Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (376)

Search Parameters:
Keywords = evapotranspiration projections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4207 KiB  
Article
Impact Analysis of Inter-Basin Water Transfer on Water Shortage Risk in the Baiyangdian Area
by Yuhang Shi, Lixin Zhang and Jinping Zhang
Water 2025, 17(15), 2311; https://doi.org/10.3390/w17152311 - 4 Aug 2025
Abstract
This study quantitatively assesses the risk of water shortage (WSR) in the Baiyangdian area due to the Inter-Basin Water Transfer (IBWT) project, focusing on the impact of water transfer on regional water security. The actual evapotranspiration (ETa) is calculated, and the correlation simulation [...] Read more.
This study quantitatively assesses the risk of water shortage (WSR) in the Baiyangdian area due to the Inter-Basin Water Transfer (IBWT) project, focusing on the impact of water transfer on regional water security. The actual evapotranspiration (ETa) is calculated, and the correlation simulation using Archimedes’ Copula function is implemented in Python 3.7.1, with optimization using the sum of squares of deviations (OLS) and the AIC criterion. The joint distribution model between ETa and three water supply scenarios is constructed. Key findings include (1) ETa increased by 27.3% after water transfer, far exceeding the slight increase in water supply before the transfer; (2) various Archimedean Copulas effectively capture the dependence and joint probability distribution between water supply and ETa; (3) water shortage risk increased after water transfer, with rainfall and upstream water unable to alleviate the problem in Baiyangdian; and (4) cross-basin water transfer reduced risk, with a reduction of 8.90% in the total probability of three key water resource scheduling combinations. This study establishes a Copula-based framework for water shortage risk assessment, providing a scientific basis for water allocation strategies in ecologically sensitive areas affected by human activities. Full article
Show Figures

Figure 1

20 pages, 4135 KiB  
Article
Climate-Induced Water Management Challenges for Cabbage and Carrot in Southern Poland
by Stanisław Rolbiecki, Barbara Jagosz, Roman Rolbiecki and Renata Kuśmierek-Tomaszewska
Sustainability 2025, 17(15), 6975; https://doi.org/10.3390/su17156975 (registering DOI) - 31 Jul 2025
Viewed by 218
Abstract
Climate warming poses significant challenges for the sustainable management of natural water resources, making efficient planning and usage essential. This study evaluates the water requirements, irrigation demand, and rainfall deficits for two key vegetable crops, carrot and white cabbage, under projected climate scenarios [...] Read more.
Climate warming poses significant challenges for the sustainable management of natural water resources, making efficient planning and usage essential. This study evaluates the water requirements, irrigation demand, and rainfall deficits for two key vegetable crops, carrot and white cabbage, under projected climate scenarios RCP 4.5 and RCP 8.5 for the period 2031–2100. The analysis was conducted for Kraków and Rzeszów Counties in southern Poland using projected monthly temperature and precipitation data from the Klimada 2.0 portal. Potential evapotranspiration (ETp) during the growing season (May–October) was estimated using Treder’s empirical model and the crop coefficient method adapted for Polish conditions. The reference period for comparison was 1951–2020. The results reveal a significant upward trend in water demand for both crops, with the highest increases under the RCP 8.5 scenario–seasonal ETp values reaching up to 517 mm for cabbage and 497 mm for carrot. Rainfall deficits are projected to intensify, especially during July and August, with greater shortages in Rzeszów County compared to Kraków County. Irrigation demand varies depending on soil type and drought severity, becoming critical in medium and very dry years. These findings underscore the necessity of adapting irrigation strategies and water resource management to ensure sustainable vegetable production under changing climate conditions. The data provide valuable guidance for farmers, advisors, and policymakers in planning effective irrigation infrastructure and optimizing water-use efficiency in southern Poland. Full article
Show Figures

Figure 1

21 pages, 6605 KiB  
Article
Analysis of Spatial and Temporal Dynamics of Climate Aridization in Rostov Oblast in 1951–2054 Using ERA5 and CMIP6 Data and the De Martonne Index
by Denis Krivoguz
Climate 2025, 13(7), 151; https://doi.org/10.3390/cli13070151 - 17 Jul 2025
Viewed by 594
Abstract
Rostov Oblast is one of the key grain-producing regions in Russia, accounting for 6% of the total grain production. However, it faces an increasing risk of climate aridization, which requires an accurate scientific assessment to ensure the food security of the country. The [...] Read more.
Rostov Oblast is one of the key grain-producing regions in Russia, accounting for 6% of the total grain production. However, it faces an increasing risk of climate aridization, which requires an accurate scientific assessment to ensure the food security of the country. The present study analyzes the spatial and temporal dynamics of climate aridification in the Rostov region for the period 1951–2054. This analysis is based on ERA5 reanalysis data and CMIP6 forecast models (MPI-ESM1-2-HR, CanESM5, BCC-CSM2-MR). The analysis indicates that the annual mean temperature in the region has increased by 2–3 °C since the 1950s, reaching 12 °C in 2023. At the same time, precipitation shows significant interannual variability with no detectable long-term trend. Spatial analysis reveals a stable meridional temperature gradient and zonality of precipitation distribution. The southeastern parts of the region are characterized by the highest degree of aridification. Projection models indicate further warming (+1.5–3 °C by 2054) and increasing contrasts between western (wetter) and eastern (drier) areas. Projections derived from the CMIP6 models indicate an intensification of aridification, accompanied by a decrease in the De Martonne index of 15–25% by the year 2054. The area of territories with arid climates is expected to increase from 30% to 40%. The most vulnerable regions will be in the southeast part of Rostov Oblast, where the De Martonne index values are predicted to decrease to less than 10. The potential increase in temperature and evapotranspiration, coupled with spatial differentiation, could pose significant risks to the sustainability of the agro-industrial complex, particularly in the southeastern part of the region. Full article
Show Figures

Figure 1

24 pages, 4357 KiB  
Article
Attribution Analysis on Runoff Reduction in the Upper Han River Basin Based on Hydro-Meteorologic and Land Use/Cover Change Data Series
by Xiaoya Wang, Shenglian Guo, Menyue Wang, Xiaodong He and Wei Wang
Water 2025, 17(14), 2067; https://doi.org/10.3390/w17142067 - 10 Jul 2025
Viewed by 294
Abstract
Anthropogenic activities and climate change have significantly altered runoff generation in the upper Han River basin, posing a challenge to the water supply sustainability for the Middle Route of the South-to-North Water Diversion Project. Land use/cover changes (LUCCs) affect hydrological processes by modifying [...] Read more.
Anthropogenic activities and climate change have significantly altered runoff generation in the upper Han River basin, posing a challenge to the water supply sustainability for the Middle Route of the South-to-North Water Diversion Project. Land use/cover changes (LUCCs) affect hydrological processes by modifying evapotranspiration, infiltration and soil moisture content. Based on hydro-meteorological data from 1961 to 2023 and LUCC data series from 1985 to 2023, this study aimed to identify the temporal trend in hydro-meteorological variables, to quantify the impacts of underlying land surface and climate factors at different time scales and to clarify the effects of LUCCs and basin greening on the runoff generation process. The results showed that (1) inflow runoff declined at a rate of −1.71 mm/year from 1961 to 2023, with a marked shift around 1985, while potential evapotranspiration increased at a rate of 2.06 mm/year within the same time frame. (2) Annual climate factors accounted for 61.01% of the runoff reduction, while underlying land surface contributed 38.99%. Effective precipitation was the dominant climatic factor during the flood season, whereas potential evapotranspiration had a greater influence during the dry season. (3) From 1985 to 2023, the LUCC changed significantly, mainly manifested by the increasing forest area and decreasing crop land area. The NDVI also showed an upward trend over the years; the actual evapotranspiration increased by 1.163 billion m3 due to the LUCC. This study addresses the climate-driven and human-induced hydrological changes in the Danjiangkou Reservoir and provides an important reference for water resource management. Full article
Show Figures

Figure 1

25 pages, 1568 KiB  
Article
Analysis of the Potential Impacts of Climate Change on the Mean Annual Water Balance and Precipitation Deficits for a Catchment in Southern Ecuador
by Luis-Felipe Duque, Greg O’Donnell, Jimmy Cordero, Jorge Jaramillo and Enda O’Connell
Hydrology 2025, 12(7), 177; https://doi.org/10.3390/hydrology12070177 - 2 Jul 2025
Cited by 1 | Viewed by 564
Abstract
The mean annual water balance is essential for evaluating water availability in a catchment and planning water resources. Climate change alters this balance by affecting precipitation, evapotranspiration, and overall water availability. This study analyses the impact of climate change on the mean annual [...] Read more.
The mean annual water balance is essential for evaluating water availability in a catchment and planning water resources. Climate change alters this balance by affecting precipitation, evapotranspiration, and overall water availability. This study analyses the impact of climate change on the mean annual water balance in the Catamayo catchment, a key water source for irrigation and hydropower in southern Ecuador and northern Peru. A Budyko-based approach was employed due to its conceptual simplicity and proven robustness for estimating long-term water balances under changing climatic conditions. Using outputs from 23 Global Circulation Models (GCMs) under CMIP6’s SSP2-4.5 and SSP8.5 scenarios, the results indicate increasing aridity, particularly in the lower and middle parts of the catchment, which correspond to arid and semi-arid zones. Water availability may decrease by 26.3 ± 12.3% to 33.3 ± 17% until 2080 due to negligible changes (statistically speaking) in average precipitation but rising evapotranspiration. However, historical precipitation analysis (1961–2020) reveals an increasing trend over this historical period which can be attributed to natural climatic variability associated to the El Nino-Southern Oscillation (ENSO), possibly enhanced by anthropogenic climate change. A novel hybrid method combining the statistics of historical precipitation deficits with GCM mean projections provides estimates of future precipitation deficits. These findings suggest potential reductions in crop yields and hydropower capacity, which (although not quantitatively assessed in this study) are inferred based on the projected decline in water availability. Such impacts could lead to higher energy costs, increased reliance on fossil fuels, and intensified competition for water. Mitigation measures, including water-saving strategies, energy diversification, and integrated water resource management, are recommended to address these challenges. Full article
Show Figures

Figure 1

19 pages, 15701 KiB  
Article
The Response of NDVI to Climate Change in the Lowest and Hottest Basin in China
by Chunlan Li, Yang Yu, Lingxiao Sun, Jing He, Haiyan Zhang, Yuanbo Lu, Zengkun Guo, Lingyun Zhang, Ireneusz Malik, Malgorzata Wistuba and Ruide Yu
Atmosphere 2025, 16(7), 778; https://doi.org/10.3390/atmos16070778 - 25 Jun 2025
Viewed by 293
Abstract
The response mechanisms of vegetation dynamics to climate change in arid regions, particularly under extreme low-altitude and high-temperature environments, remain unclear. Focusing on China’s lowest and hottest Turpan-Hami Basin, this study investigates the spatiotemporal evolution of vegetation cover (using MODIS NDVI) and its [...] Read more.
The response mechanisms of vegetation dynamics to climate change in arid regions, particularly under extreme low-altitude and high-temperature environments, remain unclear. Focusing on China’s lowest and hottest Turpan-Hami Basin, this study investigates the spatiotemporal evolution of vegetation cover (using MODIS NDVI) and its response to temperature, precipitation, and potential evapotranspiration (PET) based on data from 2001 to 2020. Theil–Sen trend analysis, the Mann–Kendall test, and Pearson correlation were employed. Key findings include the following: (1) NDVI exhibited a significant increasing trend, with the largest rise in winter and peak values in summer. Spatially, high NDVI was concentrated in oasis and mountainous forest-grassland zones, while low values prevailed in desert Gobi regions; 34.2% of the area showed significant improvement, though localized degradation occurred. (2) Temperature showed no significant overall correlation with NDVI, except for strong positive correlations in limited high-altitude cold zones (2.9%). Precipitation had minimal influence (no correlation in 75.4% of the area), with localized positive responses in northwestern foothills linked to runoff. PET exhibited positive correlations (weak or strong) with NDVI across nearly half of the region (46.8%), predominantly in oasis-desert and piedmont transition zones. (3) Human activities, notably irrigation and shelterbelt projects, are key drivers of oasis vegetation restoration. Critically, the positive PET-NDVI correlation challenges the conventional paradigm viewing evapotranspiration solely as water stress. This study elucidates the compound responses of vegetation dynamics to climatic and anthropogenic factors in a low-altitude arid region, providing a scientific basis for ecological restoration and water resource management optimization. Full article
Show Figures

Figure 1

21 pages, 6504 KiB  
Article
Drought Amplifies the Suppressive Effect of Afforestation on Net Primary Productivity in Semi-Arid Ecosystems: A Case Study of the Yellow River Basin
by Futao Wang, Ziqi Zhang, Mingxuan Du, Jianzhong Lu and Xiaoling Chen
Remote Sens. 2025, 17(12), 2100; https://doi.org/10.3390/rs17122100 - 19 Jun 2025
Viewed by 464
Abstract
As a critical ecologicalbarrier in the semi-arid to semi-humid transition zone of northern China, the interaction between afforestation and climatic stressors in the Yellow River Basin constitutes a pivotal scientific challenge for regional sustainable development. However, the synthesis effects of afforestation and climate [...] Read more.
As a critical ecologicalbarrier in the semi-arid to semi-humid transition zone of northern China, the interaction between afforestation and climatic stressors in the Yellow River Basin constitutes a pivotal scientific challenge for regional sustainable development. However, the synthesis effects of afforestation and climate on primary productivity require further investigation. Integrating multi-source remote sensing data (2000–2020), meteorological observations with the Standardized Precipitation Evapotranspiration Index (SPEI) and an improved CASA model, this study systematically investigates spatiotemporal patterns of vegetation net primary productivity (NPP) responses to extreme drought events while quantifying vegetation coverage’s regulatory effects on ecosystem drought sensitivity. Among drought events identified using a three-dimensional clustering algorithm, high-intensity droughts caused an average NPP loss of 23.2 gC·m−2 across the basin. Notably, artificial irrigation practices in the Hetao irrigation district significantly mitigated NPP reduction to −9.03 gC·m−2. Large-scale afforestation projects increased the NDVI at a rate of 3.45 × 10−4 month−1, with a contribution rate of 78%, but soil moisture competition from high-density vegetation reduced carbon-sink benefits. However, mixed forest structural optimization in the Three-North Shelterbelt Forest Program core area achieved local carbon-sink gains, demonstrating that vegetation configuration alleviates water competition pressure. Drought amplified the suppressive effect of afforestation through stomatal conductance-photosynthesis coupling mechanisms, causing additional NPP losses of 7.45–31.00 gC·m−2, yet the April–July 2008 event exhibited reversed suppression effects due to immature artificial communities during the 2000–2004 baseline period. Our work elucidates nonlinear vegetation-climate interactions affecting carbon sequestration in semi-arid ecosystems, providing critical insights for optimizing ecological restoration strategies and climate-adaptive management in the Yellow River Basin. Full article
Show Figures

Graphical abstract

26 pages, 7751 KiB  
Article
Twenty-Year Variability in Water Use Efficiency over the Farming–Pastoral Ecotone of Northern China: Driving Force and Resilience to Drought
by Xiaonan Guo, Meng Wu, Zhijun Shen, Guofei Shang, Qingtao Ma, Hongyu Li, Lei He and Zhao-Liang Li
Agriculture 2025, 15(11), 1164; https://doi.org/10.3390/agriculture15111164 - 28 May 2025
Viewed by 460
Abstract
Water use efficiency (WUE), as an important metric for ecosystem resilience, has been identified to play a significant role in the coupling of carbon and water cycles. The farming–pastoral ecotone of Northern China (FPENC), which is highly susceptible to drought due to water [...] Read more.
Water use efficiency (WUE), as an important metric for ecosystem resilience, has been identified to play a significant role in the coupling of carbon and water cycles. The farming–pastoral ecotone of Northern China (FPENC), which is highly susceptible to drought due to water scarcity, has long been recognized as an ecologically fragile zone. The ecological restoration projects in China have mitigated land degradation and maintain the sustainability of dryland. However, the process of greening in drylands has the potential to impact water availability. A comprehensive analysis of the WUE in the FPENC can help to understand the carbon absorption and water consumption. Using gross primary production (GPP) and evapotranspiration (ET) data from a MODerate resolution Imaging Spectroradiometer (MODIS), alongside biophysical variables data and land cover information, the spatio-temporal variations in WUE from 2003 to 2022 were examined. Additionally, its driving force and the ecosystem resilience were also revealed. Results indicated that the annual mean of WUE fluctuated between 0.52 and 2.60 gC kgH2O−1, showing a non-significant decreasing trend across the FPENC. Notably, the annual averaged WUE underwent a significant decline before 2012 (p < 0.05), and then showed a slight increased trend (p = 0.14) during the year afterward (i.e., 2013–2022). In terms of climatic controls, temperature (Temp) and soil volumetric water content (VSWC) dominantly affected WUE from 2003 to 2012; VPD (vapor pressure deficit), VSWC, and Temp showed comprehensive controls from 2013 to 2022. The findings suggest that a wetter atmosphere and increased soil moisture contribute to the decline in WUE. In total, 59.2% of FPENC was shown to be non-resilient, as grassland occupy the majority of the area, located in Mu Us Sandy land and Horqin Sand Land. These results underscore the importance of climatic factors in the regulation WUE over FPENC and highlight the necessity for focused research on WUE responses to climate change, particularly extreme events like droughts, in the future. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

14 pages, 374 KiB  
Opinion
Climate Change and Florida Groundwater Management—Actionable Data and Adaptations
by Robert G. Maliva
Water 2025, 17(11), 1572; https://doi.org/10.3390/w17111572 - 23 May 2025
Viewed by 605
Abstract
The state of Florida has both a great dependency on groundwater and susceptibility to climate change and thus provides a good case study to examine the amount and quality of information on the potential impacts to groundwater supplies and demands that is available [...] Read more.
The state of Florida has both a great dependency on groundwater and susceptibility to climate change and thus provides a good case study to examine the amount and quality of information on the potential impacts to groundwater supplies and demands that is available and accessible to decision makers to guide their planning. Decision makers responsible for making and implementing adaptation plans require actionable information that is in a format that they can access and understand and can be used to guide decisions over the usual 20- to 50-year planning periods in the state. The existing climate change projections of higher temperatures and associated evapotranspiration, a modest and geographically variable change in annual rainfall, and sea level rise at close to the global rate provide only limited guidance to the very small segment of society responsible for making adaptation decisions. Instead, decision makers in the water sector will need to increase the resiliency of their systems to be able to handle a wide range of possible future conditions. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

20 pages, 1962 KiB  
Article
Forecasting Vineyard Water Needs in Southern Poland Under Climate Change Scenarios
by Stanisław Rolbiecki, Barbara Jagosz, Wiesława Kasperska-Wołowicz, Roman Rolbiecki and Tymoteusz Bolewski
Sustainability 2025, 17(11), 4766; https://doi.org/10.3390/su17114766 - 22 May 2025
Viewed by 579
Abstract
Climate change requires efficient water resource management, especially in regions where viticulture is developing. This study evaluates the water requirements, precipitation deficits, and irrigation needs of vineyards in two locations in southern Poland. The analysis covers both a reference period (1931–2020) and a [...] Read more.
Climate change requires efficient water resource management, especially in regions where viticulture is developing. This study evaluates the water requirements, precipitation deficits, and irrigation needs of vineyards in two locations in southern Poland. The analysis covers both a reference period (1931–2020) and a forecast period (2030–2100), based on two climate change scenarios: RCP 4.5 and RCP 8.5. Grapevine water requirements were estimated using a crop coefficient tailored to Poland’s agroclimatic conditions, combined with meteorological data on air temperature and precipitation. Monthly crop coefficient values were calculated as the ratio of grapevine potential evapotranspiration, estimated using the Penman–Monteith method, to reference evapotranspiration, calculated using the Treder approach for the period 1981–2010. Precipitation deficits were assessed for normal, medium dry, and very dry years using the Ostromęcki method. Irrigation water demand was estimated for light, medium, and heavy soils using the Pittenger method. The results indicate a significant increase in both water demand and precipitation deficits in the forecast period, regardless of the scenario. In very dry years, irrigation will be necessary for all soil types. In medium dry years, water deficits will primarily affect vineyards on light soils. These findings underscore the urgent need for improvements in irrigation planning, especially in areas with low soil water. They offer practical insights for estimating future water storage needs and implementing precision irrigation adapted to changing climate conditions. Adopting such adaptive strategies is essential for sustaining vineyard productivity and improving water use efficiency. This study also supports the integration of climate projections into regional planning and calls for investment in innovative, water-saving technologies to strengthen the long-term resilience of Poland’s wine industry. Full article
Show Figures

Figure 1

14 pages, 3530 KiB  
Article
Urban Green Space in a Tropical Area—Quantification of Surface Energy Balance and Carbon Dioxide Flux Dynamics
by Parkin Maskulrath, Wladyslaw W. Szymanski, Thanawat Jinjaruk, Surat Bualert, Jutapas Saiohai, Siriwattananonkul Narisara and Yossakorn Fungkeit
Urban Sci. 2025, 9(5), 153; https://doi.org/10.3390/urbansci9050153 - 6 May 2025
Viewed by 837
Abstract
Integrating green spaces into urban designs and planning for ecosystem services has become vital; however, in creating these spaces, the growth phase is often overlooked. This study provides insight into the changing energy and carbon dioxide (CO2) fluxes in a developing [...] Read more.
Integrating green spaces into urban designs and planning for ecosystem services has become vital; however, in creating these spaces, the growth phase is often overlooked. This study provides insight into the changing energy and carbon dioxide (CO2) fluxes in a developing forest, “The Forestias” project in Thailand. The eddy covariance technique was applied to determine real-time surface energies and CO2 fluxes from December 2021 to September 2023. The results suggest that under fast growing conditions of the green areas, the diurnal latent energy flux corresponded with the area gained. This effect was supported by increasing evapotranspiration through the byproduct of canopy gas exchange. Consequently, the influence of green areas on lowering the average ambient temperature compared with the urban non-green surroundings was observed. In terms of CO2 flux dynamics, the increasing efficacy of photosynthesis was parallel with the growing forest canopy. Changes in flux dynamics due to urban green areas show their potential as a mitigation tool for moderating ambient air temperatures. Moreover, they can serve as a carbon sink within tropical cities and provide a pivotal contribution in reaching carbon neutrality. Full article
Show Figures

Figure 1

17 pages, 9958 KiB  
Article
Intermittent Rainfed Rice var. INIA 516 LM1: A Sustainable Alternative for the Huallaga River Basin
by Ricardo Flores-Marquez, Rita de Cássia Bahia, Yuri Arévalo-Aranda, Edson Esmith Torres-Chávez, Jonathan Guevara, Abner Antezana, Antoni Carranza, Ceila Lao and Richard Solórzano-Acosta
Water 2025, 17(9), 1262; https://doi.org/10.3390/w17091262 - 23 Apr 2025
Viewed by 907
Abstract
Climate change is projected to increase global temperatures and alter rainfall patterns. In Peru, these changes could adversely affect the central basin of the Huallaga River by increasing pest and disease incidence, evapotranspiration, and water consumption. This basin is one of the country’s [...] Read more.
Climate change is projected to increase global temperatures and alter rainfall patterns. In Peru, these changes could adversely affect the central basin of the Huallaga River by increasing pest and disease incidence, evapotranspiration, and water consumption. This basin is one of the country’s main rice-producing regions, where the crop is traditionally cultivated using inefficient practices, such as continuous flood irrigation. This study evaluated the effects of different irrigation management strategies on the growth and yield of rice (Oryza sativa var. INIA 516 LM1-La Unión 23), the water footprint as an indicator of water use efficiency, and the incidence of pests and diseases associated with irrigation regimes. Three irrigation treatments were implemented: Traditional flooding T1 (maintenance of a 0.15 m water layer with replenishment every 4 days), Optimized flooding T2 (replenishment every 7 days), and Intermittent rainfed irrigation T3 (replenishment every 14 days). Although no significant differences were observed in biometric parameters, yield, or pest and disease incidence, a trend of decreasing yield with longer irrigation intervals was noted: traditional flooding (7.91 t∙ha−1) > reduced flooding (7.82 t∙ha−1) > intermittent rainfed (7.14 t∙ha−1). The incidence of white leaf virus and Burkholderia glumae was highest in the intermittent rainfed treatment, followed by optimized flooding, with the lowest incidence in traditional flooding. Yield reduction and the use of rainwater to cover water requirements resulted in a lower total water footprint for traditional flooding (834.0 m3∙t−1), followed by optimized flooding (843.6 m3∙t−1) and intermittent rainfed (923.9 m3∙t−1). This reflects an improvement in rainwater use efficiency. The findings suggest intermittent rainfed irrigation enhances water use efficiency without significantly compromising rice yield or increasing disease incidence in rice var. INIA 516 LM1-La Unión 23 in the central basin of the Huallaga River. Full article
(This article belongs to the Special Issue Methods and Tools for Sustainable Agricultural Water Management)
Show Figures

Figure 1

14 pages, 2536 KiB  
Article
Absolute Meteorological Drought Indices Validated Against Irrigation Amounts
by Jan-Philip M. Witte, Gé A. P. H. van den Eertwegh and Paul J. J. F. Torfs
Water 2025, 17(7), 1056; https://doi.org/10.3390/w17071056 - 2 Apr 2025
Cited by 1 | Viewed by 880
Abstract
Dry weather can severely limit water availability, harming agriculture and natural habitats. Several drought indices assess meteorological conditions relative to historical norms, but absolute indices, expressed in millimeters of water depth, are particularly crucial for agriculture. Every millimeter of water that a crop [...] Read more.
Dry weather can severely limit water availability, harming agriculture and natural habitats. Several drought indices assess meteorological conditions relative to historical norms, but absolute indices, expressed in millimeters of water depth, are particularly crucial for agriculture. Every millimeter of water that a crop cannot evaporate results in an almost proportional yield loss. Using daily precipitation, potential evapotranspiration, and temperature data, we calculated five absolute drought indices for a sandy area in the Netherlands. We then validated these indices against the annual registered amount of irrigation water from 2001 to 2021, which served as a proxy for the drought experienced by farmers. The cumulative potential precipitation deficit calculated with (a) a temperature sum-dependent start of the growing season or (b) a start in the wet winter season most closely matched irrigation amounts (R2 = 95% and 94%, respectively). The latter index is likely to be applicable in climates where a dry growing season follows a wet season. These indices can be updated daily, providing real-time insight into drought development and can be used in climate projections. To our knowledge, this is the first study to validate meteorological drought indices using irrigation data, which advances the assessment of drought events. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

19 pages, 10038 KiB  
Article
Forecasting Evaporation Trends Amid Climate Change for Sustainable Water Management in Semi-Arid Regions
by Ban Al-Hasani, Mawada Abdellatif, Iacopo Carnacina, Clare Harris, Ayad M. Fadhil Al-Quraishi and Muthanna M. A. Al-Shammari
Water 2025, 17(7), 1039; https://doi.org/10.3390/w17071039 - 1 Apr 2025
Cited by 1 | Viewed by 902
Abstract
Evapotranspiration plays a vital role in the design of irrigation systems, water resource management, and hydrological modeling, especially in arid and semi-arid regions. This study focuses on projecting evaporation rates using three machine learning models: a Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), [...] Read more.
Evapotranspiration plays a vital role in the design of irrigation systems, water resource management, and hydrological modeling, especially in arid and semi-arid regions. This study focuses on projecting evaporation rates using three machine learning models: a Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), and Gaussian Process Regression (GPR), in combination with Principal Component Analysis (PCA) for dimensionality reduction. Meteorological data from 1980 to 2022, including the minimum and maximum temperatures, rainfall, and solar radiation, were used to train and test the models. Projections were made for Kirkuk Governorate by downscaling five global climate models under two climate scenarios: SSP2-4.5 and SSP5-8.5. These scenarios were used to predict future evaporation rates at a rainwater harvesting site for four future periods (P1, P2, P3, and P4) and compare them to the historical reference period (RP). The performance of the models was evaluated using three statistical metrics: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the regression coefficient (R2). Among the models, the MLP demonstrated superior predictive accuracy, with values of MAE = 0.02 mm, RMSE = 0.10 mm, and R2 = 0.95. The SVM model showed a slightly lower performance, with MAE = 0.21 mm, RMSE = 0.13 mm, and R2 = 0.92. The GPR model’s performance was comparable, yielding MAE = 0.22 mm, RMSE = 0.37 mm, and R2 = 0.91. The historical reference period (RP) showed an average evaporation rate of 1370.9 mm per year. Under the SSP2-4.5 scenario, evaporation is projected to increase by 57.2%, while under SSP5-8.5, the increase is projected to be 85.9%. Under the SSP2-4.5 scenario, the evaporation rate for period P1 (2031–2050) showed a slight increase of 1.61%, while for periods P2 (2051–2070) and P3 (2071–2090), the increases were smaller, at 1.89% and 1.93%, respectively. The highest increase occurred in P4 (2091–2100), with a rate of 2.68%, compared to an observed value increase of 1.33%. These findings suggest that climate change will significantly elevate evaporation rates in the region, emphasizing the need for adaptive water resource management strategies. Full article
(This article belongs to the Special Issue Urban Water Management: Challenges and Prospects)
Show Figures

Figure 1

18 pages, 5997 KiB  
Article
Study on the Spatiotemporal Evolution of Evapotranspiration and the Integration of Multi-Source Data in the Water Source Area of the Middle Route of the South-to-North Water Transfer Project
by Shaobo Liu, Dayang Wang, Mengjiao Wu, Yanyu Ma, Zhimin Yang and Xianliang Liu
Atmosphere 2025, 16(4), 396; https://doi.org/10.3390/atmos16040396 - 29 Mar 2025
Viewed by 328
Abstract
This study takes the Danjiangkou reservoir basin, which is the water source area of the South-to-North Water Diversion Project, one of the largest water diversion projects in the world, as the research area. Three different types of evapotranspiration (ET) datasets are adopted, including [...] Read more.
This study takes the Danjiangkou reservoir basin, which is the water source area of the South-to-North Water Diversion Project, one of the largest water diversion projects in the world, as the research area. Three different types of evapotranspiration (ET) datasets are adopted, including the Global Land Evaporation Amsterdam Model (GLEAM), European Centre for Medium-Range Weather Forecasts ERA5—Land Component (ERA5Land), and Complementary Relationship (CR) datasets. These datasets are analyzed for spatiotemporal evolution and data fusion using Mann–Kendall analysis, Sen’s Slope analysis, and Extended Triple Collocation (ETC). The aim is to improve the accuracy of evapotranspiration estimation in the watershed of the water source area. The results show the following: (1) All three sets of evapotranspiration data indicate an increasing trend in the watershed, with rates of 0.78 mm/year, 0.14 mm/year, and 2.56 mm/year, respectively. Additionally, the seasonal variation in evapotranspiration is significant, with the rate of change being summer > spring > autumn > winter. (2) The data fusion results indicate that ERA5Land performs best in the water source area watershed, with the smallest root mean square error (RMSE) value. In the fused data, ERA5Land’s evapotranspiration data account for the largest proportion at 59.93%, GLEAM ET data account for 39.96%, and CR’s evapotranspiration data account for the smallest proportion at only 0.11%. (3) The spatial distribution shows that the fused data fully exploits the advantages of different evapotranspiration data, inherits the advantages of ERA5Land and GLEAM ET products, and achieves effective fusion of multi-source data, thereby forming a more accurate dataset. These research findings provide scientific references for the construction of digital twin watersheds, intelligent water resource allocation, and effective responses to climate change in the water source area of the South-to-North Water Diversion Project. Full article
(This article belongs to the Special Issue Observation and Modeling of Evapotranspiration)
Show Figures

Figure 1

Back to TopTop