Hydrothermal Conversion of Wastewater Treatment Sands into Dual-Phase FAU/LTA Zeolite: Structural Insights and Performance in Methylene Blue Adsorption
Abstract
1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization of Synthesized Zeolite
2.1.1. Chemical Composition
2.1.2. XRD Analysis
2.1.3. FTIR Analysis
2.1.4. SEM Analysis
2.2. Adsorption Performance Evaluation
2.2.1. Effect of pH on Adsorption Efficiency
2.2.2. Adsorption Kinetics
2.2.3. Isothermal and Thermodynamic Evaluation
2.2.4. Regeneration and Reusability
2.2.5. Literature Comparison of Methylene Blue Adsorption on Zeolitic Materials
| Waste Precursor | Zeolitic Material (Phase) | BET Surface Area (m2·g−1) | MB Adsorption Capacity (mg·g−1) | Reference |
|---|---|---|---|---|
| Mining tailings | LTA zeolite | 48 | 30 | [41] |
| Mining tailings | LiOH-modified LTA zeolite (ZA-Li+) | 52 | 43 | |
| Pure reagents | NaX zeolite | 375 | 24 | [100] |
| Waste glass fiber | Zeolite-like mesoporous material (analcime-type) | 166 | 132 | [106] |
| Fly ash | Zeolite | 132 | 0.7 | [107] |
| Kaolin | Zeolite–X | 7146 | 2 | [105] |
| Phosphogypsum Flotation Tailings | Zeolite A | 44.2 | 32 | [108] |
| Rice hush ask (RHA) | Zeolite NaY | 164.4 | 49 | [95] |
| Clays | LTA (MZ) | - | 77 | [66] |
| LTA (ABZ) | - | 76 | ||
| FAU Y (ANF) | - | 79 | ||
| Kaolin | NaA | 625 | 196 | [109] |
| Waste coal post-combustion fly ash (Raw CFA) | Pure nanozeolite X (nFAZX) | 770 | 345 | [110] |
| Commercial zeolite X (CZX) | 763 | 250 | ||
| Huadian oil shale ash | NaX zeolite | 367 | 50 | [111] |
| Molybdenum tailings | Faujasite-Na zeolite | 478 | 45 | [112] |
| Wastewater treatment plan residual sands | ZEO–RS | 51 | 34.2–36.6 (20–30 °C) | This study |
2.2.6. Proposed Adsorption Mechanism
3. Materials and Methods
3.1. Collection and Pretreatment of Residual Sands
3.2. Zeolite Synthesis Procedure
3.3. Material Characterization Techniques
3.4. Adsorption and Desorption Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nishat, A.; Yusuf, M.; Qadir, A.; Ezaier, Y.; Vambol, V.; Ijaz Khan, M.; Ben Moussa, S.; Kamyab, H.; Sehgal, S.S.; Prakash, C.; et al. Wastewater Treatment: A Short Assessment on Available Techniques. Alex. Eng. J. 2023, 76, 505–516. [Google Scholar] [CrossRef]
- Pan, Y.; Teng, T.; Wang, S.; Wang, T. Impact and Mechanism of Urbanization on Urban Green Development in the Yangtze River Economic Belt. Ecol. Indic. 2024, 158, 111612. [Google Scholar] [CrossRef]
- Muga, H.E.; Mihelcic, J.R. Sustainability of Wastewater Treatment Technologies. J. Env. Manag. 2008, 88, 437–447. [Google Scholar] [CrossRef]
- Jain, H. From Pollution to Progress: Groundbreaking Advances in Clean Technology Unveiled. Innov. Green Dev. 2024, 3, 100143. [Google Scholar] [CrossRef]
- Borges, N.B.; Campos, J.R.; Pablos, J.M. Characterization of Residual Sand Removed from the Grit Chambers of a Wastewater Treatment Plant and Its Use as Fine Aggregate in the Preparation of Non-Structural Concrete. Water Pract. Technol. 2015, 10, 164–171. [Google Scholar] [CrossRef]
- Czop, M.; Zajusz-Zubek, E.; Łaźniewska-Piekarczyk, B. Use of Sands from Wastewater Treatment Plants as a Substitute for Natural Aggregate in the Context of a Circular Economy. Sustainability 2025, 17, 5471. [Google Scholar] [CrossRef]
- Górka, J.; Poproch, D.; Cimochowicz-Rybicka, M.; Łuszczek, B. Characteristics of Sand Recovered from the Municipal Wastewater Treatment Plant. Gospod. Surowcami Miner. Miner. Resour. Manag. 2023, 39, 109–123. [Google Scholar] [CrossRef]
- Silva, E.N.; Cantillo-Castrillon, M.; Dantas, T.M.; Mesquita, Y.M.; Maia, D.A.S.; Bastos-Neto, M.; Barcellos, W.M.; Azevedo, D.C.S. Siloxane Adsorption by Porous Silica Synthesized from Residual Sand of Wastewater Treatment. J. Environ. Chem. Eng. 2021, 9, 104805. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Thomas, M.; Surapaneni, A.; Moon, E.M.; Milne, N.A. Beneficial Reuse of Water Treatment Sludge in the Context of Circular Economy. Environ. Technol. Innov. 2022, 28, 102651. [Google Scholar] [CrossRef]
- Ahmad, T.; Ahmad, K.; Alam, M. Characterization of Water Treatment Plant’s Sludge and Its Safe Disposal Options. Procedia Environ. Sci. 2016, 35, 950–955. [Google Scholar] [CrossRef]
- Hartmann, A.; Petrov, V.; Buhl, J.-C.; Rübner, K.; Lindemann, M.; Prinz, C.; Zimathies, A. Zeolite Synthesis under Insertion of Silica Rich Filtration Residues from Industrial Wastewater Reconditioning. Adv. Chem. Eng. Sci. 2014, 04, 120–134. [Google Scholar] [CrossRef]
- Xie, W.; Ma, H.; Cao, C.; Wang, Y.; Qiao, Y.; Teng, J.; Li, N.; Yue, C. Sea Sand as a Silica Source to Hydrothermally Synthesize Analcime. Materials 2025, 18, 2818. [Google Scholar] [CrossRef] [PubMed]
- Kühl, G. Source Materials for Zeolite Synthesis. In Verified Syntheses of Zeolitic Materials; Elsevier: Amsterdam, The Netherlands, 2001; pp. 19–20. [Google Scholar] [CrossRef]
- Round, C.I.; Hill, S.J.; Latham, K.; Williams, C.D. The Crystal Morphology of Zeolite A. The Effects of the Source of the Reagents. Microporous Mater. 1997, 11, 213–225. [Google Scholar] [CrossRef]
- Yoldi, M.; Fuentes-Ordoñez, E.G.; Korili, S.A.; Gil, A. Zeolite Synthesis from Industrial Wastes. Microporous Mesoporous Mater. 2019, 287, 183–191. [Google Scholar] [CrossRef]
- Lin, S.; Jiang, X.; Zhao, Y.; Yan, J. Zeolite Greenly Synthesized from Fly Ash and Its Resource Utilization: A Review. Sci. Total Environ. 2022, 851, 158182. [Google Scholar] [CrossRef]
- Khaleque, A.; Alam, M.; Hoque, M.; Mondal, S.; Bin Haider, J.; Xu, B.; Johir, M.; Karmakar, A.K.; Zhou, J.; Ahmed, M.B.; et al. Zeolite Synthesis from Low-Cost Materials and Environmental Applications: A Review. Environ. Adv. 2020, 2, 100019. [Google Scholar] [CrossRef]
- Vogrin, J.; Santini, T.; Peng, H.; Zhao, L.; Vaughan, J. Synthesis of Zeolites Using Kaolin in Concentrated Sodium Hydroxide-Aluminate Solutions. Appl. Clay Sci. 2023, 244, 107106. [Google Scholar] [CrossRef]
- Marschall, M.S.; Seifert, M.; Hauck, M.; Busse, O.; Weigand, J.J. Zeolite Synthesis Using Recycled Silicon and Aluminum Components from Spent FCC Catalysts. Waste Manag. 2025, 202, 114817. [Google Scholar] [CrossRef]
- de Longe, C.; da Silva, A.; Câmara, A.B.F.; Bieseki, L.; de Carvalho, L.S.; Pergher, S.B.C.; de Mello, M.I.S. Synthesis of LTA Zeolite from Beach Sand: A Solution for CO2 Capture. Coatings 2025, 15, 334. [Google Scholar] [CrossRef]
- Rozhkovskaya, A.; Rajapakse, J.; Millar, G.J. Optimisation of Zeolite LTA Synthesis from Alum Sludge and the Influence of the Sludge Source. J. Environ. Sci. 2021, 99, 130–142. [Google Scholar] [CrossRef]
- Kumari, S.; Chowdhry, J.; Kumar, M.; Chandra Garg, M. Zeolites in Wastewater Treatment: A Comprehensive Review on Scientometric Analysis, Adsorption Mechanisms, and Future Prospects. Environ. Res. 2024, 260, 119782. [Google Scholar] [CrossRef] [PubMed]
- Mancinelli, M.; Martucci, A. Exploring the Potential of Zeolites for Sustainable Environmental Applications. Sustain. Chem. 2025, 6, 9. [Google Scholar] [CrossRef]
- Hart, A.; Wood, J. Methodological Review of Zeolite Synthesis from Industrial Waste and Natural Clays and the Fabrication of Hierarchical Pore Structures. Next Mater. 2025, 9, 101113. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Wołowicz, A.; Vogelsang, C.; Umar, M. Municipal Solid Waste Fly Ash-Derived Zeolites as Adsorbents for the Recovery of Nutrients and Heavy Metals—A Review. Water 2023, 15, 3817. [Google Scholar] [CrossRef]
- Tufail, M.K.; Ifrahim, M.; Rashid, M.; Ul Haq, I.; Asghar, R.; Uthappa, U.T.; Selvaraj, M.; Kurkuri, M. Chemistry of Zeolites and Zeolite Based Composite Membranes as a Cutting-Edge Candidate for Removal of Organic Dyes & Heavy Metal Ions: Progress and Future Directions. Sep. Purif. Technol. 2025, 354, 128739. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Han, H.; Zhang, M.; Wang, H.; Song, H.; Chen, Y. Effective Removal of Organic Dyes Using the Ultrasonic-Assisted Hydrothermal Synthesis of NaP Zeolite Doping Cu or Fe in Fenton-like Oxidation Systems. Sep. Purif. Technol. 2022, 299, 121767. [Google Scholar] [CrossRef]
- Dehmani, Y.; Ba Mohammed, B.; Oukhrib, R.; Dehbi, A.; Lamhasni, T.; Brahmi, Y.; El-Kordy, A.; Franco, D.S.P.; Georgin, J.; Lima, E.C.; et al. Adsorption of Various Inorganic and Organic Pollutants by Natural and Synthetic Zeolites: A Critical Review. Arab. J. Chem. 2024, 17, 105474. [Google Scholar] [CrossRef]
- Gadore, V.; Mishra, S.R.; Yadav, N.; Yadav, G.; Ahmaruzzaman, M. Advances in Zeolite-Based Materials for Dye Removal: Current Trends and Future Prospects. Inorg. Chem. Commun. 2024, 166, 112606. [Google Scholar] [CrossRef]
- Liaquat, I.; Munir, R.; Abbasi, N.A.; Sadia, B.; Muneer, A.; Younas, F.; Sardar, M.F.; Zahid, M.; Noreen, S. Exploring Zeolite-Based Composites in Adsorption and Photocatalysis for Toxic Wastewater Treatment: Preparation, Mechanisms, and Future Perspectives. Environ. Pollut. 2024, 349, 123922. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Periyasamy, A.P. A Review of Bioremediation of Textile Dye Containing Wastewater. Clean. Water 2025, 4, 100092. [Google Scholar] [CrossRef]
- Dutta, S.; Adhikary, S.; Bhattacharya, S.; Roy, D.; Chatterjee, S.; Chakraborty, A.; Banerjee, D.; Ganguly, A.; Nanda, S.; Rajak, P. Contamination of Textile Dyes in Aquatic Environment: Adverse Impacts on Aquatic Ecosystem and Human Health, and Its Management Using Bioremediation. J. Environ. Manag. 2024, 353, 120103. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Dash, R.R.; Bhunia, P. A Review on Chemical Coagulation/Flocculation Technologies for Removal of Colour from Textile Wastewaters. J. Environ. Manag. 2012, 93, 154–168. [Google Scholar] [CrossRef] [PubMed]
- Kusumlata; Ambade, B.; Kumar, A.; Gautam, S. Sustainable Solutions: Reviewing the Future of Textile Dye Contaminant Removal with Emerging Biological Treatments. Limnol. Rev. 2024, 24, 126–149. [Google Scholar] [CrossRef]
- Ikram, M.; Naeem, M.; Zahoor, M.; Hanafiah, M.M.; Oyekanmi, A.A.; Ullah, R.; Farraj, D.A.A.; Elshikh, M.S.; Zekker, I.; Gulfam, N. Biological Degradation of the Azo Dye Basic Orange 2 by Escherichia Coli: A Sustainable and Ecofriendly Approach for the Treatment of Textile Wastewater. Water 2022, 14, 2063. [Google Scholar] [CrossRef]
- Popaliya, M.; Mishra, A. Modified Zeolite as an Adsorbent for Dyes, Drugs, and Heavy Metal Removal: A Review. Int. J. Environ. Sci. Technol. 2023, 20, 12919–12936. [Google Scholar] [CrossRef]
- Eren, S.; Türk, F.N.; Arslanoğlu, H. Synthesis of Zeolite from Industrial Wastes: A Review on Characterization and Heavy Metal and Dye Removal. Environ. Sci. Pollut. Res. 2024, 31, 41791–41823. [Google Scholar] [CrossRef]
- Mallapur, V.P.; Oubagaranadin, J.U.K. A Brief Review on the Synthesis of Zeolites from Hazardous Wastes. Trans. Indian Ceram. Soc. 2017, 76, 1–13. [Google Scholar] [CrossRef]
- Cao, C.; Xuan, W.; Yan, S.; Wang, Q. Zeolites Synthesized from Industrial and Agricultural Solid Waste and Their Applications: A Review. J. Environ. Chem. Eng. 2023, 11, 110898. [Google Scholar] [CrossRef]
- Campoverde, J.; Guaya, D. From Waste to Added-Value Product: Synthesis of Highly Crystalline LTA Zeolite from Ore Mining Tailings. Nanomaterials 2023, 13, 1295. [Google Scholar] [CrossRef]
- Rorissa, G.L.; Tesema, E.A.; Reddy, R.P.; Hunde, A.R.; Beyena, S.Y.; Biru, M.A.; Mekonnen, D.T.; Adnualem, T.L. Removal of Methylene Blue Dye from Textile Industry Wastewater Using Green Synthesized Teff Straw Assisted ZnO Nanoparticle. Sci. Rep. 2025, 15, 26230. [Google Scholar] [CrossRef] [PubMed]
- Al-Asadi, S.T.; Mussa, Z.H.; Al-Qaim, F.F.; Kamyab, H.; Al-Saedi, H.F.S.; Deyab, I.F.; Kadhim, N.J. A Comprehensive Review of Methylene Blue Dye Adsorption on Activated Carbon from Edible Fruit Seeds: A Case Study on Kinetics and Adsorption Models. Carbon Trends 2025, 20, 100507. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene Blue Dye: Toxicity and Potential Elimination Technology from Wastewater. Results Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- Liang, P.; Yang, W.; Peng, H.; Zhao, S. Efficient Degradation of Methylene Blue in Industrial Wastewater and High Cycling Stability of Nano ZnO. Molecules 2024, 29, 5584. [Google Scholar] [CrossRef]
- Fito, J.; Abewaa, M.; Mengistu, A.; Angassa, K.; Ambaye, A.D.; Moyo, W.; Nkambule, T. Adsorption of Methylene Blue from Textile Industrial Wastewater Using Activated Carbon Developed from Rumex Abyssinicus Plant. Sci. Rep. 2023, 13, 5427. [Google Scholar] [CrossRef]
- Dimbo, D.; Abewaa, M.; Adino, E.; Mengistu, A.; Takele, T.; Oro, A.; Rangaraju, M. Methylene Blue Adsorption from Aqueous Solution Using Activated Carbon of Spathodea Campanulata. Results Eng. 2024, 21, 101910. [Google Scholar] [CrossRef]
- Oyarce, E.; Cantero-López, P.; Roa, K.; Boulett, A.; Yáñez, O.; Santander, P.; Pizarro, G.d.C.; Sánchez, J. Removal of Highly Concentrated Methylene Blue Dye by Cellulose Nanofiber Biocomposites. Int. J. Biol. Macromol. 2023, 238, 124045. [Google Scholar] [CrossRef]
- Bahmanzadegan, F.; Ghaemi, A. A Comprehensive Review on Novel Zeolite-Based Adsorbents for Environmental Pollutant. J. Hazard. Mater. Adv. 2025, 17, 100617. [Google Scholar] [CrossRef]
- Tubon-Usca, G.; Centeno, C.; Pomasqui, S.; Beneduci, A.; Arias, F.A. Enhanced Adsorption of Methylene Blue in Wastewater Using Natural Zeolite Impregnated with Graphene Oxide. Appl. Sci. 2025, 15, 2824. [Google Scholar] [CrossRef]
- Guaya, D.; Debut, A.; Campoverde, J. A Novel Approach to Waste Recycling and Dye Removal: Lithium-Functionalized Nanoparticle Zeolites. Molecules 2024, 29, 4643. [Google Scholar] [CrossRef]
- Dosa, M.; Grifasi, N.; Galletti, C.; Fino, D.; Piumetti, M. Natural Zeolite Clinoptilolite Application in Wastewater Treatment: Methylene Blue, Zinc and Cadmium Abatement Tests and Kinetic Studies. Materials 2022, 15, 8191. [Google Scholar] [CrossRef]
- Sohrabnezhad, S.; Pourahmad, A. Comparison Absorption of New Methylene Blue Dye in Zeolite and Nanocrystal Zeolite. Desalination 2010, 256, 84–89. [Google Scholar] [CrossRef]
- Belachew, N.; Hinsene, H. Preparation of Zeolite 4A for Adsorptive Removal of Methylene Blue: Optimization, Kinetics, Isotherm, and Mechanism Study. Silicon 2021, 14, 1629–1641. [Google Scholar] [CrossRef]
- Zarbaliyev, B.; Israfilov, N.; Feyziyeva, S.; Lutzweiler, G.; Guliyeva, N.; Louis, B. Role of Cation Nature in FAU Zeolite in Both Liquid-Phase and Gas-Phase Adsorption. Catalysts 2025, 15, 734. [Google Scholar] [CrossRef]
- Afreen, G.; Upadhyayula, S. Mechanistic Insights into Upgrading of Biomass-Derived Phenolic Compounds: Comparative Study of the Impact of Lewis Acidity in Zn Loaded FAU Zeolite on Reaction Mechanism. Chem. Eng. J. 2019, 377, 120236. [Google Scholar] [CrossRef]
- Nuno Almeida, J.; Song, L.; Askarli, S.; Chung, S.H.; Ruiz-Martínez, J. Zeolite–Water Chemistry: Characterization Methods to Unveil Zeolite Structure. Chem. Methods 2025, 5, e202400076. [Google Scholar] [CrossRef]
- Chen, L.; Xu, B.; Wang, S.; Ren, S.; Yang, F.; Zhang, W.; Lan, Y.; Chen, C.; Li, J.; Su, Y. Advancements in Synthesis Strategies and Environmental Application of FAU-Type Zeolite: Bibliometric-Driven Review. Green Energy Environ. 2025. [Google Scholar] [CrossRef]
- Daems, I.; Leflaive, P.; Méthivier, A.; Baron, G.V.; Denayer, J.F.M. Influence of Si: Al-Ratio of Faujasites on the Adsorption of Alkanes, Alkenes and Aromatics. Microporous Mesoporous Mater. 2006, 96, 149–156. [Google Scholar] [CrossRef]
- Li, J.; Gao, M.; Yan, W.; Yu, J. Regulation of the Si/Al Ratios and Al Distributions of Zeolites and Their Impact on Properties. Chem. Sci. 2023, 14, 1935–1959. [Google Scholar] [CrossRef]
- Al-Sultani, S.H.; Al-Shathr, A.; Al-Zaidi, B.Y. Aromatics Alkylated with Olefins Utilizing Zeolites as Heterogeneous Catalysts: A Review. Reactions 2024, 5, 900–927. [Google Scholar] [CrossRef]
- Beving, D.E.; O’Neill, C.R.; Yan, Y. Hydrophilic and Antimicrobial Low-Silica-Zeolite LTA and High-Silica-Zeolite MFI Hybrid Coatings on Aluminum Alloys. Microporous Mesoporous Mater. 2008, 108, 77–85. [Google Scholar] [CrossRef]
- Antúnez-García, J.; Galván, D.H.; Petranovskii, V.; Murrieta-Rico, F.N.; Yocupicio-Gaxiola, R.I.; Shelyapina, M.G.; Fuentes-Moyado, S. The Effect of Chemical Composition on the Properties of LTA Zeolite: A Theoretical Study. Comput. Mater. Sci. 2021, 196, 110557. [Google Scholar] [CrossRef]
- Wenten, I.G.; Dharmawijaya, P.T.; Aryanti, P.T.P.; Mukti, R.R.; Khoiruddin, K. LTA Zeolite Membranes: Current Progress and Challenges in Pervaporation. RSC Adv. 2017, 7, 29520–29539. [Google Scholar] [CrossRef]
- Von-Kiti, E.; Oduro, W.O.; Animpong, M.A.; Ampomah-Benefo, K.; Boafo-Mensah, G.; Kwakye-Awuah, B.; Williams, C.D. Evidence of Electronic Influence in the Adsorption of Cationic and Zwitterionic Dyes on Zeolites. Heliyon 2023, 9, e20049. [Google Scholar] [CrossRef]
- Tatlier, M.; Atalay-Oral, C.; Bayrak, A.; Maraş, T.; Erdem, A. Impact of Ion Exchange on Zeolite Hydrophilicity/Hydrophobicity Monitored by Water Capacity Using Thermal Analysis. Thermochim. Acta 2022, 713, 179240. [Google Scholar] [CrossRef]
- Boudjema, L.; Assaf, M.; Salles, F.; Gassin, P.M.; Martin-Gassin, G.; Zajac, J. Renewing Interest in Zeolites as Adsorbents for Capture of Cationic Dyes from Aqueous and Ethanolic Solutions: A Simulation-Based Insight into the Efficiency of Dye Adsorption in View of Wastewater Treatment and Valorization of Post-Sorption Materials. Molecules 2024, 29, 2952. [Google Scholar] [CrossRef]
- Sayehi, M.; Garbarino, G.; Delahay, G.; Busca, G.; Tounsi, H. Synthesis of High Value-Added Na–P1 and Na-FAU Zeolites Using Waste Glass from Fluorescent Tubes and Aluminum Scraps. Mater. Chem. Phys. 2020, 248, 122903. [Google Scholar] [CrossRef]
- Prasertsab, A.; Leangsiri, W.; Salakhum, S.; Yomthong, K.; Ittisanronnachai, S.; Watcharasing, S.; Kiattikomol, P.; Wattanakit, C. Transformation of Production Sand Waste to FAU and LTA Zeolites for Selective Moisture Adsorption and Ethanol Conversion. Top. Catal. 2023, 66, 1631–1648. [Google Scholar] [CrossRef]
- Kordala, N.; Wyszkowski, M. Zeolite Properties, Methods of Synthesis, and Selected Applications. Molecules 2024, 29, 1069. [Google Scholar] [CrossRef]
- Pereira, P.M.; Ferreira, B.F.; Oliveira, N.P.; Nassar, E.J.; Ciuffi, K.J.; Vicente, M.A.; Trujillano, R.; Rives, V.; Gil, A.; Korili, S.; et al. Synthesis of Zeolite A from Metakaolin and Its Application in the Adsorption of Cationic Dyes. Appl. Sci. 2018, 8, 608. [Google Scholar] [CrossRef]
- Verrecchia, G.; Cafiero, L.; de Caprariis, B.; Dell’Era, A.; Pettiti, I.; Tuffi, R.; Scarsella, M. Study of the Parameters of Zeolites Synthesis from Coal Fly Ash in Order to Optimize Their CO2 Adsorption. Fuel 2020, 276, 118041. [Google Scholar] [CrossRef]
- Pérez-Botella, E.; Valencia, S.; Rey, F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem. Rev. 2022, 122, 17647–17695. [Google Scholar] [CrossRef] [PubMed]
- Vaitkus, A.; Merkys, A.; Gražulis, S. Validation of the Crystallography Open Database Using the Crystallographic Information Framework. J. Appl. Crystallogr. 2021, 54, 661–672. [Google Scholar] [CrossRef] [PubMed]
- International Zeolite Association Database of Zeolites Structure. Available online: https://www.iza-structure.org/databases/ (accessed on 28 April 2022).
- Novembre, D.; di Sabatino, B.; Gimeno, D.; Pace, C. Synthesis and Characterization of Na-X, Na-A and Na-P Zeolites and Hydroxysodalite from Metakaolinite. Clay Min. 2011, 46, 339–354. [Google Scholar] [CrossRef]
- Kunecki, P.; Panek, R.; Wdowin, M.; Franus, W. Synthesis of Faujasite (FAU) and Tschernichite (LTA) Type Zeolites as a Potential Direction of the Development of Lime Class C Fly Ash. Int. J. Min. Process 2017, 166, 69–78. [Google Scholar] [CrossRef]
- Fan, W.; Shirato, S.; Gao, F.; Ogura, M.; Okubo, T. Phase Selection of FAU and LTA Zeolites by Controlling Synthesis Parameters. Microporous Mesoporous Mater. 2006, 89, 227–234. [Google Scholar] [CrossRef]
- Oleksiak, M.D.; Soltis, J.A.; Conato, M.T.; Penn, R.L.; Rimer, J.D. Nucleation of FAU and LTA Zeolites from Heterogeneous Aluminosilicate Precursors. Chem. Mater. 2016, 28, 4906–4916. [Google Scholar] [CrossRef]
- Marhoon, A.A.; Hasbullah, S.A.; Asikin-Mijan, N.; Mokhtar, W.N.A.W. Hydrothermal Synthesis of High-Purity Zeolite X from Coal Fly Ash for Heavy Metal Removal: Kinetic and Isotherm Analysis. Adv. Powder Technol. 2023, 34, 104242. [Google Scholar] [CrossRef]
- Sathish, V.; Chandrasekaran, A.; Hamideen, M.S.; Isinkaye, M.O. Impact of Industrial Activities on Physicochemical Properties, Mineralogical, and Elemental Composition in Sediments of Puliyanthangal Lake, Ranipet, India. Sci. Rep. 2025, 15, 20973. [Google Scholar] [CrossRef]
- Volkov, D.S.; Rogova, O.B.; Proskurnin, M.A. Organic Matter and Mineral Composition of Silicate Soils: FTIR Comparison Study by Photoacoustic, Diffuse Reflectance, and Attenuated Total Reflection Modalities. Agronomy 2021, 11, 1879. [Google Scholar] [CrossRef]
- Sivakumar, S.; Ravisankar, R.; Raghu, Y.; Chandrasekaran, A.; Chandramohan, J. FTIR Spectroscopic Studies on Coastal Sediment Samples from Cuddalore District, Tamilnadu, India. Indian J. Adv. Chem. Sci. 2012, 1, 40–46. [Google Scholar]
- Król, M.; Barczyk, K.; Mozgawa, W. FT-IR Studies of Zeolites from Different Structural Groups. Chemik 2011, 65, 667–674. [Google Scholar]
- Moneim, M.A.; Ahmed, E.A. Synthesis of Faujasite from Egyptian Clays: Characterizations and Removal of Heavy Metals. Geomaterials 2015, 05, 68–76. [Google Scholar] [CrossRef]
- Ma, B.; Lothenbach, B. Synthesis, Characterization, and Thermodynamic Study of Selected Na-Based Zeolites. Cem. Concr. Res. 2020, 135, 106111. [Google Scholar] [CrossRef]
- López, M.; Baeza-Brotons, F.; López, I.; Tenza-Abril, A.J.; Aragonés, L. Mineralogy and Morphology of Sand: Key Parameters in the Durability for Its Use in Artificial Beach Nourishment. Sci. Total Environ. 2018, 639, 186–194. [Google Scholar] [CrossRef]
- Parra-Huertas, R.A.; Calderón-Carvajal, C.O.; Gómez-Cuaspud, J.A.; Vera-López, E. Synthesis and Characterization of Faujasite-Na from Fly Ash by the Fusion-Hydrothermal Method. Bol. Soc. Esp. Cerám. Vidr. 2023, 62, 527–542. [Google Scholar] [CrossRef]
- Zhen, S.; Seff, K. Structures of Organic Sorption Complexes of Zeolites. Microporous Mesoporous Mater. 2000, 39, 1–18. [Google Scholar] [CrossRef]
- Mokrzycki, J.; Franus, W.; Panek, R.; Sobczyk, M.; Rusiniak, P.; Szerement, J.; Jarosz, R.; Marcińska-Mazur, L.; Bajda, T.; Mierzwa-Hersztek, M. Zeolite Composite Materials from Fly Ash: An Assessment of Physicochemical and Adsorption Properties. Materials 2023, 16, 2142. [Google Scholar] [CrossRef]
- Mokrzycki, J.; Fedyna, M.; Marzec, M.; Szerement, J.; Panek, R.; Klimek, A.; Bajda, T.; Mierzwa-Hersztek, M. Copper Ion-Exchanged Zeolite X from Fly Ash as an Efficient Adsorbent of Phosphate Ions from Aqueous Solutions. J. Environ. Chem. Eng. 2022, 10, 108567. [Google Scholar] [CrossRef]
- Busca, G. Acidity and Basicity of Zeolites: A Fundamental Approach. Microporous Mesoporous Mater. 2017, 254, 3–16. [Google Scholar] [CrossRef]
- Sapawe, N.; Jalil, A.A.; Triwahyono, S.; Shah, M.I.A.; Jusoh, R.; Salleh, N.F.M.; Hameed, B.H.; Karim, A.H. Cost-Effective Microwave Rapid Synthesis of Zeolite NaA for Removal of Methylene Blue. Chem. Eng. J. 2013, 229, 388–398. [Google Scholar] [CrossRef]
- Le, T.P.; Luong, H.V.T.; Nguyen, H.N.; Pham, T.K.T.; Trinh Le, T.L.; Tran, T.B.Q.; Ngo, T.N.M. Insight into Adsorption-Desorption of Methylene Blue in Water Using Zeolite NaY: Kinetic, Isotherm and Thermodynamic Approaches. Results Surf. Interfaces 2024, 16, 100281. [Google Scholar] [CrossRef]
- Radoor, S.; Karayil, J.; Jayakumar, A.; Lee, J.; Nandi, D.; Parameswaranpillai, J.; Pant, B.; Siengchin, S. Efficient Removal of Organic Dye from Aqueous Solution Using Hierarchical Zeolite-Based Biomembrane: Isotherm, Kinetics, Thermodynamics and Recycling Studies. Catalysts 2022, 12, 886. [Google Scholar] [CrossRef]
- Cao, C.Y.; Wang, M.; Song, Z.G.; Zhao, S.; Wan, X. Adsorption of Methylene Blue onto Al-Pillared Montmorillonite. Desalination Water Treat. 2021, 227, 384–390. [Google Scholar] [CrossRef]
- Dali Youcef, L.; López-Galindo, A.; Verdugo-Escamilla, C.; Belaroui, L.S. Synthesis and Characterization of Zeolite LTA by Hydrothermal Transformation of a Natural Algerian Palygorskite. Appl. Clay Sci. 2020, 193, 105690. [Google Scholar] [CrossRef]
- Khnifira, M.; El Hamidi, S.; Sadiq, M.; Şimşek, S.; Kaya, S.; Barka, N.; Abdennouri, M. Adsorption Mechanisms Investigation of Methylene Blue on the (0 0 1) Zeolite 4A Surface in Aqueous Medium by Computational Approach and Molecular Dynamics. Appl. Surf. Sci. 2022, 572, 151381. [Google Scholar] [CrossRef]
- Hadda Aya, H.; Djamel, N.; Samira, A.; Otero, M.; Ali Khan, M. Optimizing Methylene Blue Adsorption Conditions on Hydrothermally Synthesized NaX Zeolite through a Full Two-Level Factorial Design. RSC Adv. 2024, 14, 23816–23827. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Zhang, Z.; Wu, L.; Fan, Y.; Sun, Z. Synthesis, Characterization and Adsorption Behaviors of Faujasite-Type Zeolites towards Methylene Blue. IOP Conf. Ser. Mater. Sci. Eng. 2019, 592, 012017. [Google Scholar] [CrossRef]
- Ahmed, E.S.A.; Al-Sagheer, N.A.; Razek, T.A.; El-Gendy, A.S.; Hashem, F.S. Synthesis of Faujasite-Na-Type Zeolite from Partial de-Aluminated Metakaolin for Removal of Methylene Blue from Contaminated Water. Chem. Pap. 2025, 79, 2505–2515. [Google Scholar] [CrossRef]
- Rusew, R.; Lazarova, H.; Angelova, M.; Petkova-Yankova, N.; Nikolova, R.; Valtchev, V. Exploring the Adsorptive Properties of an Embryonic Zeolite toward Methylene Blue. Mater. Adv. 2025, 6, 7942–7957. [Google Scholar] [CrossRef]
- Rial, J.B.; Ferreira, M.L. Potential Applications of Spent Adsorbents and Catalysts: Re-Valorization of Waste. Sci. Total Environ. 2022, 823, 153370. [Google Scholar] [CrossRef] [PubMed]
- Mulushewa, Z.; Dinbore, W.T.; Ayele, Y. Removal of Methylene Blue from Textile Waste Water Using Kaolin and Zeolite-x Synthesized from Ethiopian Kaolin. Environ. Anal. Health Toxicol. 2021, 36. [Google Scholar] [CrossRef]
- Tsai, C.K.; Horng, J.J. Transformation of Glass Fiber Waste into Mesoporous Zeolite-like Nanomaterials with Efficient Adsorption of Methylene Blue. Sustainability 2021, 13, 6207. [Google Scholar] [CrossRef]
- Fungaro, D.A.; Bruno, M.; Grosche, L.C. Adsorption and Kinetic Studies of Methylene Blue on Zeolite Synthesized from Fly Ash. Desalination Water Treat. 2009, 2, 231–239. [Google Scholar] [CrossRef]
- Li, C.; Yang, J.; Liu, S.; Liu, N.; Zhang, L.; Ren, L. Adsorption of Methylene Blue (MB) Using Novel Synthesized Phosphogypsum Flotation Tailings-Derived Zeolite (PGTZ): Experimental and Modeling Approaches. Separations 2025, 12, 286. [Google Scholar] [CrossRef]
- Oydinov, M.; Dimetova, F.; Abdurakhmonov, E.; Rakhmatkarieva, F.; Ibragimov, A.; Guro, V.; Onn, C.W.; Abdurakhmonov, O.; Dissanayake, K.K.; Abass, K.S.; et al. Kaolin-Derived Zeolites: Synthesis, Characterization, and Adsorption Efficiency of Methylene Blue. Inorg. Chem. Commun. 2026, 184, 115921. [Google Scholar] [CrossRef]
- Sivalingam, S.; Kella, T.; Maharana, M.; Sen, S. Efficient Sono-Sorptive Elimination of Methylene Blue by Fly Ash-Derived Nano-Zeolite X: Process Optimization, Isotherm and Kinetic Studies. J. Clean. Prod. 2019, 208, 1241–1254. [Google Scholar] [CrossRef]
- Shi, L.; Wang, Q.; Zhao, X.; Che, Y.; Liu, H.; Zuo, W.; Zhang, Y. The Methyl Blue Adsorption Performance and Mechanism of NaX Zeolite Synthesized from Huadian Oil Shale Ash. J. Taiwan. Inst. Chem. Eng. 2023, 147, 104904. [Google Scholar] [CrossRef]
- Dou, K.; Song, Y.; Tao, M.; Liu, S.; Li, C.; Dong, Q.; Chen, J.; Xie, M.; Sun, Q. Faujasite Zeolite Synthesized by Alkali Fusion-Hydrothermal Method from Molybdenum Tailings for Methylene Blue Adsorption. Microporous Mesoporous Mater. 2026, 399, 113864. [Google Scholar] [CrossRef]
- Asamoah, E.N.; Liu, H.; Fan, X. Fixed-Bed Adsorption of Methylene Blue Using Granular NaX Zeolite/Attapulgite Composite: Efficiency, Mechanism and Reusability of Saturated G-NaX/A. Sep. Purif. Technol. 2025, 354, 128710. [Google Scholar] [CrossRef]
- Król, M.; Koleżyński, A.; Mozgawa, W. Vibrational Spectra of Zeolite Y as a Function of Ion Exchange. Molecules 2021, 26, 342. [Google Scholar] [CrossRef]
- Lemishka, M.; Dedecek, J.; Mlekodaj, K.; Sobalik, Z.; Sklenak, S.; Tabor, E. Speciation and Siting of Divalent Transition Metal Ions in Silicon-Rich Zeolites. An FTIR Study. Pure Appl. Chem. 2019, 91, 1723–1732. [Google Scholar] [CrossRef]
- Picón, D.; Vergara-Rubio, A.; Estevez-Areco, S.; Cerveny, S.; Goyanes, S. Adsorption of Methylene Blue and Tetracycline by Zeolites Immobilized on a PBAT Electrospun Membrane. Molecules 2023, 28, 81. [Google Scholar] [CrossRef]
- Khraisheh, M.A.M.; Al-Ghouti, M.A.; Allen, S.J.; Ahmad, M.N. Effect of OH and Silanol Groups in the Removal of Dyes from Aqueous Solution Using Diatomite. Water Res. 2005, 39, 922–932. [Google Scholar] [CrossRef]







| Chemical Compound | RS (%) | ZEO-RS (%) |
|---|---|---|
| Al2O3 | 13.4 ± 0.7 | 24.1 ± 0.6 |
| SiO2 | 68.3 ± 0.8 | 41.4 ± 0.9 |
| S | 0.3 ± 0.0 | <ql 1 |
| K2O | 1.0 ± 0.0 | 0.2 ± 0.0 |
| MgO | <ql | 2.2 ± 0.0 |
| CaO | 2.3 ± 0.0 | 2.2 ± 0.0 |
| Fe2O3 | 1.8 ± 0.0 | 1.6 ± 0.0 |
| TiO2 | <ql | 0.3 ± 0.0 |
| MnO | <ql | 0.1 ± 0.0 |
| ZnO | <ql | 0.2 ± 0.0 |
| Model | Parameter | ZEO-RS |
|---|---|---|
| Pseudo-first order | qe (mg·g−1) | 2.04 |
| k1 (h−1) | 0.50 | |
| R2 | 0.85 | |
| Pseudo-second order | qe (mg·g−1) | 9.52 |
| k2 (g·mg−1·h−1) | 2.73 | |
| R2 | 0.99 | |
| Intraparticle diffusion | kt1 (g·mg−1·h−1) | 9.37 |
| R2 | 0.92 | |
| kt2 (g·mg−1·h−1) | 0.71 | |
| R2 | 0.95 | |
| kt3 (g·mg−1·h−1) | 0.05 | |
| R2 | 0.97 | |
| Film diffusion | Df (m2·h−1) | 2.5 × 10−7 |
| R2 | 0.83 | |
| Particle diffusion | Dp (m2·h−1) | 2.5 × 10−10 |
| R2 | 0.86 |
| Model | Parameters | ZEO-RS | ||
|---|---|---|---|---|
| T = 20 °C | T = 25 °C | T = 30 °C | ||
| Langmuir | qm (mg·g−1) | 34.2 | 35.6 | 36.6 |
| kL (L·g−1) | 7.7 × 10−3 | 7.9 × 10−3 | 8.2 × 10−3 | |
| rL | 0.91–0.99 | 0.91–0.99 | 0.91–0.99 | |
| R2 | 0.94 | 0.94 | 0.95 | |
| Freundlich | kF (mg·g−1) | 0.31 | 0.31 | 0.31 |
| n−1 | 0.87 | 0.87 | 0.8 | |
| R2 | 0.98 | 0.98 | 0.98 | |
| T | ln kc | R2 | ΔG° | ΔS° | ΔH° |
|---|---|---|---|---|---|
| (K) | (kJ·mol−1) | (kJ·mol−1 · K−1) | (kJ·mol−1) | ||
| 293 | 4.91 | 0.99 | −11.98 | 0.059 | 5.26 |
| 298 | 4.94 | −12.25 | |||
| 303 | 4.98 | −12.56 |
| Test | MB Content (mg·L−1) | pH Range | Adsorbent Dose (g) | Temperature (°C) | Contact Time | Equation |
|---|---|---|---|---|---|---|
| Effect of pH | 5 a | 3–12 | 0.1 | 25 ± 1 | 24 h | (1) |
| Kinetic study | 20 b | 7 | 0.05 | 25 ± 1 | 15 s–24 h | Pseudo-first order (2) Pseudo-second order (3) Intraparticle diffusion (4) Film diffusion (5) Particle diffusion (6) |
| Isotherm study | 1, 5, 10, 15, 20, 50, 100 and 200 | 7 | 0.1 | 20, 25, 30 | 24 h | Langmuir isotherm (7) (8) Freundlich isotherm (9) Van’t Hoff equation (10) (11) |
| Desorption study | 5 | 3, 9, 11 c | 0.1 | 25 ± 1 | 24 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Guaya, D.; Jara, M.J.; Cortina, J.L. Hydrothermal Conversion of Wastewater Treatment Sands into Dual-Phase FAU/LTA Zeolite: Structural Insights and Performance in Methylene Blue Adsorption. Molecules 2026, 31, 437. https://doi.org/10.3390/molecules31030437
Guaya D, Jara MJ, Cortina JL. Hydrothermal Conversion of Wastewater Treatment Sands into Dual-Phase FAU/LTA Zeolite: Structural Insights and Performance in Methylene Blue Adsorption. Molecules. 2026; 31(3):437. https://doi.org/10.3390/molecules31030437
Chicago/Turabian StyleGuaya, Diana, María José Jara, and José Luis Cortina. 2026. "Hydrothermal Conversion of Wastewater Treatment Sands into Dual-Phase FAU/LTA Zeolite: Structural Insights and Performance in Methylene Blue Adsorption" Molecules 31, no. 3: 437. https://doi.org/10.3390/molecules31030437
APA StyleGuaya, D., Jara, M. J., & Cortina, J. L. (2026). Hydrothermal Conversion of Wastewater Treatment Sands into Dual-Phase FAU/LTA Zeolite: Structural Insights and Performance in Methylene Blue Adsorption. Molecules, 31(3), 437. https://doi.org/10.3390/molecules31030437

