Characterization of Copper-Modified Clinoptilolite for the Photocatalytic Removal of Congo Red Dye from Wastewater
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cu-Modified Clinoptilolite
2.3. Methods of Characterization
2.4. Photocatalytic Degradation Experiments
3. Results and Discussion
3.1. Physicochemical Characterization of NZ and Cu-Modified Clinoptilolite
3.2. Photocatalytic Activity of Patterns of the Studied Samples
3.2.1. Photodegradation of Congo Red
3.2.2. Photodegradation Efficiency
3.2.3. Kinetic Studies
3.2.4. Photocatalytic Reaction Mechanism of Congo Red on NZ and NZ/Cux
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NZ | Natural clinoptilolite |
| CR | Congo red |
| PFO | Pseudo-first-order |
| PSO | Pseudo-second-order |
| WDXRF | Wavelength Dispersive X-ray Fluorescence Spectroscopy |
| PXRD | Powder X-ray Diffraction Analysis |
| FTIR | Fourier Transform Infrared Spectroscopy |
References
- Bai, X.; Cao, Y.; Zhu, B.; Liu, R.; Dong, J.; Yang, H. Enhancement of Photocatalytic Antimicrobial Performance via Generation and Diffusion of ROS. Sci. Energy Environ. 2024, 1, 7. [Google Scholar] [CrossRef]
- Zheng, T.-H.; Zhang, Z.-Z.; Liu, Y.; Zou, L.-H. Recent progress in catalytically driven advanced oxidation processes for wastewater treatment. Catalysts 2025, 15, 761. [Google Scholar] [CrossRef]
- Khader, E.H.; Muslim, S.A.; Saady, N.M.C.; Ali, N.S.; Salih, I.K.; Mohammed, T.J.; Albayati, T.M.; Zendehboudi, S. Recent advances in photocatalytic advanced oxidation processes for organic compound degradation: A review. Desalination Water Treat. 2024, 318, 100384. [Google Scholar] [CrossRef]
- Bashir, Y.; Raj, R.; Ghangrekar, M.; Nema, A.K.; Das, S. Critical assessment of advanced oxidation processes and bio-electrochemical integrated systems for removing emerging contaminants from wastewater. RSC Sustain. 2023, 1, 1912–1931. [Google Scholar] [CrossRef]
- Herrmann, J.-M. Heterogeneous photocatalysis: Fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 1999, 53, 115–129. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef]
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Sacco, O.; Vaiano, V.; Sannino, D. Main parameters influencing the design of photocatalytic reactors for wastewater treatment: A mini review. J. Chem. Technol. Biotechnol. 2020, 95, 2608–2618. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.; Hamilton, J.W.; Byrne, J.A.; O’shea, K. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, F.; Shen, Y.; Duan, X.; Zhao, S.; Chen, X.; Liang, J. Removal of emerging organic pollutants by zeolite mineral (Clinoptilolite) composite photocatalysts in drinking water and watershed water. Catalysts 2024, 14, 216. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, L.; Xu, J.; Shen, B. A Mini-Review of Recent Progress in Zeolite-Based Catalysts for Photocatalytic or Photothermal Environmental Pollutant Treatment. Catalysts 2025, 15, 158. [Google Scholar] [CrossRef]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Rodríguez-Iznaga, I.; Shelyapina, M.G.; Petranovskii, V. Ion exchange in natural clinoptilolite: Aspects related to its structure and applications. Minerals 2022, 12, 1628. [Google Scholar] [CrossRef]
- Dziedzicka, A.; Sulikowski, B.; Ruggiero-Mikołajczyk, M. Catalytic and physicochemical properties of modified natural clinoptilolite. Catal. Today 2016, 259, 50–58. [Google Scholar] [CrossRef]
- Grifasi, N.; Ziantoni, B.; Fino, D.; Piumetti, M. Fundamental properties and sustainable applications of the natural zeolite clinoptilolite. Environ. Sci. Pollut. Res. 2024, 32, 27805–27840. [Google Scholar] [CrossRef]
- Baral, S.C.; Maneesha, P.; Datta, S.; Dukiya, K.; Sasmal, D.; Samantaray, K.S.; BR, V.K.; Dasgupta, A.; Sen, S. Enhanced photocatalytic degradation of organic pollutants in water using copper oxide (CuO) nanosheets for environmental application. JCIS Open 2024, 13, 100102. [Google Scholar] [CrossRef]
- Anpo, M.; Kamat, P.V. Environmentally Benign Photocatalysts: Applications of Titanium Oxide-Based Materials; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Leyva Soriano, G.L. Evaluación de TiO2/Clinoptilona en Suspensión y Película en la Degradación Fotocatalítica de Metilvioleta. Master’s Thesis, Universidad de Sonora, Hermosillo, Mexico, 2010. [Google Scholar]
- Stylidi, M.; Kondarides, D.I.; Verykios, X.E. Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl. Catal. B Environ. 2003, 40, 271–286. [Google Scholar] [CrossRef]
- Pavlović, J.; Rajić, N. Use of natural zeolite clinoptilolite in the preparation of photocatalysts and its role in photocatalytic activity. Minerals 2024, 14, 508. [Google Scholar] [CrossRef]
- Mohammadzadeh Kakhki, R.; Zirjanizadeh, S.; Mohammadpoor, M. A review of clinoptilolite, its photocatalytic, chemical activity, structure and properties: In time of artificial intelligence. J. Mater. Sci. 2023, 58, 10555–10575. [Google Scholar] [CrossRef]
- Dashtpeyma, G.; Shabanian, S.R. Efficient photocatalytic oxidative desulfurization of liquid petroleum fuels under visible-light irradiation using a novel ternary heterogeneous BiVO4-CuO/modified natural clinoptilolite zeolite. J. Photochem. Photobiol. A Chem. 2023, 445, 115024. [Google Scholar] [CrossRef]
- Sapawe, N.; Jalil, A.; Triwahyono, S.; Sah, R.; Jusoh, N.; Hairom, N.H.H.; Efendi, J. Electrochemical strategy for grown ZnO nanoparticles deposited onto HY zeolite with enhanced photodecolorization of methylene blue: Effect of the formation of SiOZn bonds. Appl. Catal. A Gen. 2013, 456, 144–158. [Google Scholar] [CrossRef]
- Rasheed, H.M.; Aroosh, K.; Meng, D.; Ruan, X.; Akhter, M.; Cui, X. A review on modified ZnO to address environmental challenges through photocatalysis: Photodegradation of organic pollutants. Mater. Today Energy 2025, 48, 101774. [Google Scholar] [CrossRef]
- Pavlović, J.; Hrenović, J.; Povrenović, D.; Rajić, N. Advances in the applications of Clinoptilolite-Rich Tuffs. Materials 2024, 17, 1306. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Zhang, S.; Lin, X. New insights on degradation of methylene blue using thermocatalytic reactions catalyzed by low-temperature excitation. J. Hazard. Mater. 2013, 260, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.; Sharma, M.; Pathania, K.; Jena, P.K.; Bhushan, I. Degradation of synthetic dyes using nanoparticles: A mini-review. Environ. Sci. Pollut. Res. 2021, 28, 49434–49446. [Google Scholar] [CrossRef]
- Slama, H.B.; Chenari Bouket, A.; Pourhassan, Z.; Alenezi, F.N.; Silini, A.; Cherif-Silini, H.; Oszako, T.; Luptakova, L.; Golińska, P.; Belbahri, L. Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods. Appl. Sci. 2021, 11, 6255. [Google Scholar] [CrossRef]
- Tzvetanova, Y.; Tacheva, E.; Dimowa, L.; Tsvetanova, L.; Nikolov, A. Trace elements in the clinoptilolite tuffs from four Bulgarian deposits, Eastern Rhodopes. Rev. Bulg. Geol. Soc. 2023, 84, 51–55. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Lippens, B.C.; De Boer, J. Studies on pore systems in catalysts: V. t method. J. Catal. 1965, 4, 319–323. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Terzyk, A.P.; Gauden, P.A.; Solarz, L. Numerical analysis of Horvath–Kawazoe equation. Comput. Chem. 2002, 26, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Chang, T.-F.M.; Chen, C.-Y.; Sone, M.; Hsu, Y.-J. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 2019, 9, 430. [Google Scholar] [CrossRef]
- Shaban, M.; Abukhadra, M.R.; Khan, A.A.P.; Jibali, B.M. Removal of Congo red, methylene blue and Cr (VI) ions from water using natural serpentine. J. Taiwan Inst. Chem. Eng. 2018, 82, 102–116. [Google Scholar] [CrossRef]
- Pabalan, R.T. Thermodynamics of ion exchange between clinoptilolite and aqueous solutions of na+ k+ and na+ ca2+. Geochim. Cosmochim. Acta 1994, 58, 4573–4590. [Google Scholar] [CrossRef]
- Kudoh, Y.; Takéuchi, Y. Thermal stability of clinoptilolite: The crystal structure at 350 C. Mineral. J. 1983, 11, 392–406. [Google Scholar] [CrossRef]
- Bahaalddin, A.D. Ammonium and Lead Exchange in Clinoptilolite Zeolite Column. Ph.D. Thesis, Middle East Technical University (Turkey), Ankara, Turkey, 2010. [Google Scholar]
- Dimowa, L.; Tzvetanova, Y. Powder XRD study of changes of Cd2+ modified clinoptilolite at different stages of the ion exchange process. Minerals 2021, 11, 1130. [Google Scholar] [CrossRef]
- Semmons, W. XVII. On Brochantite and its associations. Mineral. Mag. J. Mineral. Soc. 1881, 4, 259–263. [Google Scholar] [CrossRef]
- Dimowa, L.; Petrova, N.; Tzvetanova, Y.; Petrov, O.; Piroeva, I. Structural features and thermal behavior of ion-exchanged clinoptilolite from Beli Plast deposit (Bulgaria). Minerals 2022, 12, 1576. [Google Scholar] [CrossRef]
- Pabalan, R.T.; Bertetti, F.P. Experimental and modeling study of ion exchange between aqueous solutions and the zeolite mineral clinoptilolite. J. Solut. Chem. 1999, 28, 367–393. [Google Scholar] [CrossRef]
- Kitsopoulos, K.P. The relationship between the thermal behavior of clinoptilolite and its chemical composition. Clays Clay Miner. 2001, 49, 236–243. [Google Scholar] [CrossRef]
- Yoder, C.H.; Agee, T.; Ginion, K.; Hofmann, A.; Ewanichak, J.; Schaeffer, C., Jr.; Carroll, M.; Schaeffer, R.; McCaffrey, P. The relative stabilities of the copper hydroxyl sulphates. Mineral. Mag. 2007, 71, 571–577. [Google Scholar] [CrossRef]
- Zittlau, A.H.; Shi, Q.; Boerio-Goates, J.; Woodfield, B.F.; Majzlan, J. Thermodynamics of the basic copper sulfates antlerite, posnjakite, and brochantite. Geochemistry 2013, 73, 39–50. [Google Scholar] [CrossRef]
- Anagnostopoulos, I.F.; Heuss-Aßbichler, S. Recovery of Different Cu-Phases from Industrial Wastewater. Minerals 2024, 15, 23. [Google Scholar] [CrossRef]
- Marani, D.; Patterson, J.W.; Anderson, P.R. Alkaline precipitation and aging of Cu(II) in the presence of sulfate. Water Res. 1995, 29, 1317–1326. [Google Scholar] [CrossRef]
- Wise, W.S.; Nokleberg, W.J.; Kokinos, M. Clinoptilolite and ferrierite from Agoura, California. Am. Mineral. 1969, 54, 887–895. [Google Scholar]
- Helliwell, M.; Smith, J.V. Brochantite. Acta Crystallogr. Sect. C 1997, 53, 1369–1371. [Google Scholar] [CrossRef]
- Langford, J.I.; Louer, D. High-resolution powder diffraction studies of copper(II) oxide. J. Appl. Crystallogr. 1991, 24, 149–155. [Google Scholar] [CrossRef]
- Oswald, H.R.; Reller, A.; Schmalle, H.W.; Dubler, E. Structure of copper(II) hydroxide, Cu(OH)2. Acta Crystallogr. Sect. C 1990, 46, 2279–2284. [Google Scholar] [CrossRef]
- Ma, H.; He, Y.; Chen, P.; Wang, H.; Sun, Y.; Li, J.; Dong, F.; Xie, G.; Sheng, J. Ultrathin Two-Dimensional Bi-Based photocatalysts: Synthetic strategies, surface defects, and reaction mechanisms. Chem. Eng. J. 2021, 417, 129305. [Google Scholar] [CrossRef]
- Palmer, D.A. The solubility of crystalline cupric oxide in aqueous solution from 25 °C to 400 °C. J. Chem. Thermodyn. 2017, 114, 122–134. [Google Scholar] [CrossRef]
- Ateş, E.B. Investigating the Chemical and Thermal Based Treatment Procedure on the Clinoptilolite to Improve the Physicochemical Properties. J. Turk. Chem. Soc. Sect. B Chem. Eng. 2022, 5, 39–58. [Google Scholar]
- Perraki, T.; Orfanoudaki, A. Mineralogical study of zeolites from Pentalofos area, Thrace, Greece. Appl. Clay Sci. 2004, 25, 9–16. [Google Scholar] [CrossRef]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Robati, D. Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J. Nanostruct. Chem. 2013, 3, 55. [Google Scholar] [CrossRef]
- Dasineh Khiavi, N.; Katal, R.; Kholghi Eshkalak, S.; Masudy-Panah, S.; Ramakrishna, S.; Jiangyong, H. Visible Light Driven Heterojunction Photocatalyst of CuO–Cu2O Thin Films for Photocatalytic Degradation of Organic Pollutants. Nanomaterials 2019, 9, 1011. [Google Scholar] [CrossRef]
- Pinna, M.; Zava, M.; Grande, T.; Prina, V.; Monticelli, D.; Roncoroni, G.; Rampazzi, L.; Hildebrand, H.; Altomare, M.; Schmuki, P.; et al. Enhanced Photocatalytic Paracetamol Degradation by NiCu-Modified TiO2 Nanotubes: Mechanistic Insights and Performance Evaluation. Nanomaterials 2024, 14, 1577. [Google Scholar] [CrossRef]
- Bano, K.; Kaushal, S.; Lal, B.; Joshi, S.K.; Kumar, R.; Singh, P.P. Fabrication of CuO/ZnO heterojunction photocatalyst for efficient photocatalytic degradation of tetracycline and ciprofloxacin under direct sun light. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100863. [Google Scholar] [CrossRef]
- Landi, S., Jr.; Segundo, I.R.; Freitas, E.; Vasilevskiy, M.; Carneiro, J.; Tavares, C.J. Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements. Solid State Commun. 2022, 341, 114573. [Google Scholar] [CrossRef]
- Bibi, S.; Shah, S.S.; Muhammad, F.; Siddiq, M.; Kiran, L.; Aldossari, S.A.; Mushab, M.S.S.; Sarwar, S. Cu-doped mesoporous TiO2 photocatalyst for efficient degradation of organic dye via visible light photocatalysis. Chemosphere 2023, 339, 139583. [Google Scholar] [CrossRef]
- Bhoi, Y.P.; Pradhan, S.R.; Behera, C.; Mishra, B. Visible light driven efficient photocatalytic degradation of Congo red dye catalyzed by hierarchical CuS–Bi 2 Cu x W 1− x O 6− 2x nanocomposite system. RSC Adv. 2016, 6, 35589–35601. [Google Scholar] [CrossRef]
- Hitkari, G.; Chowdhary, P.; Kumar, V.; Singh, S.; Motghare, A. Potential of Copper-Zinc Oxide nanocomposite for photocatalytic degradation of congo red dye. Clean. Chem. Eng. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Sadollahkhani, A.; Ibupoto, Z.H.; Elhag, S.; Nur, O.; Willander, M. Photocatalytic properties of different morphologies of CuO for the degradation of Congo red organic dye. Ceram. Int. 2014, 40, 11311–11317. [Google Scholar] [CrossRef]
- Duan, W.-L.; Liu, X.; Luan, J.; Jiao, G.-R.; Jiang, Z.-Y.; Yan, F. Preparation, structure and photocatalytic degradation property of a copper-based complex and its derivative material. J. Solid State Chem. 2023, 322, 123995. [Google Scholar] [CrossRef]
- Naz, A.; Bibi, I.; Majid, F.; Dahshan, A.; Jilani, K.; Taj, B.; Ghafoor, A.; Nazeer, Z.; Alzahrani, F.M.; Iqbal, M. Cu and Fe doped NiCo2O4/g-C3N4 nanocomposite ferroelectric, magnetic, dielectric and optical properties: Visible light-driven photocatalytic degradation of RhB and CR dyes. Diam. Relat. Mater. 2024, 141, 110592. [Google Scholar] [CrossRef]
- Haqmal, E.; Pan, J.; Ahmed, A.; Ullah, R.; Khan, J. Synthesis of PbxCu1− xBi2O4 composites with enhanced visible-light-responsive photocatalytic degradation performance. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 132600. [Google Scholar] [CrossRef]
- Dustgeer, M.R.; Jilani, A.; Ansari, M.O.; Shakoor, M.B.; Ali, S.; Imtiaz, A.; Zakria, H.S.; Othman, M.H.D. Reduced graphene oxide supported polyaniline/copper (II) oxide nanostructures for enhanced photocatalytic degradation of Congo red and hydrogen production from water. J. Water Process Eng. 2024, 59, 105053. [Google Scholar] [CrossRef]
- Mazurenko, J.; Sijo, A.; Kaykan, L.; Kotsyubynsky, V.; Gondek, Ł.; Zywczak, A.; Marzec, M.; Vyshnevskyi, O. Synthesis and Characterization of Copper Ferrite Nanoparticles for Efficient Photocatalytic Degradation of Organic Dyes. J. Nanotechnol. 2025, 2025, 8899491. [Google Scholar] [CrossRef]
- Gao, H.; Yang, H.; Wang, S. Hydrothermal synthesis, growth mechanism, optical properties and photocatalytic activity of cubic SrTiO3 particles for the degradation of cationic and anionic dyes. Optik 2018, 175, 237–249. [Google Scholar] [CrossRef]
- Ullah, F.; Khan, Z.U.H.; Sabahat, S.; Aftab, M.; Sun, J.; Shah, N.S.; Rahim, A.; Abdullah, M.M.; Imran, M. Synergistic degradation of toxic azo dyes using Mn-CuO@ Biochar: An efficient adsorptive and photocatalytic approach for wastewater treatment. Chem. Eng. Sci. 2025, 302, 120844. [Google Scholar] [CrossRef]
- Borthakur, P.; Boruah, P.K.; Darabdhara, G.; Sengupta, P.; Das, M.R.; Boronin, A.I.; Kibis, L.S.; Kozlova, M.N.; Fedorov, V.E. Microwave assisted synthesis of CuS-reduced graphene oxide nanocomposite with efficient photocatalytic activity towards azo dye degradation. J. Environ. Chem. Eng. 2016, 4, 4600–4611. [Google Scholar] [CrossRef]













| Series | NZ, g | 1M CuSO4·5H2O, g | KOH Addition | |
|---|---|---|---|---|
| KOH Pellets, g | Water, g | |||
| NZ-Cu1 | 100 | 250 | - | - |
| NZ-Cu2 | 12.5 | 480.0 | ||
| NZ-Cu3 | 40.0 | 60.0 | ||
| NZ-Cu4 | 50.0 | 0.0 | ||
| Sample | NZ | NZ-Cu-1 | NZ-Cu-2 | NZ-Cu-3 | NZ-Cu-4 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Oxide | Mass % | DL | SE | Mass % | DL | SE | Mass % | DL | SE | Mass % | DL | SE | Mass % | DL | SE |
| Na2O | 0.7760 | 0.0444 | ±0.0219 | 0.4490 | 0.0476 | ±0.0410 | - | - | - | - | - | - | - | - | - |
| MgO | 1.2600 | 0.0298 | ±0.0437 | 1.3000 | 0.0297 | ±0.0145 | 0.8820 | 0.0389 | ±0.0312 | 0.8830 | 0.0412 | ±0.0223 | 0.8790 | 0.0408 | ±0.0202 |
| Al2O3 | 11.0000 | 0.0131 | ±0.0333 | 10.8000 | 0.0137 | ±0.0333 | 8.0000 | 0.0150 | ±0.0684 | 7.2500 | 0.0144 | ±0.0371 | 7.2900 | 0.0150 | ±0.0360 |
| SiO2 | 71.9000 | 0.0412 | ±0.0333 | 71.3000 | 0.0414 | ±0.06667 | 52.8000 | 0.0415 | ±0.0577 | 47.4000 | 0.0424 | ±0.0667 | 46.2000 | 0.0403 | ±0.0882 |
| SO3 | 0.1200 | 0.0052 | ±0.0075 | 0.2500 | 0.0060 | ±0.0040 | 5.1100 | 0.0081 | ±0.0318 | 0.7990 | 0.0064 | ±0.0100 | 0.6760 | 0.0049 | ±0.0179 |
| K2O | 6.4800 | 0.0087 | ±0.0133 | 6.1400 | 0.0086 | ±0.0731 | 8.0400 | 0.0098 | ±0.0410 | 9.9600 | 0.0107 | ±0.0451 | 13.3000 | 0.0110 | ±0.0333 |
| CaO | 6.0300 | 0.0132 | ±0.0404 | 4.6600 | 0.0086 | ±0.0680 | 2.5800 | 0.0092 | ±0.0120 | 4.5700 | 0.0103 | ±0.0218 | 4.3300 | 0.0110 | ±0.0264 |
| Fe2O3 | 1.8400 | 0.0059 | ±0.0348 | 1.7200 | 0.0060 | ±0.0067 | 1.3500 | 0.0046 | ±0.0088 | 1.2900 | 0.0063 | ±0.0115 | 1.2000 | 0.0056 | ±0.0203 |
| CuO | - | - | - | 2.7100 | 0.0037 | ±0.0100 | 20.8000 | 0.0072 | ±0.0667 | 27.3000 | 0.0078 | ±0.0333 | 25.6000 | 0.0078 | ±0.0577 |
| others | 0.5940 | - | - | 0.6710 | - | - | 0.4380 | - | - | 0.5480 | - | - | 0.5250 | - | - |
| Samples | SBET m2·g−1 | Vt cm3·g−1 | Average Pore Diameter nm |
|---|---|---|---|
| NZ | 25.67 | 0.05 | 8.3 |
| NZ-Cu1 | 28.09 | 0.05 | 7.7 |
| NZ-Cu2 | 29.38 | 0.06 | 8.2 |
| NZ-Cu3 | 34.92 | 0.09 | 10.7 |
| NZ-Cu4 | 21.55 | 0.06 | 10.9 |
| Photocatalyst | Degradation Efficency (%) | Ref. |
|---|---|---|
| Congo Red | ||
| Measoporous-TiO2 | 40.0 | [63] |
| 1%Cu-doped TiO2 | 63.0 | [63] |
| 2%Cu-doped TiO2 | 73.0 | [63] |
| 3%Cu-doped TiO2 | 91.0 | [63] |
| CuS-Bi2CuxW1−xO6−2x | 95.0 | [64] |
| ZnO/CuO | 95.0 | [65] |
| Nanorods | 67.0 | [66] |
| Nanoleaves | 48.0 | [66] |
| Nanosheets | 12.0 | [66] |
| Cu/CuO@C | 88.4 | [67] |
| NiCo2O4/gC3N4 | 65.0 | [68] |
| Ni1−xCuxCo2−yFeyO4/g-C3N4 | 94.0 | [68] |
| Pb0.10Cu0.90Bi2O4 | 99.2 | [69] |
| Pani@rGO/CuO | 91.7 | [70] |
| spinel-type CuFe2O4 | 99.0 | [71] |
| SrTiO3 | 84.0 | [72] |
| Mn-CuO@BC | 88.0 | [73] |
| CuS-rGO | 89.0 | [74] |
| NZ | 37.5 | This work |
| NZ-Cu1 | 78.8 | This work |
| NZ-Cu2 | 85.1 | This work |
| NZ-Cu3 | 91.0 | This work |
| NZ-Cu4 | 90.5 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lazarova, H.; Tsvetanova, L.; Barbov, B.; Atanasova-Vladimirova, S.; Nikolov, A. Characterization of Copper-Modified Clinoptilolite for the Photocatalytic Removal of Congo Red Dye from Wastewater. Crystals 2026, 16, 32. https://doi.org/10.3390/cryst16010032
Lazarova H, Tsvetanova L, Barbov B, Atanasova-Vladimirova S, Nikolov A. Characterization of Copper-Modified Clinoptilolite for the Photocatalytic Removal of Congo Red Dye from Wastewater. Crystals. 2026; 16(1):32. https://doi.org/10.3390/cryst16010032
Chicago/Turabian StyleLazarova, Hristina, Liliya Tsvetanova, Borislav Barbov, Stela Atanasova-Vladimirova, and Aleksandar Nikolov. 2026. "Characterization of Copper-Modified Clinoptilolite for the Photocatalytic Removal of Congo Red Dye from Wastewater" Crystals 16, no. 1: 32. https://doi.org/10.3390/cryst16010032
APA StyleLazarova, H., Tsvetanova, L., Barbov, B., Atanasova-Vladimirova, S., & Nikolov, A. (2026). Characterization of Copper-Modified Clinoptilolite for the Photocatalytic Removal of Congo Red Dye from Wastewater. Crystals, 16(1), 32. https://doi.org/10.3390/cryst16010032

