Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,048)

Search Parameters:
Keywords = exchange kinetics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3517 KB  
Review
Recent Advances in Anion-Doping Transition Metal Layered Double Hydroxide for Water Oxidation to Hydrogen Evolution
by Yang Zhu, Luyu Liu, Linlin Xu, Tingjun Ji, Xiang Ding, Haotian Qin, Siyuan Tang and Fuzhan Song
Catalysts 2026, 16(2), 141; https://doi.org/10.3390/catal16020141 - 2 Feb 2026
Abstract
Electrochemical water splitting for hydrogen production is limited by the slow kinetics of the oxygen evolution reaction (OER). The tunable structure and anion-exchange capability of layered double hydroxides (LDHs) underpin their promise as OER catalysts. Consequently, the strategic incorporation of foreign anions is [...] Read more.
Electrochemical water splitting for hydrogen production is limited by the slow kinetics of the oxygen evolution reaction (OER). The tunable structure and anion-exchange capability of layered double hydroxides (LDHs) underpin their promise as OER catalysts. Consequently, the strategic incorporation of foreign anions is viewed as a powerful approach to engineer their active sites and boost catalytic activity. This review summarizes how doping with anions such as NO3, PO43−, Cl, F, and Sq2− modifies the electronic structure of LDHs. These anions regulate the local coordination environment, induce oxygen vacancies, and alter metal oxidation states, thereby synergistically optimizing both the adsorption–evolution mechanism (AEM) and the lattice oxygen oxidation mechanism (LOM). For instance, NO3 promotes surface reconstruction, F activates lattice oxygen, PO43− stabilizes the interface, Cl reshapes reaction pathways, and Sq2− maintains interfacial alkalinity. Collectively, rational anion engineering lowers the overpotential, increases current density, and improves stability, establishing an effective design framework for advanced LDH-based OER electrocatalysts. Full article
(This article belongs to the Special Issue Cutting-Edge Catalysts for Water Splitting and Hydrogen Production)
Show Figures

Figure 1

27 pages, 3391 KB  
Article
Hydrothermal Conversion of Wastewater Treatment Sands into Dual-Phase FAU/LTA Zeolite: Structural Insights and Performance in Methylene Blue Adsorption
by Diana Guaya, María José Jara and José Luis Cortina
Molecules 2026, 31(3), 437; https://doi.org/10.3390/molecules31030437 - 27 Jan 2026
Viewed by 226
Abstract
This study presents a sustainable valorization strategy for wastewater treatment plant (WWTP) residual sands through their hydrothermal conversion into a dual-phase FAU/LTA zeolite and evaluates its adsorption performance toward methylene blue (MB) as a model cationic contaminant. The synthesized material (ZEO-RS) exhibited a [...] Read more.
This study presents a sustainable valorization strategy for wastewater treatment plant (WWTP) residual sands through their hydrothermal conversion into a dual-phase FAU/LTA zeolite and evaluates its adsorption performance toward methylene blue (MB) as a model cationic contaminant. The synthesized material (ZEO-RS) exhibited a low Si/Al ratio (~1.7), well-developed FAU supercages with minor LTA domains, and high structural integrity, as confirmed by XRD, FTIR, XRF, SEM and PZC analyses. ZEO-RS demonstrated rapid adsorption kinetics, reaching approximately 92% of equilibrium uptake within 30 min and following a pseudo-second-order kinetic model (k2= 2.73 g·mg−1·h−1). Equilibrium data were best described by the Langmuir isotherm, yielding a maximum adsorption capacity of 34.2 mg·g−1 at 20 °C, with favorable separation factors (0 < rL < 1), while Freundlich fitting indicated moderate surface heterogeneity. Thermodynamic analysis revealed that MB adsorption is spontaneous (ΔG° = −11.98 to −12.56 kJ·mol−1), mildly endothermic (ΔH° = +5.26 kJ·mol−1), and entropy-driven (ΔS° = +0.059 kJ·mol−1·K−1). FTIR evidence, combined with pH-dependent behavior, indicates that adsorption proceeds via synergistic electrostatic attraction, pore confinement within FAU domains, and partial ion-exchange interactions. Desorption efficiencies conducted under mild acidic, neutral, and alkaline conditions resulted in low MB release (1–8%), indicating strong dye retention and high framework stability. Overall, the results demonstrate that WWTP residual sands are an effective and scalable low-cost precursor for producing zeolitic adsorbents, supporting their potential application in sustainable water purification and circular-economy-based wastewater treatment strategies. Full article
(This article belongs to the Special Issue Design, Synthesis, and Application of Zeolite Materials)
Show Figures

Figure 1

20 pages, 5225 KB  
Article
Thermal Management and Optimization of Large-Scale Metal Hydride Reactors for Shipboard Hydrogen Storage and Transport
by Seth A. Thomas, Vamsi Krishna Kukkapalli and Sunwoo Kim
Energy Storage Appl. 2026, 3(1), 2; https://doi.org/10.3390/esa3010002 - 27 Jan 2026
Viewed by 85
Abstract
Hydrogen storage is vital to the development of renewables, especially in low-infrastructure countries. Metal hydrides offer a small but safe solid-state candidate for hydrogen storage at medium pressures and near-ambient temperature, yet large-scale applications face heat-management challenges. In this article, we numerically analyze [...] Read more.
Hydrogen storage is vital to the development of renewables, especially in low-infrastructure countries. Metal hydrides offer a small but safe solid-state candidate for hydrogen storage at medium pressures and near-ambient temperature, yet large-scale applications face heat-management challenges. In this article, we numerically analyze examples of two large-scale lanthanum pentanickel (LaNi5)-based metal hydride reactor configurations with shell-and-tube heat exchangers. This research studies two large-scale shell-and-tube metal hydride reactor configurations: a tube-side cooling reactor with hydride powder packed in the shell and coolant flowing through internal tubes, and a shell-side cooling reactor using annular hydride pellets with coolant circulating through the shell. The thermal and kinetic performance of these large-scale reactors was simulated using COMSOL Multiphysics (version 6.1) and analyzed under different geometries and operating conditions typical of industrial scales. The tube-side solution provided 90% hydrogen absorption in 1500–2000 s at 30 bar, while the shell-side solution reached the same level of absorption in 430 s at 10 bar. Results show that tube-side cooling has higher storage, while shell-side cooling improves heat removal and kinetics. For energy and maritime transport applications, these findings reveal optimization insights for large-scale, efficient hydrogen storage systems. Full article
Show Figures

Figure 1

20 pages, 2297 KB  
Article
The Effect of Room Turbulence on the Efficiency of Air Cleaning Devices
by Aravind George, Benedikt Schumm, Rainer Hain and Christian J. Kähler
Atmosphere 2026, 17(2), 117; https://doi.org/10.3390/atmos17020117 - 23 Jan 2026
Viewed by 222
Abstract
Mobile air cleaners have emerged as a practical solution for reducing indoor aerosol concentrations, particularly in the absence of HVAC systems. Their efficiency is typically assessed under standardised conditions, but how turbulence influences the effective air exchange rate indoors is not well understood. [...] Read more.
Mobile air cleaners have emerged as a practical solution for reducing indoor aerosol concentrations, particularly in the absence of HVAC systems. Their efficiency is typically assessed under standardised conditions, but how turbulence influences the effective air exchange rate indoors is not well understood. In this study, we present a systematic investigation of the impact of enhanced turbulence on aerosol decay in two room sizes (50 m3 and 200 m3) using a mobile air cleaner combined with different fan configurations. Particle counter measurements were conducted simultaneously with particle image velocimetry (PIV), enabling direct comparison of air exchange rates and flow field properties. Our results show that specific fan arrangements significantly modify turbulent kinetic energy (TKE) distributions and, in turn, alter the effective air exchange rate. In the smaller room, configurations generating higher TKE brought the measured exchange rates closer to theoretical predictions, while in large rooms other arrangements led to noticeable deviations. We anticipate that these findings provide a reference framework for understanding the role of turbulence in indoor air cleaning performance, with implications for optimizing the operation and placement of mobile air cleaners in practical environments. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

14 pages, 1777 KB  
Article
Machine-Learning-Based Screening of Perovskite Cathodes for Low-Temperature Solid Oxide Fuel Cell Operation
by Mingxuan Deng, Yang Yu, Yunhao Wang, Zhuangzhuang Ma, Linyuan Lu, Tianhao Rui, Yulin Lan, Jiajun Linghu, Nannan Han, Yiyan Li, Zhipeng Li and Haibin Zhang
Crystals 2026, 16(1), 68; https://doi.org/10.3390/cryst16010068 - 20 Jan 2026
Viewed by 200
Abstract
The discovery of cathode materials that simultaneously exhibit high oxygen-reduction activity, robust stability, and low cost is pivotal to moving solid oxide fuel cells (SOFCs) from the laboratory into commercial deployment. To address this challenge, we compile the largest perovskite dataset to date [...] Read more.
The discovery of cathode materials that simultaneously exhibit high oxygen-reduction activity, robust stability, and low cost is pivotal to moving solid oxide fuel cells (SOFCs) from the laboratory into commercial deployment. To address this challenge, we compile the largest perovskite dataset to date parameterized by the oxygen tracer surface exchange coefficient (k*). Using only readily obtainable elemental and structural descriptors, we develop machine-learning models that surpass existing approaches in both accuracy and computational efficiency. Specifically, by integrating Mahalanobis-distance-based applicability-domain analysis with random forest-enhanced property descriptors and support vector regression, we high-throughput-screen 1.3 million ABO3 compositions and curate a candidate list that balances thermodynamic stability, cost, and oxygen-reduction activity. Beyond prediction accuracy, SHAP interpretation reveals strong physical correlations between the enhanced descriptors and k*, highlighting the coefficient of thermal expansion, O p-band center, and A-site ionic radius as the dominant factors governing oxygen exchange kinetics. Finally, we identify 209 promising perovskite cathodes predicted to outperform LSC in the low-temperature regime, offering promising directions for experimental realization of practical low-temperature SOFCs. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

23 pages, 2278 KB  
Article
Experimental and Numerical Investigation of an Adsorption Desalination Exchanger for High-Purity Water Production in Hydrogen Systems
by Piotr Boruta, Tomasz Bujok, Karol Sztekler, Łukasz Mika, Wojciech Kalawa and Agata Mlonka-Mędrala
Energies 2026, 19(2), 484; https://doi.org/10.3390/en19020484 - 19 Jan 2026
Viewed by 139
Abstract
Hydrogen-based energy systems require large amounts of high-purity water, motivating thermally driven desalination that can recover low-grade heat. This study evaluates a silica gel–water adsorption chiller–desalination unit as a coupled source of cooling and pre-treated water for electrolysers. A laboratory two-bed system was [...] Read more.
Hydrogen-based energy systems require large amounts of high-purity water, motivating thermally driven desalination that can recover low-grade heat. This study evaluates a silica gel–water adsorption chiller–desalination unit as a coupled source of cooling and pre-treated water for electrolysers. A laboratory two-bed system was tested on saline feed using 300 s valve-switching periods at an 80 °C driving temperature and 20–30 °C cooling water. Dynamic vapour sorption measurements provided Dubinin–Astakhov equilibrium and linear driving force kinetic parameters, implemented in a CFD porous bed model via user-defined source terms. Experiments yielded COP values of 0.29–0.41, an SCP of 165 W·kg−1 of adsorbent, and an average distillate production of 1.68–1.82 kg·h−1, while distillate conductivity remained ≈2.3 μS·cm−1. The model reproduced the mean condensate production with a ≈6% underprediction. It was then used to compare six alternative fin geometries with a constant heat-transfer area. Fin-shape modifications changed inter-fin heating by <2 K and cumulative desorbed mass by <0.05%, indicating limited sensitivity to subtle local refinements. Performance gains are more likely to arise from operating conditions and exchanger-scale architecture than from minor fin-shape changes. Full article
(This article belongs to the Special Issue Advances in Numerical and Experimental Heat Transfer)
Show Figures

Figure 1

25 pages, 4723 KB  
Article
Multiphysics Modelling Flow Disturbance Optimization of Proton Exchange Membrane Water Electrolysis Under Bubble Effects
by Chengming Du, Bo Huang, Ziqing Wang, Luhaibo Zhao, Haibo Wu, Shen Xu, Guoliang Wang and Zhiyong Tang
Energies 2026, 19(2), 437; https://doi.org/10.3390/en19020437 - 15 Jan 2026
Viewed by 240
Abstract
In Proton Exchange Membrane Water Electrolysis (PEMWE), the two-phase flow distribution in the anode field significantly affects overall electrolysis performance. Based on visualized experimental data, in this paper, the reaction kinetics equations were theoretically revised, and a three-dimensional, two-phase, non-isothermal, multi-physics coupled model [...] Read more.
In Proton Exchange Membrane Water Electrolysis (PEMWE), the two-phase flow distribution in the anode field significantly affects overall electrolysis performance. Based on visualized experimental data, in this paper, the reaction kinetics equations were theoretically revised, and a three-dimensional, two-phase, non-isothermal, multi-physics coupled model of the electrolysis was developed and experimentally validated. Four different configurations of rectangular turbulence promoters were designed within the anode serpentine flow field and compared with a conventional serpentine flow field (SFF) in terms of their multi-physics distribution characteristics. The results showed that, in the double-row rectangular block serpentine flow field (DRB SFF), the uniformity of liquid water saturation, temperature, and current density improved by 16.6%, 0.49% and 40.8%, respectively. The normal mass transfer coefficient increased by a factor of 6.3, and polarization performance improved by 6.98%. A cross-arranged turbulence promoter structure was further proposed. This design maintains effective turbulence while reducing flow resistance and pressure drop, thereby enhancing mass transfer efficiency and overall electrolysis performance through improved bubble fragmentation. Full article
Show Figures

Figure 1

22 pages, 4811 KB  
Article
Adsorption Characterization and Mechanism of a Red Mud–Lactobacillus plantarum Composite Biochar for Cd2+ and Pb2+ Removal
by Guangxu Zhu, Yunhe Zhao, Yunyan Wang, Baohang Huang, Rongkun Chen, Xingyun Zhao, Panpan Wu and Qiang Tu
Biology 2026, 15(2), 153; https://doi.org/10.3390/biology15020153 - 15 Jan 2026
Viewed by 259
Abstract
Pb2+ and Cd2+ represent common heavy metal contaminants in aquatic environments, posing significant risks to ecosystem stability and human health. To develop efficient adsorbents for removing Cd2+ and Pb2+ while achieving resource utilization of industrial by-products (red mud and [...] Read more.
Pb2+ and Cd2+ represent common heavy metal contaminants in aquatic environments, posing significant risks to ecosystem stability and human health. To develop efficient adsorbents for removing Cd2+ and Pb2+ while achieving resource utilization of industrial by-products (red mud and distiller’s grains), this study synthesized a novel composite biochar—red mud–Lactobacillus plantarum composite biochar (RM)—by immobilizing red mud and Lactobacillus plantarum onto biochar derived from distiller’s grains. The structural and chemical properties of RM were characterized using SEM-EDS, XRD, and FTIR. Batch adsorption experiments were conducted to evaluate the effects of various experimental factors on Cd2+ and Pb2+ adsorption. The adsorption process was further elucidated through kinetic and isothermal models, revealing that it follows the pseudo-second-order kinetic model. Equilibrium data were best described by the Langmuir model for Cd2+ and the Freundlich model for Pb2+. The maximum adsorption capacities reached 12.13 mg/g for Cd2+ and 130.10 mg/g for Pb2+. The primary mechanisms involved in Cd2+ and Pb2+ adsorption by RM include surface complexation, cation–π interactions, ion exchange, and coprecipitation. These findings demonstrate that RM represents a promising and effective adsorbent for the remediation of heavy metal-contaminated water. Full article
(This article belongs to the Special Issue Heavy Metal Pollution and Bioremediation: Application and Mechanism)
Show Figures

Figure 1

15 pages, 3324 KB  
Article
Tuning Oxygen Reduction Kinetics in LaSrCoO4 with Strained Epitaxial Thin Films and Wrinkled Freestanding Membranes
by Habib Rostaghi Chalaki, Ebenezer Seesi, Mohammad El Loubani and Dongkyu Lee
Ceramics 2026, 9(1), 7; https://doi.org/10.3390/ceramics9010007 - 14 Jan 2026
Viewed by 316
Abstract
Sluggish oxygen reduction reaction (ORR) remains a critical barrier to advancing intermediate-temperature electrochemical energy devices. Here, we demonstrate that strain engineering in two platforms, epitaxial thin films and freestanding membranes, systematically tunes ORR kinetics in Ruddlesden-Popper LaSrCoO4. In epitaxial films, film [...] Read more.
Sluggish oxygen reduction reaction (ORR) remains a critical barrier to advancing intermediate-temperature electrochemical energy devices. Here, we demonstrate that strain engineering in two platforms, epitaxial thin films and freestanding membranes, systematically tunes ORR kinetics in Ruddlesden-Popper LaSrCoO4. In epitaxial films, film thickness is varied to control in-plane tensile strain, whereas in freestanding membranes strain relaxation during the release step using water-soluble sacrificial layers produces flat or wrinkled architectures. Electrochemical impedance spectroscopy analysis reveals more than an order of magnitude increase in the oxygen surface exchange coefficient for tensile-strained films relative to relaxed films, together with a larger oxygen vacancy concentration. Wrinkled freestanding membranes provide a further increase in oxygen surface exchange kinetics and a lower activation energy, which are attributed to increased active surface area and local strain variation. These results identify epitaxial tensile strain and controlled wrinkling as practical design parameters for optimizing ORR activity in Ruddlesden-Popper oxides. Full article
(This article belongs to the Special Issue Nanoceramics and Two-Dimensional Ceramic Materials)
Show Figures

Figure 1

15 pages, 3846 KB  
Article
Noble Metal-Enhanced Chemically Sensitized Bi2WO6 for Point-of-Care Detection of Listeria monocytogenes in Ready-to-Eat Foods
by Yong Zhang, Hai Yu, Yu Han, Shu Cui, Jingyi Yang, Bingyang Huo and Jun Wang
Foods 2026, 15(2), 293; https://doi.org/10.3390/foods15020293 - 13 Jan 2026
Viewed by 213
Abstract
Listeria monocytogenes (LM) contamination constitutes a paramount global threat to food safety, necessitating the urgent development of advanced, rapid, and non-destructive detection methodologies to ensure food security. This study successfully synthesized Bi2WO6 nanoflowers through optimized feed ratios of [...] Read more.
Listeria monocytogenes (LM) contamination constitutes a paramount global threat to food safety, necessitating the urgent development of advanced, rapid, and non-destructive detection methodologies to ensure food security. This study successfully synthesized Bi2WO6 nanoflowers through optimized feed ratios of raw materials and further functionalized them with noble metal Au to construct a high-performance Au-Bi2WO6 composite nanomaterial. The composite exhibited high sensing performance toward acetoin, including high sensitivity (Ra/Rg = 36.9@50 ppm), rapid response–recovery kinetics (13/12 s), and excellent selectivity. Through UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and X-ray photoelectron spectroscopy (XPS) characterizations, efficient electron exchange between Au and Bi2WO6 was confirmed. This electron exchange increased the initial resistance of the material, effectively enhancing the response value toward the target gas. Furthermore, the chemical sensitization effect of Au significantly increased the surface-active oxygen content, promoted gas–solid interfacial reactions, and improved the adsorption capacity for target gases. Compared to conventional turbidimetry, the Au-Bi2WO6 nanoflower-based gas sensor demonstrates superior practical potential, offering a novel technological approach for non-destructive and rapid detection of foodborne pathogens. Full article
Show Figures

Graphical abstract

26 pages, 4938 KB  
Article
A Fuzzy-Driven Synthesis: MiFREN-Optimized Magnetic Biochar Nanocomposite from Agricultural Waste for Sustainable Arsenic Water Remediation
by Sasirot Khamkure, Chidentree Treesatayapun, Victoria Bustos-Terrones, Lourdes Díaz Jiménez, Daniella-Esperanza Pacheco-Catalán, Audberto Reyes-Rosas, Prócoro Gamero-Melo, Alejandro Zermeño-González, Nakorn Tippayawong and Patiroop Pholchan
Technologies 2026, 14(1), 43; https://doi.org/10.3390/technologies14010043 - 7 Jan 2026
Viewed by 320
Abstract
Arsenic contamination demands innovative, sustainable remediation. This study presents a fuzzy approach for synthesizing a magnetic biochar nanocomposite from pecan shell agricultural waste for efficient arsenic removal. Using a Multi-Input Fuzzy Rules Emulated Network (MiFREN), a systematic investigation of the synthesis process revealed [...] Read more.
Arsenic contamination demands innovative, sustainable remediation. This study presents a fuzzy approach for synthesizing a magnetic biochar nanocomposite from pecan shell agricultural waste for efficient arsenic removal. Using a Multi-Input Fuzzy Rules Emulated Network (MiFREN), a systematic investigation of the synthesis process revealed that precursor type (biochar), Fe:precursor ratio (1:1), and iron salt type were the most significant parameters governing material crystallinity and adsorption performance, while particle size and N2 atmosphere had a minimal effect. The MiFREN-identified optimal material, the magnetic biochar composite (FS7), achieved > 90% arsenic removal, outperforming the least efficient sample by 50.61%. Kinetic analysis confirmed chemisorption on a heterogeneous surface (qe = 12.74 mg/g). Regeneration studies using 0.1 M NaOH demonstrated high stability, with FS7 retaining > 70% removal capacity over six cycles. Desorption occurs via ion exchange and electrostatic repulsion, with post-use analysis confirming structural integrity and resistance to oxidation. Application to real groundwater from the La Laguna region proved highly effective; FS7 maintained selectivity despite competing ions like Na+, Cl,  and SO42. By integrating AI-driven optimization with reusability and real contaminated water, this research establishes a scalable framework for transforming agricultural waste into a high-performance adsorbent, supporting global Clean Water and Sanitation goals. Full article
(This article belongs to the Special Issue Sustainable Water and Environmental Technologies of Global Relevance)
Show Figures

Figure 1

19 pages, 3240 KB  
Article
Pd/MnO2:Pd/C Electrocatalysts for Efficient Hydrogen and Oxygen Electrode Reactions in AEMFCs
by Ivan Cruz-Reyes, Balter Trujillo-Navarrete, Moisés Israel Salazar-Gastélum, José Roberto Flores-Hernández, Tatiana Romero-Castañón and Rosa María Félix-Navarro
Nanomaterials 2026, 16(1), 71; https://doi.org/10.3390/nano16010071 - 4 Jan 2026
Viewed by 447
Abstract
Developing cost-effective and durable electrocatalysts is essential for advancing anion exchange membrane fuel cells (AEMFCs). This work evaluates Pd-based catalysts supported on β-MnO2, Vulcan carbon (C), and their physical blend (Pd/MnO2:Pd/C) as bifunctional electrodes for the oxygen reduction reaction [...] Read more.
Developing cost-effective and durable electrocatalysts is essential for advancing anion exchange membrane fuel cells (AEMFCs). This work evaluates Pd-based catalysts supported on β-MnO2, Vulcan carbon (C), and their physical blend (Pd/MnO2:Pd/C) as bifunctional electrodes for the oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR). The catalysts were synthesized via chemical reduction and characterized by TGA, ICP-OES, TEM, BET, and XRD. Rotating disk electrode studies revealed that the hybrid exhibited superior activity and kinetics, with lower Tafel slopes and higher exchange current densities compared to the individual supports. In AEMFCs, the hybrid reached 128.0 mW cm−2 as a cathode and 221.7 mW cm−2 as an anode, outperforming individual components. This enhanced performance arises from the synergistic interaction between Pd nanoparticles and MnO2, where MnO2 modulates the catalyst’s microstructure and local reaction environment while the carbon phase ensures efficient electron transport. MnO2, although inactive for the HOR alone, acted as a structural spacer, enhancing mass transport and stability. Durability tests confirmed that the hybrid electrocatalyst retained over 99% of its initial activity after 3000 cycles. These results highlight the hybrid Pd/MnO2:Pd/C as a promising, bifunctional, and durable electrocatalyst for AEMFC applications. Full article
Show Figures

Figure 1

14 pages, 1148 KB  
Article
High-Capacity Adsorption of a Cationic Dye Using Alkali-Activated Geopolymers Derived from Agricultural Residues
by Claudia Alejandra Hernández-Escobar, América Susana Mares-García, Miguel Alonso Orozco-Alvarado, Alejandro Vega-Rios, Claudia Ivone Piñón-Balderrama, Anayansi Estrada-Monje and Erasto Armando Zaragoza-Contreras
Materials 2026, 19(1), 177; https://doi.org/10.3390/ma19010177 - 3 Jan 2026
Viewed by 365
Abstract
A geopolymer, derived from agricultural waste, was used as an efficient, sustainable, and low-cost adsorbent of methylene blue, a recurrent industrial dye contaminant. The geopolymer was synthesized via a standard alkali activation process using wheat husk ash calcinated at 1050 °C. Adsorption capabilities [...] Read more.
A geopolymer, derived from agricultural waste, was used as an efficient, sustainable, and low-cost adsorbent of methylene blue, a recurrent industrial dye contaminant. The geopolymer was synthesized via a standard alkali activation process using wheat husk ash calcinated at 1050 °C. Adsorption capabilities were evaluated through batch kinetic experiments. The removal efficiency was determined by ultraviolet–visible spectrophotometry, and the adsorption kinetics were fitted to various models. The geopolymer demonstrated a maximum adsorption capacity of 270.58 mg/g for methylene blue, achieving a removal efficiency of 85.20% under optimal conditions. Kinetic analysis confirmed that the adsorption process is best described by the pseudo-second-order model. This suggests that chemisorption, which involves chemical bonding or electron exchange between the dye and the negatively charged aluminosilicate structure of the geopolymer, is the rate-limiting mechanism. This demonstrates that geopolymers are effective and promising adsorbents, valorizing an agricultural waste stream into a functional material for the efficient treatment of dye-polluted wastewater. The competitive capacity and favorable chemisorption mechanism position the geopolymer as a promising material for the remediation of dye-contaminated industrial effluents. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials—Second Edition)
Show Figures

Graphical abstract

22 pages, 8413 KB  
Article
Characterization of Copper-Modified Clinoptilolite for the Photocatalytic Removal of Congo Red Dye from Wastewater
by Hristina Lazarova, Liliya Tsvetanova, Borislav Barbov, Stela Atanasova-Vladimirova and Aleksandar Nikolov
Crystals 2026, 16(1), 32; https://doi.org/10.3390/cryst16010032 - 30 Dec 2025
Viewed by 388
Abstract
In this study, the photocatalytic performance of natural clinoptilolite was enhanced through copper modification, achieved via ion exchange followed by KOH-induced precipitation, leading to materials with different copper speciation. Physicochemical characterization using WDXRF, PXRD, FTIR and N2 physisorption revealed a transition from [...] Read more.
In this study, the photocatalytic performance of natural clinoptilolite was enhanced through copper modification, achieved via ion exchange followed by KOH-induced precipitation, leading to materials with different copper speciation. Physicochemical characterization using WDXRF, PXRD, FTIR and N2 physisorption revealed a transition from exchanged Cu2+ species at low loading to the formation of copper-bearing phases such as brochantite, Cu(OH)2 and CuO at higher alkalinity. The Cu-modified samples were evaluated for the photocatalytic degradation of Congo red under UV irradiation. Among them, sample NZ-Cu3 exhibited the highest activity, achieving approximately 91% dye degradation within 30–40 min. Kinetic analysis demonstrated that the degradation process is better described by the pseudo-second-order model, indicating that chemisorption plays a dominant role. Radical scavenger experiments revealed that photogenerated holes (h⁺) are the primary reactive species responsible for dye degradation, while hydroxyl radicals contribute to a lesser extent. The enhanced photocatalytic performance is attributed to the synergistic effect of photocatalytic degradation, improved charge separation and the presence of surface copper species, highlighting Cu-modified clinoptilolite as a promising low-cost photocatalyst for wastewater treatment. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
Show Figures

Figure 1

24 pages, 3379 KB  
Article
Substituent Effects in the Thermal Decomposition of 1,2,4-Triazol-3(2H)-Ones and Their Thione Analogues: A DFT Study with Functional Performance
by Rosalinda Ipanaque-Chávez, Marcos Loroño, Tania Cordova-Sintjago and José L. Paz
Molecules 2026, 31(1), 109; https://doi.org/10.3390/molecules31010109 - 27 Dec 2025
Viewed by 376
Abstract
This computational study investigates the thermal decomposition of 1,2,4-triazol-3(2H)-ones and their thione analogues using Density Functional Theory (DFT). The reaction proceeds via a concerted, six-membered cyclic transition state, primarily driven by the breaking of the N–N bond. A key finding is that the [...] Read more.
This computational study investigates the thermal decomposition of 1,2,4-triazol-3(2H)-ones and their thione analogues using Density Functional Theory (DFT). The reaction proceeds via a concerted, six-membered cyclic transition state, primarily driven by the breaking of the N–N bond. A key finding is that the accuracy of the calculated activation energies (Ea) strongly depends on the choice of DFT functional. For sulfur-containing systems (thiones), the hybrid functional APFD (with 25% Hartree–Fock exchange) provides the most reliable results, effectively describing their higher polarizability. In contrast, for oxygen-containing systems (triazolones), the dispersion-corrected functional B97D-GD3BJ (with 0% Hartree–Fock exchange) delivers superior accuracy by better modeling electrostatic and dispersion interactions. The -CH2CH2CN group at the N-2 position acts not only as a protecting group but also stabilizes the transition state through non-covalent interactions. Electron-withdrawing substituents slightly increase the Ea, while electron-donating groups decrease it. Sulfur analogues consistently show significantly lower activation energies (by ~40 kJ/mol) than their oxygen counterparts, explaining their experimentally observed faster decomposition. This work establishes a dual-methodology computational framework for accurately predicting the kinetics of these reactions, providing valuable insights for the regioselective synthesis of biologically relevant triazole derivatives via controlled pyrolysis. Full article
(This article belongs to the Special Issue Advances in Density Functional Theory (DFT) Calculation)
Show Figures

Graphical abstract

Back to TopTop