhaust gas (EGR). This study’s novel approach combines critical elements, such as the mass fraction of port-injected IPA, EGR ratio, and charge temperature, to improve combustion characteristics and lessen emissions from a diesel engine. The results demonstrated that the injection of IPA and the installation of EGR at the inlet reduced NOx, smoke, and PM2.5. On the contrary, HC and CO increased with the port-injection of IPA and EGR. Preheating air at the inlet can suppress the emissions of HC and CO. Under 1500 rpm and 60% load, when compared to diesel at the same EGR ratio and charge temperature, the maximum smoke decrease rate (26%) and PM2.5 decrease rate (21%) occur at 35% IPA, 45 °C, and 10% EGR, while the maximum NOx decrease rate (24%) occurs at 35% IPA, 60 °C, and 20% EGR. These findings support the novelty of the research. Conversely, it modestly increased CO and HC emissions. However, port-injecting IPA increased thermal efficiency by up to 24% at 60 °C, 1500 rpm, and 60% load with EGR. Full article
Show Figures

Figure 1

17 pages, 4494 KiB  
Article
Experimental Investigation on the Erosion Resistance Characteristics of Compressor Impeller Coatings to Water Droplet Impact
by Richárd Takács, Ibolya Zsoldos, Norbert Kiss, Izolda Popa-Müller, István Barabás, Balázs Dobos, Miklós Zsolt Tabakov, Csaba Tóth-Nagy and Pavel Novotny
Coatings 2025, 15(7), 767; https://doi.org/10.3390/coatings15070767 - 28 Jun 2025
Viewed by 362
Abstract
This study presents a comparative analysis of the water droplet erosion resistance of three compressor wheels coated with Ni-P and Si-P layers. The tests were conducted using a custom-developed experimental apparatus in accordance with the ASTM G73-10 standard. The degree of erosion was [...] Read more.
This study presents a comparative analysis of the water droplet erosion resistance of three compressor wheels coated with Ni-P and Si-P layers. The tests were conducted using a custom-developed experimental apparatus in accordance with the ASTM G73-10 standard. The degree of erosion was monitored through continuous precision mass measurements, and structural changes on the surfaces of both the base materials and the coatings were examined using a Zeiss Crossbeam 350 scanning electron microscope (SEM). Hardness values were determined using a Vickers KB 30 hardness tester, while the chemical composition was analysed using a WAS Foundry Master optical emission spectrometer. Significant differences in erosion resistance were observed among the various compressor wheels, which can be attributed to differences in coating hardness values, as well as to the detachment of the Ni-P layer from the base material under continuous erosion. In all cases, water droplet erosion led to a reduction in the isentropic efficiency of the compressor—measured using a hot gas turbocharger testbench—with the extent of efficiency loss depending upon the type of coating applied. Although blade protection technologies for turbocharger compressor impellers used in the automotive industry have been the subject of only a limited number of studies, modern technologies, such as the application of certain alternative fuels and exhaust gas recirculation, have increased water droplet formation, thereby accelerating the erosion rate of the impeller. The aim of this study is to evaluate the resistance of three different coating layers to water droplet erosion through standardized tests conducted using a custom-designed experimental apparatus. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

28 pages, 3106 KiB  
Article
Integrated Control Strategies of EGR System and Fuel Injection Pressure to Reduce Emissions and Fuel Consumption in a DI Engine Fueled with Diesel-WCOME Blends and Neat Biodiesel
by Giorgio Zamboni and Massimo Capobianco
Energies 2025, 18(11), 2791; https://doi.org/10.3390/en18112791 - 27 May 2025
Viewed by 388
Abstract
A wide experimental campaign was developed on an automotive turbocharged diesel engine, using two blends between diesel oil and waste cooking oil methyl esters (WCOME) and neat biodiesel. A conventional B7 diesel oil was considered as a reference fuel. The two blends, respectively, [...] Read more.
A wide experimental campaign was developed on an automotive turbocharged diesel engine, using two blends between diesel oil and waste cooking oil methyl esters (WCOME) and neat biodiesel. A conventional B7 diesel oil was considered as a reference fuel. The two blends, respectively, included 40 and 70% of WCOME, on a volumetric basis. The influence of biodiesel was analyzed by testing the engine in two part-load operating conditions, applying proper control strategies to the exhaust gas recirculation (EGR) circuit and rail pressure, to assess the interactions between the engine management and the tested fuels. The variable nozzle turbine (VNT) was controlled to obtain a constant level of intake pressure in the two experimental points. Referring to biodiesel effects at constant operating mode, higher WCOME content generally resulted in better efficiency and soot emission, while NOX emission was negatively affected. EGR activation allowed for limited NO formation but with penalties in soot emission. Furthermore, interactions between the EGR circuit and turbocharger operations and control led to higher fuel consumption and lower efficiency. Finally, the increase in rail pressure corresponded to better soot emission and penalties in NOX emission. Combining all these effects, the selection of EGR rate and rail pressure values higher than the standard levels resulted in better efficiency, NOX, and soot emissions when comparing blends and neat biodiesel to conventional B7, granting advantages not only with regard to greenhouse gas emissions. Combustion parameters were also assessed, showing that combustion stability and combustion noise were not negatively affected by biodiesel use. Combustion duration was reduced when using WCOME and its blend, even if the center of combustion was slightly shifted along the expansion stroke. The main contribution of this investigation to the scientific and technical knowledge on biodiesel application to internal combustion engines is related to the development of tests on diesel–biodiesel blends with high WCOME content or neat WCOME, identifying their effects on NOX emissions, the definition of integrated strategies of HP EGR system, fuel rail pressure, and VNT for the simultaneous reduction in NOX and soot emissions, and the detailed assessment of the influence of biodiesel on a wide range of combustion parameters. Full article
(This article belongs to the Special Issue Performance and Emissions of Advanced Fuels in Combustion Engines)
Show Figures

Figure 1

18 pages, 10182 KiB  
Article
Numerical Simulation Study on Combustion Characteristics of a Low-Speed Marine Engine Using Biodiesel
by Guohe Jiang, Yuhao Yuan, Hao Guo, Gang Wu, Jiachen Chen and Yuanyuan Liu
J. Mar. Sci. Eng. 2025, 13(4), 824; https://doi.org/10.3390/jmse13040824 - 21 Apr 2025
Cited by 2 | Viewed by 568
Abstract
The growth of global trade has fueled a booming shipping industry, but high pollutant emissions from low-speed marine diesel engines have become a global concern. In this study, it is hypothesized that the combustion efficiency of biodiesel B10 in low-speed two-stroke diesel engines [...] Read more.
The growth of global trade has fueled a booming shipping industry, but high pollutant emissions from low-speed marine diesel engines have become a global concern. In this study, it is hypothesized that the combustion efficiency of biodiesel B10 in low-speed two-stroke diesel engines can be improved and pollutant emissions can be reduced by optimizing the exhaust gas recirculation (EGR) rate and injection time. This study systematically analyzed the effects of EGR rate (5%, 10%, and 20%) and injection time (0 °CA to 6 °CA delay) on combustion and emission characteristics using numerical simulation combined with experimental validation. The results showed that the in-cylinder combustion temperature and NOx emission decreased significantly with the increase in EGR rate, but the soot emission increased. Specifically, NOx emissions decreased by 35.13%, 59.95%, and 85.21% at EGR rates of 5%, 10%, and 15%, respectively, while soot emissions increased by 12.25%, 26.75%, and 58.18%, respectively. Delaying the injection time decreases the in-cylinder pressure and temperature peaks, decreasing NOx emissions but increasing soot emissions. Delaying the injection time from 2 °CA to 4 °CA and 6 °CA decreased NOx emission by 16.01% and 25.44%, while increasing soot emission by 4.98% and 11.64%, respectively. By combining numerical simulation and experimental validation, this study provides theoretical support for the combustion optimization of a low-speed two-stroke diesel engine when using biodiesel, and is of great significance for the green development of the shipping industry. Full article
Show Figures

Figure 1

18 pages, 5968 KiB  
Article
Assessment of Charge Dilution Strategies to Reduce Fuel Consumption in Natural Gas-Fuelled Heavy-Duty Spark Ignition Engines
by Davide Di Domenico, Pierpaolo Napolitano, Dario Di Maio and Carlo Beatrice
Energies 2025, 18(8), 2072; https://doi.org/10.3390/en18082072 - 17 Apr 2025
Cited by 1 | Viewed by 377
Abstract
The need to decarbonize the road transport sector is driving the evaluation of alternative solutions. From a long-term perspective, biomethane and e-methane are particularly attractive as green energy carriers and a part of the solutions for the sustainable freight on-road transport, as they [...] Read more.
The need to decarbonize the road transport sector is driving the evaluation of alternative solutions. From a long-term perspective, biomethane and e-methane are particularly attractive as green energy carriers and a part of the solutions for the sustainable freight on-road transport, as they offer significant CO2-equivalent emissions savings in a net Well-to-Wheel assessment. However, to make methane-fuelled spark ignition (SI) heavy-duty (HD) engines competitive in the market, their efficiency must be comparable to the top-performing diesel applications that dominate the sector. To this end, dilution techniques such as exhaust gas recirculation (EGR) or lean air–fuel mixtures represent promising solutions. Within limits specific to the engine’s tolerance to the used strategy, charge dilution can improve thermal efficiency impact on the pumping and wall heat loss, and the heat capacity ratio (γ). However, their potential has never been explored in the case of methane SI HD engines characterized by a semi diesel-like combustion system architecture. This work presents an experimental study to characterize the energy and pollutant emission performance of a state-of-the-art SI HD gas single-cylinder engine (SCE) operating with EGR or with lean conditions. The engine type is representative of most HD powertrains used for long-haul purposes. The designed test plan is representative of the majority of on-road operating conditions providing an overview of the impact of the two dilution methods on the overall engine performance. The results highlight that both techniques are effective for achieving significant fuel savings, with lean combustion being more tolerable and yielding higher efficiency improvements (10% peak vs. 5% with EGR). Full article
(This article belongs to the Special Issue Optimization of Efficient Clean Combustion Technology: 2nd Edition)
Show Figures

Figure 1

41 pages, 20958 KiB  
Article
Numerical Investigation of the Applicability of Low-Pressure Exhaust Gas Recirculation Combined with Variable Compression Ratio in a Marine Two-Stroke Dual-Fuel Engine and Performance Optimization Based on RSM-PSO
by Haosheng Shen and Daoyi Lu
J. Mar. Sci. Eng. 2025, 13(4), 765; https://doi.org/10.3390/jmse13040765 - 11 Apr 2025
Viewed by 540
Abstract
In this paper, a novel technical route, namely combining the low-pressure exhaust gas recirculation (LP-EGR) and variable compression ratio (VCR), is proposed to address the inferior fuel economy for marine dual-fuel engines of low-pressure gas injection in diesel mode. To validate the applicability [...] Read more.
In this paper, a novel technical route, namely combining the low-pressure exhaust gas recirculation (LP-EGR) and variable compression ratio (VCR), is proposed to address the inferior fuel economy for marine dual-fuel engines of low-pressure gas injection in diesel mode. To validate the applicability of the proposed technical route, firstly, a zero-dimensional/one-dimensional (0-D/1-D) engine simulation model with a predictive combustion model DI-Pulse is established using GT-Power. Then, parametric investigations on two LP-EGR schemes, which is implemented with either a back-pressure valve (LP-EGR-BV) or a blower (LP-EGR-BL), are performed to qualitatively identify the combined impacts of exhaust gas recirculation (EGR) and compression ratio (CR) on the combustion process, turbocharging system, and nitrogen oxides (NOx)-brake specific fuel consumption (BSFC) trade-offs. Finally, an optimization strategy is formulated, and an optimization program based on response surface methodology (RSM)–particle swarm optimization (PSO) is designed with the aim of improving fuel economy while meeting Tier III and various constraint conditions. The results of the parametric investigations reveal that the two LP-EGR schemes exhibit opposite impacts on the turbocharging system. Compared with the LP-EGR-BV, the LP-EGR-BL can achieve a higher in-cylinder pressure level. NOx-BSFC trade-offs are observed for both LP-EGR schemes, and the VCR is confirmed to be a viable approach for mitigating the penalty on BSFC caused by EGR. The optimization results reveal that for LP-EGR-BV, compared with the baseline engine, the optimized BSFC decreases by 10.16%, 11.95%, 10.32%, and 9.68% at 25%, 50%, 75%, and 100% maximum continuous rating (MCR), respectively, whereas, for the LP-EGR-BL scheme, the optimized BSFC decreases by 10.11%, 11.93%, 9.93%, and 9.58%, respectively. Furthermore, the corresponding NOx emissions level improves from meeting Tier II regulations (14.4 g/kW·h) to meeting Tier III regulations (3.4 g/kW·h). It is roughly estimated that compared to the original engine, both LP-EGR schemes achieve an approximate reduction of 240 tons in annual fuel consumption and save annual fuel costs by over USD 100,000. Although similar fuel economy is obtained for both LP-EGR schemes, LP-EGR-BV is superior to LP-EGR-BL in terms of structure complexity, initial cost, maintenance cost, installation space requirement, and power consumption. The findings of this study provide meaningful theoretical supports for the implementation of the proposed technical route in real-world engines. Full article
(This article belongs to the Special Issue Advances in Recent Marine Engineering Technology)
Show Figures

Figure 1

29 pages, 22366 KiB  
Article
A CFD Study of Thermodynamics and Efficiency Metrics in a Hydrogen-Fueled Micro Planar Combustor Housing Dual Heat-Recirculating Cylindrical Combustors for MTPV Applications
by Faisal Almutairi
Processes 2025, 13(4), 1142; https://doi.org/10.3390/pr13041142 - 10 Apr 2025
Viewed by 513
Abstract
The micro combustor is the energy source of micro-thermophotovoltaic systems; thus, optimizing its design is one of the key parameters that lead to an increase in output energy. Therefore, to enhance the system’s overall efficiency, this numerical work introduces a new design configuration [...] Read more.
The micro combustor is the energy source of micro-thermophotovoltaic systems; thus, optimizing its design is one of the key parameters that lead to an increase in output energy. Therefore, to enhance the system’s overall efficiency, this numerical work introduces a new design configuration for parallel-flow (PF) and counter-flow (CF) hydrogen-fueled micro cylindrical combustors integrated into a micro planar combustor. To overcome the short residence time in micro combustor applications causing high heat dissipation, the micro cylindrical combustors house heat-recirculating channels to allow more heat to transfer to the external walls. In pursuit of this target, simulations are carried out to analyze the thermodynamic and system efficiency parameters. In addition, different initial operating conditions are varied to optimize the system, including inlet velocity and equivalence ratio. The results reveal that the PF and CF structures result in significantly higher wall temperatures and more uniform wall temperature variations than the conventional design (CD). Despite the high entropy generations, the exhaust gas temperatures of the PF and CF are 591 K and 580 K lower than the CD, respectively, and both the PF and CF result in 14% increases in radiation efficiency. Increasing the inlet velocity improves the key thermal parameters in the new designs; however, the system efficiency experiences a drastic reduction. The power output density highlights the unity equivalence ratio as optimal. The PF and CF designs yield roughly identical findings, but the CF exhibits more uniform wall temperatures in most cases due to the equal thermal energy from opposite sides. Full article
(This article belongs to the Special Issue CFD Applications in Renewable Energy Systems)
Show Figures

Figure 1

33 pages, 14926 KiB  
Article
A Combined 1D/3D Method to Accurately Model Fuel Stratification in an Advanced Combustion Engine
by Adiel Sadloe, Pourya Rahnama, Ricardo Novella and Bart Somers
Fire 2025, 8(3), 117; https://doi.org/10.3390/fire8030117 - 20 Mar 2025
Cited by 1 | Viewed by 691
Abstract
For computational fluid dynamic (CFD) modeling of advanced combustion engines, the cylinder is usually considered a closed system in which the initial conditions are estimated based on the experimental data. Most of these approximations hinder observing the effect of design parameters on engine [...] Read more.
For computational fluid dynamic (CFD) modeling of advanced combustion engines, the cylinder is usually considered a closed system in which the initial conditions are estimated based on the experimental data. Most of these approximations hinder observing the effect of design parameters on engine performance and emissions accurately, and most studies are limited to a few design parameters. An approach is proposed based on the combination of a 1D gas dynamic and a 3D CFD model to simulate the whole engine with as few simplifications as possible. The impact of changing the in-cylinder initial conditions, injection strategy (dual direct injection or multiple pulse injections), and piston bowl geometry on a reactivity controlled compression ignition (RCCI) engine’s performance, emissions, and fuel stratification levels was investigated. It was found that applying the dual direct injection (DDI) strategy to the engine can be promising to reach higher load operations by reducing the pressure rise rate and causing stronger stratification levels. Increasing the number of injection pulses leads to lower Soot/NOx emissions. The best reduction in the pressure rise rate was found by the dual direct strategy (38.36% compared to the base experimental case) and higher exhaust gas recirculation (EGR) levels (41.83% reduction in comparison with the base experimental case). With the help of a novel piston bowl design, HC and CO emissions were reduced significantly. This resulted in a reduction of 54.58% in HC emissions and 80.22% in CO emissions. Full article
Show Figures

Figure 1

27 pages, 14908 KiB  
Article
Influence of Vertical/Spanwise Offsets on Aerodynamic Performance of Double Serpentine Nozzles
by Xuyong Zhang, Yong Shan and Jingzhou Zhang
Aerospace 2025, 12(3), 171; https://doi.org/10.3390/aerospace12030171 - 21 Feb 2025
Viewed by 649
Abstract
Serpentine exhaust systems, known for their infrared and radar stealth capabilities, are becoming standard in flying wing aircraft. However, their design is constrained by the fuselage layout, causing potential offsets between the engine and nozzle exit axes. Developing a universal, high-performance serpentine nozzle [...] Read more.
Serpentine exhaust systems, known for their infrared and radar stealth capabilities, are becoming standard in flying wing aircraft. However, their design is constrained by the fuselage layout, causing potential offsets between the engine and nozzle exit axes. Developing a universal, high-performance serpentine nozzle design that accommodates various vertical and spanwise offsets (ΔZ, ΔY) presents a significant challenge. A series of ‘Preferred Nozzles’ and ‘Modest Nozzles’ were designed and numerically evaluated to assess the impact of these offsets on flow characteristics. Results show that the ‘Modest Nozzle’ exhibits a complex wave system and significant local losses in the constant-area extension section when subjected to ΔZ > 0.10D0 (D0 is the nozzle inlet diameter) or ΔY > 1.0D0, leading to a rapid thrust coefficient decrease. Vertical offsets significantly affect the Preferred Nozzle’s aerodynamic performance. When ΔZ = −0.50D0, a large vertical offset in the first ‘S’ section creates a recirculation zone, causing significant losses and reducing the thrust coefficient to around 0.96. When ΔZ ≥ −0.25D0, gas flow and wall shear stress distributions transition smoothly. When ΔZ ≥ 0.10D0, as the spanwise offset increases, the thrust coefficient experiences only a 0.17% loss and remains above 0.97. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

31 pages, 3689 KiB  
Article
Comparative Evaluation of the Effect of Exhaust Gas Recirculation Usage on the Performance Characteristics and Emissions of a Natural Gas/Diesel Compression-Ignition Engine Operating at Part-Load Conditions
by Nikolaos Rizopoulos and Roussos Papagiannakis
Energies 2025, 18(3), 710; https://doi.org/10.3390/en18030710 - 4 Feb 2025
Cited by 3 | Viewed by 753
Abstract
The use of natural gas as an alternative fuel in dual-fuel compression-ignition engines can lead to a substantial reduction in the majority of pollutant emissions compared to fossil fuels, while the thermal efficiency of the engine can be maintained at adequate levels. Its [...] Read more.
The use of natural gas as an alternative fuel in dual-fuel compression-ignition engines can lead to a substantial reduction in the majority of pollutant emissions compared to fossil fuels, while the thermal efficiency of the engine can be maintained at adequate levels. Its usage has increased widely in recent years, and significant efforts have been made to investigate the inherent physical and chemical processes that take place during this engine’s combustion, as well as the parameters that affect the operation of the engine and use natural gas as energy source. The scope of this study is to investigate the effect of EGR temperature (cold and hot) and rate (10% and 20%) on the performance characteristics and emissions of a dual-fuel compression-ignition engine operating at a specific engine operating point under dual-fuel (diesel–natural gas) conditions. For this reason, a phenomenological two-zone combustion model was developed. The results of the model were validated against the experimental data obtained from a single-cylinder direct-injection, turbocharged compression-ignition dual-fuel research engine operated under part-load conditions (IMEP = 0.52 Mpa and engine speed = 1500 rpm) and at various replacement percentages of diesel using methane (which was treated as a natural gas surrogate). The model results were in good agreement with the experimental results, revealing the ability of the model to be used in the aforementioned EGR analysis. The results of the study revealed that engine operation with 10% cold EGR does not significantly affect the engine performance characteristics, and combined with the addition of 80% gaseous fuel energy, can lead to a substantial reduction in NO and soot emissions, with a moderate increase in CO emissions. On the other hand, a significant finding of the present work is that engine operation with hot EGR under the investigated operating conditions, even though it had a beneficial effect on NO-specific emissions, led to a reduction in engine efficiency and may raise issues regarding the mechanical strength of the engine. Full article
(This article belongs to the Special Issue Internal Combustion Engine Performance 2024)
Show Figures

Figure 1

11 pages, 5171 KiB  
Article
Impact of Multi-Valve Exhaust Gas Recirculation (EGR) System on Nitrogen Oxides Emissions in a Multi-Cylinder Engine
by Konrad Krakowian
Energies 2024, 17(24), 6473; https://doi.org/10.3390/en17246473 - 23 Dec 2024
Viewed by 805
Abstract
Exhaust gas recirculation (EGR) systems, in addition to catalytic reactors, are now widely used in reciprocating internal combustion engines to reduce oxides of nitrogen (NOx) in the exhaust gases. They are characterized by the fact that part of the exhaust gas from the [...] Read more.
Exhaust gas recirculation (EGR) systems, in addition to catalytic reactors, are now widely used in reciprocating internal combustion engines to reduce oxides of nitrogen (NOx) in the exhaust gases. They are characterized by the fact that part of the exhaust gas from the exhaust manifold is recycled and directed to the intake manifold through a special valve. This valve, depending on the current engine load and velocity, doses an appropriate amount of exhaust gas which, with each new charge, is fed to the individual engine cylinders. In addition, the positioning of the valve has a significant effect on the formation of nitrogen oxides in the exhaust gas from individual engine cylinders, which is due to the uneven distribution of exhaust gas into the intake manifold channels. Tests were carried out on a power unit equipped with a symmetrical intake manifold with a centrally located EGR valve. The article presents the results of tests on a system in which each cylinder was supplied with a separate EGR valve. This solution made it possible to charge each cylinder with the same mass of recirculated exhaust gas, which was dependent on engine velocity and load. The exhaust nitrogen oxides emissions were measured for the originally manufactured system and compared with the multi-valve system. The results confirmed the need for individual selection of the dose of recirculated exhaust gas for particular cylinders, as the multi-valve system equalized the levels of nitrogen oxides emissions in the exhaust gases coming from individual cylinders of the internal combustion engine. Full article
(This article belongs to the Special Issue Advanced Combustion Technologies and Emission Control)
Show Figures

Figure 1

15 pages, 2006 KiB  
Article
Sensitivity Analysis Study of Engine Control Parameters on Sustainable Engine Performance
by Bingfeng Huang, Wei Hong, Kun Shao and Heng Wu
Sustainability 2024, 16(24), 11107; https://doi.org/10.3390/su162411107 - 18 Dec 2024
Cited by 3 | Viewed by 1045
Abstract
With the increasing global concern for environmental protection and sustainable resource utilization, sustainable engine performance has become the focus of research. This study conducts a sensitivity analysis of the key parameters affecting the performance of sustainable engines, aiming to provide a scientific basis [...] Read more.
With the increasing global concern for environmental protection and sustainable resource utilization, sustainable engine performance has become the focus of research. This study conducts a sensitivity analysis of the key parameters affecting the performance of sustainable engines, aiming to provide a scientific basis for the optimal design and operation of engines to promote the sustainable development of the transportation industry. The performance of an engine is essentially determined by the combustion process, which in turn depends on the fuel characteristics and the work cycle mode suitability of the technical architecture of the engine itself (oil-engine synergy). Currently, there is a lack of theoretical support and means of reference for the sensitivity analysis of the core parameters of oil–engine synergy. Recognizing the problems of unclear methods of defining sensitivity parameters, unclear influence mechanisms, and imperfect model construction, this paper proposes an evaluation method system composed of oil–engine synergistic sensitivity factor determination and quantitative analysis of contribution. The system contains characteristic data acquisition, model construction and research, and sensitivity analysis and application. In this paper, a hierarchical SVM regression model is constructed, with fuel physicochemical characteristics and engine control parameters as input variables, combustion process parameters as an intermediate layer, and diesel engine performance as output parameters. After substituting the characteristic data into the model, the following results were obtained, R2 > 0.9, MSE < 0.014, MAPE < 3.5%, indicating the model has high accuracy. On this basis, a sensitivity analysis was performed using the Sobol sensitivity analysis algorithm. It was concluded that the load parameters had the highest influence on the ID (ignition delay time), combustion duration (CD), and combustion temperature parameters of the combustion elements, reaching 0.24 and above. The influence weight of the main spray strategy was greater than that of the pre-injection strategy. For the sensitivity analysis of the premix ratio, the injection timing, EGR (exhaust gas recirculation) rate, and load have significant influence weights on the premix ratio, while the influence weights of the other parameters are not more than 0.10. In addition, the combustion temperature among the combustion elements has the highest influence weights on the NOx, PM (particulate matter) concentration, and mass, as well as on the BTE (brake thermal efficiency) and BSFC (brake specific fuel consumption). The ID has the highest influence weight on HC and CO at 0.35. Analysis of the influence weights of the index parameters shows that the influence weights of the fuel physicochemical parameters are much lower than those of the engine control parameters, and the influence weights of the fuel CN (cetane number) are about 5% greater than those of the volatility, which is about 3%. From the analysis of the proportion of index parameters, the engine control parameter influence weights are in the following order: load > EGR > injection timing > injection pressure > pre-injection timing> pre-injection ratio. Full article
(This article belongs to the Special Issue Technology Applications in Sustainable Energy and Power Engineering)
Show Figures

Figure 1

17 pages, 6239 KiB  
Article
Position Servo Control of Electromotive Valve Driven by Centralized Winding LATM Using a Kalman Filter Based Load Observer
by Yi Yang, Xin Cheng and Rougang Zhou
Energies 2024, 17(17), 4515; https://doi.org/10.3390/en17174515 - 9 Sep 2024
Cited by 2 | Viewed by 1126
Abstract
The exhaust gas recirculation (EGR) valve plays an important role in improving engine fuel economy and reducing emissions. In order to improve the positioning accuracy and robustness of the EGR valve under uncertain dynamics and external disturbances, this paper proposes a positioning servo [...] Read more.
The exhaust gas recirculation (EGR) valve plays an important role in improving engine fuel economy and reducing emissions. In order to improve the positioning accuracy and robustness of the EGR valve under uncertain dynamics and external disturbances, this paper proposes a positioning servo system design for an electromotive (EM) EGR valve based on the Kalman filter. Taking a novel valve driven by a central winding limited angle torque motor (LATM) as the object, we have fully considered the influence of the motor rotor position and load current, as well as the magnetic field saturation and cogging effect, improved the existing LTAM model, and derived accurate torque expression. The parameter uncertainty of the above internal model and the external stochastic disturbance were unified as “total disturbance”, and a Kalman filter-based observer was designed for disturbance estimations and real-time feed-forward compensation. Furthermore, using non-contact magnetic angle measurements to obtain accurate valve position information, a position control model with real-time response and high accuracy was established. Numerous simulated and experimental data show that in the presence of ± 25% plant model parameter fluctuations and random shock-type disturbances, the servo system scheme proposed in this paper achieves a maximum position deviation of 0.3 mm, a repeatability of positioning accuracy after disturbances of 0.01 mm, and a disturbance recovery time of not more than 250 ms. In addition, the above performance is insensitive to the duration of the disturbance, which demonstrates the strong robustness, high accuracy, and excellent dynamic response capability of the proposed design. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

28 pages, 14888 KiB  
Article
A Numerical Study on Key Thermal Parameters and NOx Emissions of a Hydrogen-Fueled Double-Channel Outlet Micro Cylindrical Combustor Employing a Heat-Recirculating Configuration for Thermophotovoltaic Applications
by Faisal Almutairi
Processes 2024, 12(9), 1848; https://doi.org/10.3390/pr12091848 - 29 Aug 2024
Cited by 2 | Viewed by 877
Abstract
The current study proposes a novel design configuration of a hydrogen-fueled micro cylindrical combustor. The newly developed design consists of a single-channel inlet and a double-channel outlet with a heat-recirculating structure aimed at enhancing the heat transfer mechanism from the combustion to the [...] Read more.
The current study proposes a novel design configuration of a hydrogen-fueled micro cylindrical combustor. The newly developed design consists of a single-channel inlet and a double-channel outlet with a heat-recirculating structure aimed at enhancing the heat transfer mechanism from the combustion to the walls. Investigations are conducted using three-dimensional numerical simulation means, and emphasis is placed on assessing the effects of the novel design structure on key thermal parameters and nitrogen oxide (NOx) emissions. The numerical modeling approach is first validated against the experimental and numerical data available in the literature. A parametric study is then conducted by means of varying the length and width of the heat-recirculating channel, inlet velocity, and inlet equivalence ratio. The findings revealed that the novel design configuration significantly improves thermal performance and curtails NOx emissions in comparison with those of the conventional structure. For example, the proposed design leads the radiation efficiency to increase by roughly 10%. The increase in the width of the preheating channel yields further optimization by boosting the heat transfer process from the flame to the walls. Elevating the inlet velocity exhibits a pronounced increase in the mean wall temperature and a more uniform distribution of the wall temperature. However, the exhaust gas temperature increases with increasing inlet velocity, leading to a reduction in the exergy and radiation efficiencies. The equivalence ratio of unity optimizes key thermal parameters, as the lean and rich conditions suffer from low hydrogen and oxygen contents, respectively. Full article
(This article belongs to the Special Issue Combustion Process and Emission Control of Alternative Fuels)
Show Figures

Figure 1

Back to TopTop