Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (229)

Search Parameters:
Keywords = exhaust energy recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3212 KiB  
Article
Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice
by Mon-Chien Lee, Ting-Yin Cheng, Ping-Jui Lin, Ting-Chun Lin, Chia-Hsuan Chou, Chao-Yuan Chen and Chi-Chang Huang
Nutrients 2025, 17(15), 2568; https://doi.org/10.3390/nu17152568 (registering DOI) - 7 Aug 2025
Abstract
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate [...] Read more.
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate clearance of fatigue-associated by-products. Objective: This study aimed to determine whether live or heat-inactivated Lacticaseibacillus paracasei NB23 can enhance exercise endurance and attenuate fatigue biomarkers in a murine model. Methods: Forty male Institute of Cancer Research (ICR) mice were randomized into four groups (n = 10 each) receiving daily gavage for six weeks with vehicle, heat-killed NB23 (3 × 1010 cells/mouse/day), low-dose live NB23 (1 × 1010 CFU/mouse/day), or high-dose live NB23 (3 × 1010 CFU/mouse/day). Forelimb grip strength and weight-loaded swim-to-exhaustion tests assessed performance. Blood was collected post-exercise to measure serum lactate, ammonia, blood urea nitrogen (BUN), and creatine kinase (CK). Liver and muscle glycogen content was also quantified, and safety was confirmed by clinical-chemistry panels and histological examination. Results: NB23 treatment produced dose-dependent improvements in grip strength (p < 0.01) and swim endurance (p < 0.001). All NB23 groups exhibited significant reductions in post-exercise lactate (p < 0.0001), ammonia (p < 0.001), BUN (p < 0.001), and CK (p < 0.0001). Hepatic and muscle glycogen stores rose by 41–59% and 65–142%, respectively (p < 0.001). No changes in food or water intake, serum clinical-chemistry parameters, or tissue histology were observed. Conclusions: Our findings suggest that both live and heat-treated L. paracasei NB23 may contribute to improved endurance performance, increased energy reserves, and faster clearance of fatigue-related metabolites in our experimental model. However, these results should be interpreted cautiously given the exploratory nature and limitations of our study. Full article
Show Figures

Figure 1

16 pages, 3079 KiB  
Article
Optimized Solar-Powered Evaporative-Cooled UFAD System for Sustainable Thermal Comfort: A Case Study in Riyadh, KSA
by Mohamad Kanaan, Semaan Amine and Mohamed Hmadi
Thermo 2025, 5(3), 26; https://doi.org/10.3390/thermo5030026 - 30 Jul 2025
Viewed by 333
Abstract
Evaporative cooling (EC) offers an energy-efficient alternative to direct expansion (DX) cooling but suffers from high water consumption. This limitation can be mitigated by pre-cooling incoming fresh air using cooler exhaust air via energy recovery. This study presents and optimizes a solar-driven EC [...] Read more.
Evaporative cooling (EC) offers an energy-efficient alternative to direct expansion (DX) cooling but suffers from high water consumption. This limitation can be mitigated by pre-cooling incoming fresh air using cooler exhaust air via energy recovery. This study presents and optimizes a solar-driven EC system integrated with underfloor air distribution (UFAD) to enhance thermal comfort and minimize water use in a temporary office in Riyadh’s arid climate. A 3D CFD model was developed and validated against published data to simulate indoor airflow, providing data for thermal comfort evaluation using the predicted mean vote model in cases with and without energy recovery. A year-round hourly energy analysis revealed that the solar-driven EC-UFAD system reduces grid power consumption by 93.5% compared to DX-based UFAD under identical conditions. Energy recovery further cuts annual EC water usage by up to 31.3%. Operational costs decreased by 84% without recovery and 87% with recovery versus DX-UFAD. Full article
Show Figures

Figure 1

37 pages, 1099 KiB  
Review
Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition
by Yiqiao Li, Hao Huang, Shengqiang Shen, Yali Guo, Yong Yang and Siyuan Liu
Energies 2025, 18(15), 3951; https://doi.org/10.3390/en18153951 - 24 Jul 2025
Viewed by 323
Abstract
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this [...] Read more.
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this field. This paper reviewed the recent advances, technical challenges, research hotspots, and future development directions of ejector applications in rail transit, aiming to address gaps in existing reviews. (1) In waste heat recovery, exhaust heat is utilized for propulsion in vehicle ejector refrigeration air conditioning systems, resulting in energy consumption being reduced by 12~17%. (2) In vehicle pneumatic pressure reduction systems, the throttle valve is replaced with an ejector, leading to an output power increase of more than 13% and providing support for zero-emission new energy vehicle applications. (3) In hydrogen supply systems, hydrogen recirculation efficiency exceeding 68.5% is achieved in fuel cells using multi-nozzle ejector technology. (4) Ejector-based active flow control enables precise ± 20 N dynamic pantograph lift adjustment at 300 km/h. However, current research still faces challenges including the tendency toward subcritical mode in fixed geometry ejectors under variable operating conditions, scarcity of application data for global warming potential refrigerants, insufficient stability of hydrogen recycling under wide power output ranges, and thermodynamic irreversibility causing turbulence loss. To address these issues, future efforts should focus on developing dynamic intelligent control technology based on machine learning, designing adjustable nozzles and other structural innovations, optimizing multi-system efficiency through hybrid architectures, and investigating global warming potential refrigerants. These strategies will facilitate the evolution of ejector technology toward greater intelligence and efficiency, thereby supporting the green transformation and energy conservation objectives of rail transit. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

23 pages, 3114 KiB  
Article
Heat Transfer Enhancement in Flue-Gas Systems with Radiation-Intensifying Inserts: An Analytical Approach
by Justina Menkeliūnienė, Rolandas Jonynas, Linas Paukštaitis, Algimantas Balčius and Kęstutis Buinevičius
Energies 2025, 18(13), 3383; https://doi.org/10.3390/en18133383 - 27 Jun 2025
Viewed by 363
Abstract
A significant portion of energy losses in industrial systems arises from the inefficient use of high-temperature exhaust gases, emphasizing the need for enhanced heat recovery strategies. This study aims to improve energy efficiency by examining the effects of radiation-intensifying inserts on combined radiative [...] Read more.
A significant portion of energy losses in industrial systems arises from the inefficient use of high-temperature exhaust gases, emphasizing the need for enhanced heat recovery strategies. This study aims to improve energy efficiency by examining the effects of radiation-intensifying inserts on combined radiative and convective heat transfer in flue-gas heated channels. A systematic literature review revealed a research gap in understanding the interaction between these mechanisms in flue-gas heat exchangers. To address this, analytical calculations were conducted for two geometries: a radiation-intensifying plate between parallel plates and the same insert in a circular pipe. The analysis covered a range of gas-flue and wall temperatures (560–1460 K and 303–393 K, respectively), flow velocities, and spectral emissivity values. Key performance metrics included Reynolds and Nusselt numbers to assess flow resistance and heat transfer. Results indicated that flue-gas temperature has the most significant effect on total rate of heat transfer, and the insert significantly enhanced radiative heat transfer by over 60%, increasing flow resistance. A local Nusselt number minimum at a length-to-diameter ratio of approximately 26 suggested transitional flow behavior. These results provide valuable insights for the design of high-temperature heat exchangers, with future work planned to validate the findings experimentally. Full article
Show Figures

Figure 1

18 pages, 8224 KiB  
Article
Cascaded Absorption Heat Pump Integration in Biomass CHP Systems: Multi-Source Waste Heat Recovery for Low-Carbon District Heating
by Pengying Wang and Hangyu Zhou
Sustainability 2025, 17(13), 5870; https://doi.org/10.3390/su17135870 - 26 Jun 2025
Viewed by 276
Abstract
District heating systems in northern China predominantly rely on coal-fired heat sources, necessitating sustainable alternatives to reduce carbon emissions. This study investigates a biomass combined heat and power (CHP) system integrated with cascaded absorption heat pump (AHP) technology to recover waste heat from [...] Read more.
District heating systems in northern China predominantly rely on coal-fired heat sources, necessitating sustainable alternatives to reduce carbon emissions. This study investigates a biomass combined heat and power (CHP) system integrated with cascaded absorption heat pump (AHP) technology to recover waste heat from semi-dry flue gas desulfurization exhaust and turbine condenser cooling water. A multi-source operational framework is developed, coordinating biomass CHP units with coal-fired boilers for peak-load regulation. The proposed system employs a two-stage heat recovery methodology: preliminary sensible heat extraction from non-saturated flue gas (elevating primary heating loop (PHL) return water from 50 °C to 55 °C), followed by serial AHPs utilizing turbine extraction steam to upgrade waste heat from circulating cooling water (further heating PHL water to 85 °C). Parametric analyses demonstrate that the cascaded AHP system reduces turbine steam extraction by 4.4 to 8.8 t/h compared to conventional steam-driven heating, enabling 3235 MWh of annual additional power generation. Environmental benefits include an annual CO2 reduction of 1821 tonnes, calculated using regional grid emission factors. The integration of waste heat recovery and multi-source coordination achieves synergistic improvements in energy efficiency and operational flexibility, advancing low-carbon transitions in district heating systems. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

2 pages, 147 KiB  
Correction
Correction: Amiri et al. Numerical Evaluation of the Transient Performance of Rock-Pile Seasonal Thermal Energy Storage Systems Coupled with Exhaust Heat Recovery. Appl. Sci. 2020, 10, 7771
by Leyla Amiri, Marco Antonio Rodrigues de Brito, Seyed Ali Ghoreishi-Madiseh, Navid Bahrani, Ferri P. Hassani and Agus P. Sasmito
Appl. Sci. 2025, 15(13), 7089; https://doi.org/10.3390/app15137089 - 24 Jun 2025
Viewed by 179
Abstract
The authors state that this paper [...] Full article
40 pages, 57486 KiB  
Review
Review of Automotive Thermoelectric Generator Structure Design and Optimization for Performance Enhancement
by Yue Wang, Ruochen Wang, Ruiqian Chai, Renkai Ding, Qing Ye, Zeyu Sun, Xiangpeng Meng and Dong Sun
Processes 2025, 13(6), 1931; https://doi.org/10.3390/pr13061931 - 18 Jun 2025
Viewed by 687
Abstract
Thermoelectric generator (TEG) has emerged as a critical technology for automotive exhaust energy recovery, yet there is still a lack of reviews analyzing automotive TEG structure design and optimization methods simultaneously. Therefore, this review consolidates structure design and methods for improving thermoelectric conversion [...] Read more.
Thermoelectric generator (TEG) has emerged as a critical technology for automotive exhaust energy recovery, yet there is still a lack of reviews analyzing automotive TEG structure design and optimization methods simultaneously. Therefore, this review consolidates structure design and methods for improving thermoelectric conversion efficiency, focusing on three core components: thermoelectric module (TEM), heat exchanger (HEX), and heat sink (HSK). For TEM, research and development efforts have primarily centered on material innovation and structural optimization, with segmented, non-segmented, and multi-stage configurations emerging as the three primary structural types. HEX development spans external geometries, including plate, polygonal, and annular designs, and internal enhancements such as fin, heat pipe, metal foam, and baffle to augment heat transfer. HSK leverages active, passive, or hybrid cooling systems, with water-cooling designs prevalent in automotive TEG for cold-side thermal management. Optimization methods encompass theoretical analysis, numerical simulation, experimental testing, and hybrid methods, with strategies devised to balance computational efficiency and accuracy based on system complexity and resource availability. This review provides a systematic framework to guide the design and optimization of automotive TEG. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 3631 KiB  
Article
Techno-Economic Analysis of Onsite Sustainable Hydrogen Production via Ammonia Decomposition with Heat Recovery System
by Jian Tiong Lim, Eddie Yin-Kwee Ng and Hong Xun Ong
Sustainability 2025, 17(12), 5399; https://doi.org/10.3390/su17125399 - 11 Jun 2025
Cited by 1 | Viewed by 683
Abstract
Hydrogen offers a promising solution to reduce emissions in the energy sector with the growing need for decarbonisation. Despite its environmental benefits, the use of hydrogen presents significant challenges in storage and transport. Many studies have focused on the different types of hydrogen [...] Read more.
Hydrogen offers a promising solution to reduce emissions in the energy sector with the growing need for decarbonisation. Despite its environmental benefits, the use of hydrogen presents significant challenges in storage and transport. Many studies have focused on the different types of hydrogen production and analysed the pros and cons of each technique for different applications. This study focuses on techno-economic analysis of onsite hydrogen production through ammonia decomposition by utilising the heat from exhaust gas generated by hydrogen-fuelled gas turbines. Aspen Plus simulation software and its economic evaluation system are used. The Siemens Energy SGT-400 gas turbine’s parameters are used as the baseline for the hydrogen gas turbine in this study, together with the economic parameters of the capital expenditure (CAPEX) and operating expenditure (OPEX) are considered. The levelised cost of hydrogen (LCOH) is found to be 5.64 USD/kg of hydrogen, which is 10.6% lower than that of the conventional method, where a furnace is used to increase the temperature of ammonia. A major contribution of the LCOH comes from the ammonia feed cost up to 99%. The price of ammonia is found to be the most sensitive parameter of the contribution to LCOH. The findings of this study show that the use of ammonia decomposition via heat recovery for onsite hydrogen production with ammonic recycling is economically viable and highlight the critical need to further reduce the prices of green ammonia and blue ammonia in the future. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Graphical abstract

22 pages, 5204 KiB  
Article
Ventilation Strategies for Deep Energy Renovations of High-Rise Apartment Buildings: Energy Efficiency and Implementation Challenges
by Anti Hamburg, Ülar Palmiste, Alo Mikola and Targo Kalamees
Energies 2025, 18(11), 2785; https://doi.org/10.3390/en18112785 - 27 May 2025
Viewed by 769
Abstract
Ensuring proper indoor air quality in high-rise apartment buildings is a crucial challenge, particularly when upgrading ventilation systems during deep energy renovation of existing buildings. This study evaluates the condition of existing ventilation systems and assesses the performance, cost, and energy efficiency of [...] Read more.
Ensuring proper indoor air quality in high-rise apartment buildings is a crucial challenge, particularly when upgrading ventilation systems during deep energy renovation of existing buildings. This study evaluates the condition of existing ventilation systems and assesses the performance, cost, and energy efficiency of different mechanical ventilation solutions with heat recovery, including centralized and decentralized balanced ventilation with heat recovery, single-room ventilation units, and mechanical extract ventilation with heat pump heat recovery or without heat recovery. An onsite survey revealed significant deficiencies in existing ventilation systems, such as airtight window installations without dedicated fresh air valves, misaligned and decayed exhaust shafts, and inadequate extract airflow in kitchens and bathrooms. SWOT analyses for each system highlighted their strengths, weaknesses, opportunities, and threats, providing valuable insights for decision-makers. The results indicate that while centralized and decentralized mechanical ventilation with heat recovery enhances energy efficiency and indoor air quality in high-rise multifamily apartment buildings, challenges such as high installation costs, maintenance complexity, and architectural constraints must be addressed. Heat recovery with exhaust air heat pumps is a viable alternative for high-rise apartment buildings when more efficient options are not feasible. Full article
(This article belongs to the Special Issue Recent Challenges in Buildings Ventilation and Indoor Air Quality)
Show Figures

Figure 1

13 pages, 2333 KiB  
Article
Optimization of Hydrogen Internal Combustion Engines Equipped with Turbocompound Technology for Enhanced Performance and Efficiency
by Pier Paolo Brancaleoni, Enrico Corti, Federico Di Prospero, Davide Di Battista, Roberto Cipollone and Vittorio Ravaglioli
Energies 2025, 18(9), 2166; https://doi.org/10.3390/en18092166 - 23 Apr 2025
Viewed by 936
Abstract
Hydrogen Internal Combustion Engines (H2ICEs) offer significant potential in reducing the CO2 emissions of the heavy-duty transport sector in the pursuit of the European Green Deal targets. However, the challenges associated with hydrogen energy density require advanced technologies for fuel [...] Read more.
Hydrogen Internal Combustion Engines (H2ICEs) offer significant potential in reducing the CO2 emissions of the heavy-duty transport sector in the pursuit of the European Green Deal targets. However, the challenges associated with hydrogen energy density require advanced technologies for fuel efficiency enhancement. Hybrid powertrains, equipped with innovative energy recovery systems, allow optimizing the engine working point while recovering otherwise wasted energy. In particular, Turbocompound (TCo) systems allow recovering the energy content in the exhaust gases, improving the overall efficiency of the powertrain. Optimizing both engine operation and TCo recovery presents a significant challenge, as it requires balancing the dynamic interaction between the engine’s combustion process and TCo (which increases backpressure). This paper presents a novel approach aimed at optimizing the performance of a hybrid hydrogen-fueled internal combustion engine by integrating a TCo system. The TCo allows extracting a 9 kW extra power peak with respect to the baseline configuration. The performance assessment of the optimized working point for series hybrid powertrains underscores the capability of the strategy to reduce hydrogen consumption up to 6.8%. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

24 pages, 12702 KiB  
Article
Thermodynamic Evaluation of the Hybrid Combined Cycle Power Plant in the Valley of Mexico
by Ladislao Eduardo Méndez-Cruz, Martín Salazar-Pereyra, Raúl Lugo-Leyte, Mauricio Sales-Cruz, Alejandro Torres-Aldaco and Helen D. Lugo-Méndez
Energies 2025, 18(8), 1901; https://doi.org/10.3390/en18081901 - 9 Apr 2025
Viewed by 520
Abstract
Modern power generation aims to maximize the extraction of thermal energy from fossil fuels to produce electricity. Combined cycle power plants, leaders in efficiency, sometimes require an additional steam generator to compensate for insufficient exhaust gas energy in the heat recovery steam generator [...] Read more.
Modern power generation aims to maximize the extraction of thermal energy from fossil fuels to produce electricity. Combined cycle power plants, leaders in efficiency, sometimes require an additional steam generator to compensate for insufficient exhaust gas energy in the heat recovery steam generator (HRSG), leading to hybrid combined cycles. This study presents a comprehensive thermodynamic analysis of the hybrid combined cycle power plant located in the Valley of Mexico, operating under both full-load and partial-load conditions. The investigation begins with an energy analysis evaluating key performance parameters under real operating conditions, including the power generation, heat flow supply, thermal efficiency, fuel consumption rates, steam flow, and specific fuel consumption. Subsequently, the analysis examines the performance of the steam cycle using the β factor, which quantifies the relationship between heat flows in the steam generator and the HRSG, to maintain a constant steam flow. This evaluation aims to determine the potential utilization of exhaust gas residual energy for partial steam flow generation in the steam turbine. The study concludes with an exergy analysis to quantify the internal irreversibility flows within the system components and determine the overall exergy efficiency of the power plant. The results demonstrate that, under 100% load conditions, the enhanced utilization of exhaust gases from the HRSG leads to fuel savings of 33,903.36 tons annually and increases the exergy efficiency of the hybrid combined cycle power plant to 54.08%. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

20 pages, 4798 KiB  
Article
Solutions for Energy and Raw Material Recovery from Sewage Sludge Within the Concept of Circular Economy
by Elena Pop, Lucian Mihăescu, Carmen Anca Safta, Horațiu Lucian Pop, Gabriel Paul Negreanu and Ionel Pîșă
Sustainability 2025, 17(7), 3181; https://doi.org/10.3390/su17073181 - 3 Apr 2025
Viewed by 777
Abstract
Wastewater treatment plants traditionally dispose of sludge using the method of landfilling and incineration, with both being carbon-intensive and environmentally harmful. Converting sludge into energy or reusable materials avoids landfills or incineration, helping reduce the volume of waste and associated pollution. Sludge treatment [...] Read more.
Wastewater treatment plants traditionally dispose of sludge using the method of landfilling and incineration, with both being carbon-intensive and environmentally harmful. Converting sludge into energy or reusable materials avoids landfills or incineration, helping reduce the volume of waste and associated pollution. Sludge treatment with energy recovery can offset fossil fuel use, further reducing the carbon footprint of sewage treatment processes. This research explores ways to recover energy from sewage sludge, a byproduct of wastewater treatment that is often considered waste. Transforming sludge into valuable resources aligns with the principles of the circular economy, where waste streams are repurposed, minimizing environmental impact and enhancing resource efficiency. In this paper, a method is presented to reduce the volume of wastewater sludge by drying it in a hot flue gas stream at 700 °C. The energy of the exhaust gas is recovered in an organic Rankine cycle system, which powers the wastewater treatment facilities themselves, making them more self-sustaining. Full article
Show Figures

Figure 1

19 pages, 5785 KiB  
Article
Thermoelectric Energy Harvesting with a Stacked Configuration Using Porous Medium for Marine Applications
by Taeho Choi, Junghwan Lee, Junsu Lee and Tae Young Kim
Energies 2025, 18(6), 1551; https://doi.org/10.3390/en18061551 - 20 Mar 2025
Viewed by 504
Abstract
This study proposes a vertically stacked thermoelectric generator (TEG) design to enhance output power per unit volume. While the proposed TEG achieved improved conversion efficiency, the high inertia of the exhaust gas leads to significant flow maldistribution across the channels, causing uneven thermal [...] Read more.
This study proposes a vertically stacked thermoelectric generator (TEG) design to enhance output power per unit volume. While the proposed TEG achieved improved conversion efficiency, the high inertia of the exhaust gas leads to significant flow maldistribution across the channels, causing uneven thermal conditions on the TEM surfaces and reducing overall efficiency. To enhance waste heat recovery by improving flow uniformity in the exhaust gas channels, a perforated plate with porosity ranging from 0.15 to 0.75 was inserted. A multi-physics numerical model was developed to simulate the thermoelectric energy conversion phenomena, enabling for the accurate evaluation of both module- and system-wise performance. The insertion of the perforated plate with 0.45 porosity provided the most uniform flow distribution with only a 5% flow rate difference between the exhaust gas channels. This resulted in a system-level output power of 167.1 W, which is ~7% higher than the case without the perforated plate, along with electrical efficiency of 91.1% and conversion efficiency of 3.41%. Moreover, enhanced flow uniformity led to an improved volumetric power density of 20.8 kW/m3. When accounting for pumping losses, the perforated plate with 0.6 porosity maximized net output power, demonstrating how optimized flow distribution significantly enhances energy harvesting performance. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

29 pages, 689 KiB  
Article
Recovery of Bioactive Compounds from the Biomass of Aromatic Plants After Distillation Using NADES: A Sustainable Alternative Extraction Method
by Eleonora Truzzi, Davide Bertelli, Benedetta Catellani, Danial Darvishi Jazi and Stefania Benvenuti
Molecules 2025, 30(5), 1120; https://doi.org/10.3390/molecules30051120 - 28 Feb 2025
Viewed by 1316
Abstract
The extraction processes for medicinal plants, particularly the distillation of aromatic plants, generate significant quantities of by-products, consisting of fibrous biomass and hydrosols. These by-products pose challenges for disposal and recovery. Consequently, it is imperative to make the entire highly energy-intensive process more [...] Read more.
The extraction processes for medicinal plants, particularly the distillation of aromatic plants, generate significant quantities of by-products, consisting of fibrous biomass and hydrosols. These by-products pose challenges for disposal and recovery. Consequently, it is imperative to make the entire highly energy-intensive process more sustainable by valorizing all derivatives. This study aims to recover polyphenols from the exhausted biomasses of Artemisia dracunculus, Echinacea purpurea, Helichrysum italicum (from the Asteraceae family), and Lavandula angustifolia, Lavandula × intermedia, Melissa officinalis, Salvia officinalis, Salvia sclarea, and Salvia rosmarinus (from the Lamiaceae family) after steam distillation. The residual biomasses were extracted using ethanol (conventional solvent) and different natural deep eutectic solvents (NADES) composed of choline chloride in combination with citric and lactic acids at different molar ratios. The NADES containing choline chloride and lactic acid at the molar ratio 1:1 (CLA11) exhibited the highest recovery of representative phenols of the plants, namely chicoric and rosmarinic acids. The CLA11 solvent demonstrated a stronger extractive capacity compared to ethanol in all the biomasses belonging to the Asteraceae and Lamiaceae families. Specifically, CLA11 extracts showed a higher number of compounds in UHPLC-HRMS and greater concentrations of chicoric and rosmarinic acids determined by HPLC-DAD than ethanol extracts. In conclusion, NADES were demonstrated to be a viable alternative system for the recovery of bioactive compounds that could be used to formulate new products for the food, pharmaceutical, and cosmetic industries. Moreover, the use of NADES can enhance the sustainability of the whole production chain of essential oils being environmentally friendly. Full article
(This article belongs to the Special Issue Chemical Analysis of Functional Foods)
Show Figures

Figure 1

15 pages, 2978 KiB  
Article
Effect of Vacuum Process on Enrichment of Low-Concentration Coal Mine Methane by Adsorption
by Yuanyuan Kang, Yingshu Liu, Wenhai Liu, Ye Li, Ningqi Sun, Quanli Zhang, Ziyi Li and Xiong Yang
Separations 2025, 12(3), 56; https://doi.org/10.3390/separations12030056 - 20 Feb 2025
Cited by 1 | Viewed by 615
Abstract
The massive emission of low-concentration coal mine methane (CMM) has resulted in the ineffective utilization of a large amount of energy methane and caused environmental pollution. The gas mixture used in the study consisted of methane (CH4) 12% and nitrogen (N [...] Read more.
The massive emission of low-concentration coal mine methane (CMM) has resulted in the ineffective utilization of a large amount of energy methane and caused environmental pollution. The gas mixture used in the study consisted of methane (CH4) 12% and nitrogen (N2) 88%. The adsorbent was coconut activated carbon. This paper uses the adsorption method to conduct enrichment research on 12% low-concentration CMM. Firstly, the variation in methane gas concentration under different desorption methods was studied by numerical simulation, and the desorption methods suitable for increasing methane concentration were analyzed. A three-bed VPSA CMM separation experimental device was built, and three enrichment processes of feed gas pressurization, exhaust gas pressurization, and vacuum exhaust (VE) were studied. The results show that using the three-bed vacuum pressure swing adsorption (VPSA) process can effectively enrich low-concentration CMM. Under the adsorption pressure of 110 kPa and the desorption pressure of 10 kPa, 12% of CMM can be enriched to more than 25%, with a recovery rate higher than 80%. The exhaust process can significantly increase the product gas concentration. The product gas concentration increased by 18.2%, with the product rising from 22.5% to 26.6% when the extraction step increased from 0 s to 8 s. This research may provide reliable fundamental data for industrial-scale low-concentration CMM enrichment. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

Back to TopTop