Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = exergoeconomic operation costs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4430 KiB  
Article
Exergetic Analysis and Design of a Mechanical Compression Stage—Application for a Cryogenic Air Separation Plant
by Adalia Andreea Percembli (Chelmuș), Arthur Dupuy, Lavinia Grosu, Daniel Dima and Alexandru Dobrovicescu
Entropy 2025, 27(5), 532; https://doi.org/10.3390/e27050532 - 16 May 2025
Viewed by 341
Abstract
This study focuses on the compression area of a cryogenic air separation unit (ASU). The mechanism of exergy consumption in the compressor was revealed. The influence of the compression ratio and of the isentropic efficiency per stage give arguments for proper choice of [...] Read more.
This study focuses on the compression area of a cryogenic air separation unit (ASU). The mechanism of exergy consumption in the compressor was revealed. The influence of the compression ratio and of the isentropic efficiency per stage give arguments for proper choice of these decisional parameters. For the purchase cost of the compressor, an exergoeconomic correlation based on the exergetic product represented by the compression ratio and the isentropic efficiency as the Second Law coefficient of performance was used instead of the common thermo-economic one based only on the cost of materials. The impact of the suction temperature on the compressor operating performance is shown, making the gap between the compression stage and the associated intercooler. After optimization of the global system, a specific exergy destruction is assigned to each inter-stage compression cooler. To fit this optimum exergy consumption, a design procedure for the inter-stages and final coolers based on the number of heat transfer units (NTU-ε) method and the number of exergy units destroyed (NEUD) is shown. Graphs are provided that make the application of the method straightforward and much easier to use compared to the usual logarithmic mean temperature difference. A 25% increase in the compression ratio per stage leads to a decrease in the exergy efficiency of 3%, while the purchase cost of the compressor rises by 80%. An increase in the isentropic efficiency of the compressor from 0.7 to 0.85 leads to an increase in the exergetic performance coefficient of 21%, while the compressor purchase cost triples. Full article
(This article belongs to the Special Issue Thermodynamic Optimization of Energy Systems)
Show Figures

Figure 1

22 pages, 4999 KiB  
Article
The Exergo-Economic and Environmental Evaluation of a Hybrid Solar–Natural Gas Power System in Kirkuk
by Ali Alfaris, Abdulrazzak Akroot and Emrah Deniz
Appl. Sci. 2024, 14(22), 10113; https://doi.org/10.3390/app142210113 - 5 Nov 2024
Cited by 5 | Viewed by 1384
Abstract
The increasing environmental challenges posed by the widespread use of fossil fuels and the fluctuating nature of renewable energy have driven the need for more efficient and sustainable energy solutions. Current research is actively exploring hybrid energy systems as a means to address [...] Read more.
The increasing environmental challenges posed by the widespread use of fossil fuels and the fluctuating nature of renewable energy have driven the need for more efficient and sustainable energy solutions. Current research is actively exploring hybrid energy systems as a means to address these issues. One such area of focus is the integration of Organic Rankine Cycles (ORCs) with gas and steam turbines, utilizing both natural gas (NG) and solar parabolic trough collectors (PTCs) as energy sources. This study examines the performance of a hybrid system implemented in Kirkuk, Iraq, a region known for its substantial solar radiation. Previous research has shown that hybrid systems can effectively enhance energy conversion efficiency and reduce environmental impacts, but there is still a need to assess the specific benefits of such systems in different geographical and operational contexts. The analysis reveals a thermal efficiency of 59.32% and an exergy efficiency of 57.28%. The exergoeconomic analysis highlights the optimal energy cost at USD 71.93/MWh when the compressor pressure ratio is set to 8 bar. The environmental assessment demonstrates a significant reduction in CO2/emissions, with a carbon footprint of 316.3 kg CO2/MWh at higher compressor pressure ratios. These results suggest that integrating solar energy with natural gas can substantially improve electricity generation while being both cost-effective and environmentally sustainable. Full article
(This article belongs to the Special Issue Novel Research on Heat Transfer and Thermodynamics)
Show Figures

Figure 1

30 pages, 5932 KiB  
Article
Thermodynamic and Exergoeconomic Analysis of a Novel Compressed Carbon Dioxide Phase-Change Energy Storage System
by Shizhen Liu, Ding Wang, Di Zhang and Yonghui Xie
Appl. Sci. 2024, 14(14), 6307; https://doi.org/10.3390/app14146307 - 19 Jul 2024
Cited by 4 | Viewed by 1481
Abstract
As an advanced energy storage technology, the compressed CO2 energy storage system (CCES) has been widely studied for its advantages of high efficiency and low investment cost. However, the current literature has been mainly focused on the TC-CCES and SC-CCES, which operate [...] Read more.
As an advanced energy storage technology, the compressed CO2 energy storage system (CCES) has been widely studied for its advantages of high efficiency and low investment cost. However, the current literature has been mainly focused on the TC-CCES and SC-CCES, which operate in high-pressure conditions, increasing investment costs and bringing operation risks. Meanwhile, some studies based on the phase-change CO2 energy storage system also have had the disadvantages of low efficiency and the extra necessity of heat or cooling sources. To overcome the above problems, this paper proposes an innovative compressed CO2 phase-change energy storage system. During the energy charge process, molten salt and water are used to store heat with a smaller temperature difference in heat exchangers, and high-pressure CO2 is reserved in liquid form. During the energy discharge process, throttle expansion is applied to realize the evaporation at room temperature, and CO2 absorbs the reserved heat to improve the power capacity in the turbine and the system energy storage efficiency. The thermodynamic and exergoeconomic studies are performed firstly by using MATLAB. Then, the parametric study based on energy storage efficiency, system unit product cost, and exergy destruction is analyzed. The results show that energy storage efficiency can be improved by lifting liquid CO2 pressure as well as compressor and turbine isentropic efficiencies, and CO2 evaporation pressure has the optimal pressure point. The system unit product cost can be reduced by decreasing liquid CO2 pressure and compressor isentropic efficiency, while CO2 evaporation pressure and turbine isentropic efficiency both have optimal points. Finally, the optimization of two performances is performed by NSGA-II, and they can reach 75.30% and 41.17 $/GJ, respectively. Moreover, the optimal energy storage efficiency is obviously higher than that of other energy storage technologies, indicating the great advantage of the proposed system. This study provides an innovative research method for a new type of large-scale energy storage system. Full article
Show Figures

Figure 1

29 pages, 4721 KiB  
Article
Exergoeconomic Analysis and Optimization of a Biomass Integrated Gasification Combined Cycle Based on Externally Fired Gas Turbine, Steam Rankine Cycle, Organic Rankine Cycle, and Absorption Refrigeration Cycle
by Jie Ren, Chen Xu, Zuoqin Qian, Weilong Huang and Baolin Wang
Entropy 2024, 26(6), 511; https://doi.org/10.3390/e26060511 - 12 Jun 2024
Cited by 2 | Viewed by 1951
Abstract
Adopting biomass energy as an alternative to fossil fuels for electricity production presents a viable strategy to address the prevailing energy deficits and environmental concerns, although it faces challenges related to suboptimal energy efficiency levels. This study introduces a novel combined cooling and [...] Read more.
Adopting biomass energy as an alternative to fossil fuels for electricity production presents a viable strategy to address the prevailing energy deficits and environmental concerns, although it faces challenges related to suboptimal energy efficiency levels. This study introduces a novel combined cooling and power (CCP) system, incorporating an externally fired gas turbine (EFGT), steam Rankine cycle (SRC), absorption refrigeration cycle (ARC), and organic Rankine cycle (ORC), aimed at boosting the efficiency of biomass integrated gasification combined cycle systems. Through the development of mathematical models, this research evaluates the system’s performance from both thermodynamic and exergoeconomic perspectives. Results show that the system could achieve the thermal efficiency, exergy efficiency, and levelized cost of exergy (LCOE) of 70.67%, 39.13%, and 11.67 USD/GJ, respectively. The analysis identifies the combustion chamber of the EFGT as the component with the highest rate of exergy destruction. Further analysis on parameters indicates that improvements in thermodynamic performance are achievable with increased air compressor pressure ratio and gas turbine inlet temperature, or reduced pinch point temperature difference, while the LCOE can be minimized through adjustments in these parameters. Optimized operation conditions demonstrate a potential 5.7% reduction in LCOE at the expense of a 2.5% decrease in exergy efficiency when compared to the baseline scenario. Full article
(This article belongs to the Special Issue Thermodynamic Optimization of Industrial Energy Systems)
Show Figures

Figure 1

18 pages, 3136 KiB  
Article
Qualtra Geothermal Power Plant: Life Cycle, Exergo-Economic, and Exergo-Environmental Preliminary Assessment
by Claudio Zuffi, Pietro Ungar, Daniele Fiaschi, Giampaolo Manfrida and Fausto Batini
Sustainability 2024, 16(11), 4622; https://doi.org/10.3390/su16114622 - 29 May 2024
Cited by 2 | Viewed by 1334
Abstract
Qualtra, an innovative 10 MW geothermal power plant proposal, employs a closed-loop design to mitigate emissions, ensuring no direct release into the atmosphere. A thorough assessment utilizing energy and exergy analysis, life cycle assessment (LCA), exergo-economic analysis, and exergo environmental analysis (EevA) was [...] Read more.
Qualtra, an innovative 10 MW geothermal power plant proposal, employs a closed-loop design to mitigate emissions, ensuring no direct release into the atmosphere. A thorough assessment utilizing energy and exergy analysis, life cycle assessment (LCA), exergo-economic analysis, and exergo environmental analysis (EevA) was conducted. The LCA results, utilizing the ReCiPe 2016 midpoint methodology, encompass all the spectrum of environmental indicators provided. The technology implemented makes it possible to avoid direct atmospheric emissions from the Qualtra plant, so the environmental impact is mainly due to indirect emissions over the life cycle. The result obtained for the global warming potential indicator is about 6.6 g CO2 eq/kWh, notably lower compared to other conventional systems. Contribution analysis reveals that the construction phase dominates, accounting for over 90% of the impact for almost all LCA midpoint categories, excluding stratospheric ozone depletion, which is dominated by the impact from the operation and maintenance phase, at about 87%. Endpoint indicators were assessed to estimate the single score value using normalization and weighting at the component level. The resulting single score is then used in an Exergo-Environmental Analysis (EEvA), highlighting the well system as the most impactful contributor, constituting approximately 45% of the total impact. Other substantial contributions to the environmental impact include the condenser (21%), the turbine (17%), and the HEGeo (14%). The exergo-economic analysis assesses cost distribution across major plant components, projecting an electricity cost of about 9.4 c€/kWh. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

35 pages, 4293 KiB  
Article
Investigation of a Biomass-Driven Cogeneration System Integrated with an Externally Fired Gas Turbine, Organic Rankine Cycle, and Absorption Refrigeration Cycle: Thermodynamic and Exergoeconomic Analyses and Optimization
by Jie Ren, Zuoqin Qian, Xinyu Wang, Weilong Huang and Baolin Wang
Sustainability 2024, 16(11), 4495; https://doi.org/10.3390/su16114495 - 25 May 2024
Cited by 3 | Viewed by 1939
Abstract
The utilization of biomass for multi-generation systems is garnering significant interest due to its potential in conserving primary energy and mitigating greenhouse gas emissions. However, enhancing its energy efficiency remains a critical challenge. This study introduces an innovative cogeneration system that combines biomass [...] Read more.
The utilization of biomass for multi-generation systems is garnering significant interest due to its potential in conserving primary energy and mitigating greenhouse gas emissions. However, enhancing its energy efficiency remains a critical challenge. This study introduces an innovative cogeneration system that combines biomass gasification with an externally fired gas turbine, organic Rankine cycle, and absorption refrigeration cycle. It undergoes thorough thermodynamic and exergoeconomic evaluations, with a dual-objective optimization conducted to identify the optimal operational conditions that achieve the highest exergy efficiency while minimizing product cost. The findings reveal that, in the base case, the thermal efficiency, exergy efficiency, and sum unit cost of the product (SUCP) of the system are 66.36%, 32.04%, and 8.71 USD/GJ, respectively. A parametric study illustrates that elevating the air compressor pressure ratio or the temperature difference at the cold end enhances thermal efficiency but reduces exergy efficiency. Additionally, the lowest unit cost of the product is attainable by optimizing the gas turbine inlet temperature. The performance of the system shows negligible sensitivity to the turbine inlet pressure of a bottoming organic Rankine cycle. Finally, optimization demonstrates a 9.7% increase in exergy efficiency and a 1.8% rise in the SUCP compared to the baseline scenario. The study suggests integrating with other energy sources for diversified product outputs and conducting environmental analyses in future research. Full article
(This article belongs to the Special Issue Biomass Energy Usage for Sustainable Development)
Show Figures

Figure 1

30 pages, 2395 KiB  
Article
Exergoeconomic Evaluation of a Cogeneration System Driven by a Natural Gas and Biomass Co-Firing Gas Turbine Combined with a Steam Rankine Cycle, Organic Rankine Cycle, and Absorption Chiller
by Ji Liu, Jie Ren, Yujia Zhang, Weilong Huang, Chen Xu and Lu Liu
Processes 2024, 12(1), 82; https://doi.org/10.3390/pr12010082 - 28 Dec 2023
Cited by 4 | Viewed by 2130
Abstract
Considering energy conversion efficiency, pollution emissions, and economic benefits, combining biomass with fossil fuels in power generation facilities is a viable approach to address prevailing energy deficits and environmental challenges. This research aimed to investigate the thermodynamic and exergoeconomic performance of a novel [...] Read more.
Considering energy conversion efficiency, pollution emissions, and economic benefits, combining biomass with fossil fuels in power generation facilities is a viable approach to address prevailing energy deficits and environmental challenges. This research aimed to investigate the thermodynamic and exergoeconomic performance of a novel power and cooling cogeneration system based on a natural gas–biomass dual fuel gas turbine (DFGT). In this system, a steam Rankine cycle (SRC), a single-effect absorption chiller (SEAC), and an organic Rankine cycle (ORC) are employed as bottoming cycles for the waste heat cascade utilization of the DFGT. The effects of main operating parameters on the performance criteria are examined, and multi-objective optimization is accomplished with a genetic algorithm using exergy efficiency and the sum unit cost of the product (SUCP) as the objective functions. The results demonstrate the higher energy utilization efficiency of the proposed system with the thermal and exergy efficiencies of 75.69% and 41.76%, respectively, while the SUCP is 13.37 $/GJ. The exergy analysis reveals that the combustion chamber takes the largest proportion of the exergy destruction rate. The parametric analysis shows that the thermal and exergy efficiencies, as well as the SUCP, rise with the increase in the gas turbine inlet temperature or with the decrease in the preheated air temperature. Higher exergy efficiency and lower SUCP could be obtained by increasing the SRC turbine inlet pressure or decreasing the SRC condensation temperature. Finally, optimization results indicate that the system with an optimum solution yields 0.3% higher exergy efficiency and 2.8% lower SUCP compared with the base case. Full article
(This article belongs to the Special Issue Energy Process Systems Simulation, Modeling, Optimization and Design)
Show Figures

Figure 1

40 pages, 8310 KiB  
Article
Proposal and Comprehensive Analysis of a Novel Combined Plant with Gas Turbine and Organic Flash Cycles: An Application of Multi-Objective Optimization
by Ramin Ghiami Sardroud, Amirreza Javaherian, Seyed Mohammad Seyed Mahmoudi, Mehri Akbari Kordlar and Marc A. Rosen
Sustainability 2023, 15(19), 14152; https://doi.org/10.3390/su151914152 - 25 Sep 2023
Cited by 2 | Viewed by 1657
Abstract
Environmental, exergo-economic, and thermodynamic viewpoints are thoroughly investigated for a state-of-the-art hybrid gas turbine system and organic flash cycle. For the proposed system, the organic flash cycle utilizes the waste thermal energy of the gases exiting the gas turbine sub-system to generate additional [...] Read more.
Environmental, exergo-economic, and thermodynamic viewpoints are thoroughly investigated for a state-of-the-art hybrid gas turbine system and organic flash cycle. For the proposed system, the organic flash cycle utilizes the waste thermal energy of the gases exiting the gas turbine sub-system to generate additional electrical power. Six distinct working fluids are considered for the organic flash cycle: R245fa, n-nonane, n-octane, n-heptane, n-hexane, and n-pentane. A parametric investigation is applied on the proposed combined system to evaluate the impacts of seven decision parameters on the following key operational variables: levelized total emission, total cost rate, and exergy efficiency. Also, a multi-objective optimization is performed on the proposed system, taking into account the mentioned three performance parameters to determine optimum operational conditions. The results of the multi-objective optimization of the system indicate that the levelized total emission, total cost rate, and exergy efficiency are 74,569 kg/kW, 6873 $/h, and 55%, respectively. These results also indicate the improvements of 16.45%, 6.59%, and 3% from the environmental, economic, and exergy viewpoints, respectively. The findings reveal that utilizing n-nonane as the working fluid in the organic flash cycle can yield the lowest levelized total emission, the lowest total cost rate, and the highest exergy efficiency. Full article
(This article belongs to the Special Issue Energy Sources, Carbon Emissions and Economic Growth)
Show Figures

Figure 1

17 pages, 2485 KiB  
Article
Exergo–Economic and Parametric Analysis of Waste Heat Recovery from Taji Gas Turbines Power Plant Using Rankine Cycle and Organic Rankine Cycle
by Alaa Fadhil Kareem, Abdulrazzak Akroot, Hasanain A. Abdul Wahhab, Wadah Talal, Rabeea M. Ghazal and Ali Alfaris
Sustainability 2023, 15(12), 9376; https://doi.org/10.3390/su15129376 - 9 Jun 2023
Cited by 20 | Viewed by 3839
Abstract
This study focused on exergo–conomic and parametric analysis for Taji station in Baghdad. This station was chosen to reduce the emission of waste gases that pollute the environment, as it is located in a residential area, and to increase the production of electric [...] Read more.
This study focused on exergo–conomic and parametric analysis for Taji station in Baghdad. This station was chosen to reduce the emission of waste gases that pollute the environment, as it is located in a residential area, and to increase the production of electric power, since for a long time, Iraq has been a country that has suffered from a shortage of electricity. The main objective of this work is to integrate the Taji gas turbine’s power plant, which is in Baghdad, with the Rankine cycle and organic Rankine cycle to verify waste heat recovery to produce extra electricity and reduce emissions into the environment. Thermodynamic and exergoeconomic assessment of the combined Brayton cycle–Rankine cycle/Organic Rankin cycle (GSO CC) system, considering the three objective functions of the First- and Second-Law efficiencies and the total cost rates of the system, were applied. According to the findings, 258.2 MW of power is produced from the GSO CC system, whereas 167.3 MW of power is created for the Brayton cycle (BC) under the optimum operating conditions. It was demonstrated that the overall energy and exergy efficiencies, respectively, are 44.37% and 42.84% for the GSO CC system, while they are 28.74% and 27.75%, respectively, for the Brayton cycle. The findings indicate that the combustion chamber has the highest exergy degradation rate. The exergo–economic factor for the entire cycle is 37%, demonstrating that the cost of exergy destruction exceeds the cost of capital investment. Moreover, the cost of the energy produced by the GSO CC system is USD 9.03/MWh, whereas it is USD 8.24/MWh for BC. The results also indicate that the network of the GSO CC system decreases as the pressure ratio increases. Nonetheless, the GSO CC system’s efficiencies and costs increase with a rise in the pressure ratio until they reach a maximum and then decrease with further pressure ratio increases. The increase in the gas turbine inlet temperature and isentropic efficiency of the air compressor and gas turbine enhances the thermodynamic performance of the system; however, a further increase in these parameters increases the overall cost rates. Full article
(This article belongs to the Special Issue Advanced Technologies Applied to Renewable Energy)
Show Figures

Figure 1

24 pages, 4814 KiB  
Article
Advanced Exergoeconomic Assessment of CO2 Emissions, Geo-Fluid and Electricity in Dual Loop Geothermal Power Plant
by Onur Vahip Güler, Emine Yağız Gürbüz, Aleksandar G. Georgiev and Ali Keçebaş
Energies 2023, 16(8), 3466; https://doi.org/10.3390/en16083466 - 15 Apr 2023
Cited by 3 | Viewed by 1760
Abstract
Binary geothermal power plants (GPPs) are mostly encountered in geothermal fields with medium and low temperatures. The design and operation of dual binary GPPs can be difficult due to the geothermal fluid properties. This affects their performance and feasibility. Thermoeconomics are essential elements [...] Read more.
Binary geothermal power plants (GPPs) are mostly encountered in geothermal fields with medium and low temperatures. The design and operation of dual binary GPPs can be difficult due to the geothermal fluid properties. This affects their performance and feasibility. Thermoeconomics are essential elements for the design and operation of the GPPs. In this study, advanced exergoeconomic analysis is applied to a true dual binary GPP (as a case study) to further evaluate it from performance and economic perspectives. In analysis, the specific exergy cost (SPECO) method is used. Then, some specific indicators are presented to evaluate the performance and economics of the GPP. Thus, technical and economic solutions have been developed in the design and operation stages through the analysis. The results of the study indicated that the total operating cost of 1218 USD/h could be reduced to 186 USD/h by improving the operating conditions. This corresponds to an 85% decrease. The cost per electricity generated, cost per geothermal energy input, and cost per CO2 emission of the GPP are determined as 0.049 USD/kWh, 5.3 USD/GJ, and 0.13 USD/kg, respectively. As a result, while the savings potential of the GPP is 15%, it can result in a 15% reduction in CO2 emission cost. Full article
(This article belongs to the Special Issue Shallow Geothermal Energy 2023)
Show Figures

Figure 1

20 pages, 2764 KiB  
Article
Economic, Exergoeconomic and Exergoenvironmental Evaluation of Gas Cycle Power Plant Based on Different Compressor Configurations
by Hamad H. Almutairi, Abdulrahman S. Almutairi, Suleiman M. Suleiman, Abdulrahman H. Alenezi, Khalid A. Alkhulaifi and Hamad M. Alhajeri
Processes 2023, 11(4), 1023; https://doi.org/10.3390/pr11041023 - 28 Mar 2023
Cited by 1 | Viewed by 1972
Abstract
The decision-making process behind the selection of a gas turbine engine (GT) is crucial and must be made in accordance with economic, environmental, and technical requirements. This paper presents the relevant economic, exergoeconomic and exergoenvironmental analyses for four GT engines with different compressor [...] Read more.
The decision-making process behind the selection of a gas turbine engine (GT) is crucial and must be made in accordance with economic, environmental, and technical requirements. This paper presents the relevant economic, exergoeconomic and exergoenvironmental analyses for four GT engines with different compressor configurations. The GT engine configurations are identified according to the type of compressor: axial, axial-centrifugal, two-stage centrifugal, and centrifugal-centrifugal. The performances of the four GT engines were validated against manufacturer supplied data using specialized software. The economic analysis, a detailed life cycle costing considering the cost to be paid per unit net power obtained from the GT, and subsequent shortest payback period showed that the GT with centrifugal-centrifugal compressor was most economically feasible. This was followed, in order, by the GT-axial, GT-axial-centrifugal, and finally the GT-two-stage centrifugal configuration, where the cost of ownership for a 20 year plan ranges between 8000 USD/kW to about 12,000 USD/kW at different operational scenarios during the life cycle costing. Exergoeconomic assessment provided useful information to enhance the cost-effectiveness of all four systems by evaluating each component separately. The axial-centrifugal configuration registered the lowest CO2 emissions (about 0.7 kg/kWh); all environmental indicators confirmed it is the most environmentally friendly option. Full article
(This article belongs to the Topic Exergy Analysis and Its Applications – 2nd Volume)
Show Figures

Figure 1

15 pages, 1642 KiB  
Article
Analysis of Desalination Performance with a Thermal Vapor Compression System
by Zineb Fergani, Zakaria Triki, Rabah Menasri, Hichem Tahraoui, Mohammed Kebir, Abdeltif Amrane, Nassim Moula, Jie Zhang and Lotfi Mouni
Water 2023, 15(6), 1225; https://doi.org/10.3390/w15061225 - 21 Mar 2023
Cited by 15 | Viewed by 4704
Abstract
Multi-effect distillation with thermal vapor compression (MED-TVC) is a highly energy-efficient desalination technology that can provide a reliable and sustainable source of high-quality water, particularly in areas with limited energy infrastructure and water resources. In this study, a numerical model based on exergoeconomic [...] Read more.
Multi-effect distillation with thermal vapor compression (MED-TVC) is a highly energy-efficient desalination technology that can provide a reliable and sustainable source of high-quality water, particularly in areas with limited energy infrastructure and water resources. In this study, a numerical model based on exergoeconomic approach is developed to analyze the economic performance of a MED-TVC system for seawater desalination. A parallel/cross feed configuration is considered because of its high energy efficiency. In addition, a parametric study is performed to evaluate the effects of some operational parameters on the total water price, such as the top brine temperature, seawater temperature, motive steam flow rate, and number of effects. The obtained results indicate that the total water price is in the range of 1.73 USD/m3 for a distilled water production of 55.20 kg/s. Furthermore, the exergy destructions in the effects account for 45.8% of the total exergy destruction. The MED effects are also identified to be the most relevant component from an exergoeconomic viewpoint. Careful attention should be paid to these components. Of the total cost associated with the effects, 75.1% is due to its high thermodynamic inefficiency. Finally, the parametric study indicates that adjusting the top brine temperature, the cooling seawater temperature, the motive steam flow rate, and the number of effects has a significant impact on the TWP, which varies between 1.42 USD/m3 and 2.85 USD/m3. Full article
Show Figures

Figure 1

17 pages, 2180 KiB  
Article
Simulation and Exergoeconomic Analysis of a Trigeneration System Based on Biofuels from Spent Coffee Grounds
by Diana L. Tinoco Caicedo, Myrian Santos Torres, Medelyne Mero-Benavides, Oscar Patiño Lopez, Alexis Lozano Medina and Ana M. Blanco Marigorta
Energies 2023, 16(4), 1816; https://doi.org/10.3390/en16041816 - 11 Feb 2023
Cited by 7 | Viewed by 2452
Abstract
Biofuels have become a source of renewable energy to offset the use of fossil fuels and meet the demand for electricity, heat, and cooling in the industrial sector. This study aims to (a) develop a simulation of a trigeneration system based on a [...] Read more.
Biofuels have become a source of renewable energy to offset the use of fossil fuels and meet the demand for electricity, heat, and cooling in the industrial sector. This study aims to (a) develop a simulation of a trigeneration system based on a gas turbine cycle and an absorption chiller unit, using biomass and syngas from spent coffee grounds (SCGs) to replace the conventional system currently supplying the energy requirements of an instant coffee plant located in Guayaquil, Ecuador, and (b) carry out an exergoeconomic analysis of the simulated system to compare the effects of different fuels. The results showed an increase in the exergetic efficiency from 51.9% to 84.5% when using a trigeneration system based on biomass instead of the conventional non-integrated system. Furthermore, the biomass-based system was found to have the lowest operating costs ($154.7/h) and the lowest heating, cooling, and power costs ($10.3/GJ, $20.2/GJ, and $23.4/GJ, respectively). Therefore, the results of this analysis reveal that using SCGs as biofuel in this instant coffee plant is feasible for producing steam, chilled water, and power. Full article
(This article belongs to the Special Issue Sustainable Energy from Biomass and Waste)
Show Figures

Figure 1

19 pages, 4764 KiB  
Article
Exergoeconomic Analysis of a Variable Area Solar Ejector Refrigeration System under Hot Climatic Conditions
by Bourhan Tashtoush, Iscah Songa and Tatiana Morosuk
Energies 2022, 15(24), 9540; https://doi.org/10.3390/en15249540 - 15 Dec 2022
Cited by 8 | Viewed by 1998
Abstract
The present study investigates low-grade heat utilization in ejector refrigeration systems under hot climatic conditions. A variable area ejector is used to maximize the harvested heat from the generator of the solar system at peak times. Exergy, economic, and exergoeconomic analyses are conducted [...] Read more.
The present study investigates low-grade heat utilization in ejector refrigeration systems under hot climatic conditions. A variable area ejector is used to maximize the harvested heat from the generator of the solar system at peak times. Exergy, economic, and exergoeconomic analyses are conducted to evaluate the performance of the system. A thermodynamic model of the system has been developed using Ebsilon Professional software. Available experimental and theoretical data validate the results. The effects of properties of the working fluids, ejector geometry, and operation conditions are also evaluated. It was found that the coefficient of performance of the system reached 0.45 at a generator pressure of 3 bars. Furthermore, it was noticed that the overall exergy efficiency could be increased for a fixed generator temperature while increasing the ejector area ratio. A value of 21% exergetic efficiency was calculated for the system. The exergoeconomic analysis of the system demonstrated that heat exchangers are required to be improved thermodynamically at the expense of the capital investment cost. Full article
Show Figures

Figure 1

24 pages, 5180 KiB  
Article
Exergy and Exergoeconomic Analysis for the Proton Exchange Membrane Water Electrolysis under Various Operating Conditions and Design Parameters
by Alamir H. Hassan, Zhirong Liao, Kaichen Wang, Mostafa M. Abdelsamie, Chao Xu and Yanhui Wang
Energies 2022, 15(21), 8247; https://doi.org/10.3390/en15218247 - 4 Nov 2022
Cited by 17 | Viewed by 2682
Abstract
Integrating the exergy and economic analyses of water electrolyzers is the pivotal way to comprehend the interplay of system costs and improve system performance. For this, a 3D numerical model based on COMSOL Multiphysics Software (version 5.6, COMSOL, Stockholm, Sweden) is integrated with [...] Read more.
Integrating the exergy and economic analyses of water electrolyzers is the pivotal way to comprehend the interplay of system costs and improve system performance. For this, a 3D numerical model based on COMSOL Multiphysics Software (version 5.6, COMSOL, Stockholm, Sweden) is integrated with the exergy and exergoeconomic analysis to evaluate the exergoeconomic performance of the proton exchange membrane water electrolysis (PEMWE) under different operating conditions (operating temperature, cathode pressure, current density) and design parameter (membrane thickness). Further, the gas crossover phenomenon is investigated to estimate the impact of gas leakage on analysis reliability under various conditions and criteria. The results reveal that increasing the operating temperature or decreasing the membrane thickness improves both the efficiency and cost of hydrogen exergy while increasing the gas leakage through the membrane. Likewise, raising the current density and the cathode pressure lowers the hydrogen exergy cost and improves the economic performance. The increase in exergy destroyed and hydrogen exergy cost, as well as the decline in second law efficiency due to the gas crossover, are more noticeable at higher pressures. As the cathode pressure rises from 1 to 30 bar at a current density of 10,000 A/m2, the increase in exergy destroyed and hydrogen exergy cost, as well as the decline in second law efficiency, are increased by 37.6 kJ/mol, 4.49 USD/GJ, and 7.1%, respectively. The cheapest green electricity source, which is achieved using onshore wind energy and hydropower, reduces hydrogen production costs and enhances economic efficiency. The growth in the hydrogen exergy cost is by about 4.23 USD/GJ for a 0.01 USD/kWh increase in electricity price at the current density of 20,000 A/m2. All findings would be expected to be quite useful for researchers engaged in the design, development, and optimization of PEMWE. Full article
Show Figures

Figure 1

Back to TopTop