Urban Green Space in a Tropical Area—Quantification of Surface Energy Balance and Carbon Dioxide Flux Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Measured Forest Parameters
2.2. EC Technique
2.3. Data Collection Periods—Dry and Wet Seasons
3. Results and Discussion
3.1. Flux Footprint Prediction (FFP)
3.2. Forest Characteristics
3.3. Surface Energy Balance
3.4. CO2 Flux Changes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alahmad, B.; Khraishah, H.; Royé, D.; Vicedo-Cabrera, A.M.; Guo, Y.; Papatheodorou, S.I.; Koutrakis, P. Associations Between Extreme Temperatures and Cardiovascular Cause-Specific Mortality: Results From 27 Countries. Circulation 2023, 147, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Hang, J.; Shi, Y.; Zeng, L. Seasonal and diurnal urban energy balance and carbon exchanges over a residential neighborhood in a humid subtropical city. Urban Clim. 2024, 53, 101774. [Google Scholar] [CrossRef]
- Gupta, M.; Murtugudde, R.; Ghosh, S. Simulating urban surface energy balance of an academic campus and surroundings in Mumbai, India. Urban Clim. 2024, 56, 102044. [Google Scholar] [CrossRef]
- Cuce, P.M.; Cuce, E.; Santamouris, M. Towards Sustainable and Climate-Resilient Cities: Mitigating Urban Heat Islands Through Green Infrastructure. Sustainability 2025, 17, 1303. [Google Scholar] [CrossRef]
- Deng, Z.; Liu, X.; Zu, H.; Luo, J.; Chen, Y.; Yi, M.; Wang, X.; Liang, X.; Zhang, X.; Yan, W. Spatial and Temporal Variations of Carbon Dioxide Fluxes in Urban Ecosystems of Changsha, China. Forests 2023, 14, 2201. [Google Scholar] [CrossRef]
- Byrne, B.; Liu, J.; Lee, M.; Baker, I.; Bowman, K.W.; Deutscher, N.M.; Wunch, D. Improved Constraints on Northern Extratropical CO2 Fluxes Obtained by Combining Surface-Based and Space-Based Atmospheric CO2 Measurements. J. Geophys. Res. Atmos. 2020, 125, e2019JD032029. [Google Scholar] [CrossRef]
- Sadeghi, M.; Ebtehaj, A.; Guala, M.; Wang, J. Physical connection of sensible and ground heat flux. J. Hydrol. 2021, 602, 126687. [Google Scholar] [CrossRef]
- Gratani, L.; Catoni, R.; Puglielli, G.; Varone, L.; Crescente, M.F.; Sangiorgio, S.; Lucchetta, F. Carbon Dioxide (CO2) Sequestration and Air Temperature Amelioration Provided by Urban Parks in Rome. Energy Procedia 2016, 101, 408–415. [Google Scholar] [CrossRef]
- Vaz Monteiro, M.; Doick, K.J.; Handley, P.; Peace, A. The impact of greenspace size on the extent of local nocturnal air temperature cooling in London. Urban For. Urban Green. 2016, 16, 160–169. [Google Scholar] [CrossRef]
- Aram, F.; Higueras-García, E.; Solgi, E.; Mansournia, S. Urban green space cooling effect in cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, W.; Yun, H.; Xu, W.; Hu, B.; He, M.; Zhang, L. Is urban green space a carbon sink or source?—A case study of China based on LCA method. Environ. Impact Assess. Rev. 2022, 94, 106766. [Google Scholar] [CrossRef]
- Huang, H.; Jia, J.; Chen, D.; Liu, S. Evolution of spatial network structure for land-use carbon emissions and carbon balance zoning in Jiangxi Province: A social network analysis perspective. Ecol. Indic. 2024, 158, 111508. [Google Scholar] [CrossRef]
- Miyawaki, A. Restoration of living environment based on vegetation ecology: Theory and practice. Ecol. Res. 2004, 19, 83–90. [Google Scholar] [CrossRef]
- Chan, K.; Wood, R. The seasonal cycle of planetary boundary layer depth determined using COSMIC radio occultation data: Seasonal Cycle Of Pbl Depth. J. Geophys. Res. Atmos. 2013, 118, 12–422. [Google Scholar] [CrossRef]
- Kotthaus, S.; Bravo-Aranda, J.A.; Collaud Coen, M.; Guerrero-Rascado, J.L.; Costa, M.J.; Cimini, D.; Haeffelin, M. Atmospheric boundary layer height from ground-based remote sensing: A review of capabilities and limitations. Atmos. Meas. Tech. 2023, 16, 433–479. [Google Scholar] [CrossRef]
- Yang, L.; Noormets, A. Standardized flux seasonality metrics: A companion dataset for FLUXNET annual product. Earth Syst. Sci. Data 2020, 13, 1461–1475. [Google Scholar] [CrossRef]
- Vulova, S.; Meier, F.; Rocha, A.D.; Quanz, J.; Nouri, H.; Kleinschmit, B. Modeling urban evapotranspiration using remote sensing, flux footprints, and artificial intelligence. Sci. Total Environ. 2021, 786, 147293. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A simple two-dimensional parameterization for Flux Footprint Prediction (FFP). Geosci. Model. Dev. 2015, 8, 3695–3713. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, G.; Xia, D.; Ma, J.; Han, T.; Ma, T.; Shang, S. The characteristics of evapotranspiration and crop coefficients of an irrigated vineyard in arid Northwest China. Agric. Water Manag. 2019, 212, 388–398. [Google Scholar] [CrossRef]
- Lion, M.; Kosugi, Y.; Takanashi, S.; Noguchi, S.; Itoh, M.; Katsuyama, M.; Shamsuddin, S.A. Evapotranspiration and water source of a tropical rainforest in peninsular Malaysia. Hydrol. Processes. 2017, 31, 4338–4353. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Kang, S.; Du, T.; Hao, X.; Tong, L. Modeling crop water use in an irrigated maize cropland using a biophysical process-based model. J. Hydrol. 2015, 529, 276–286. [Google Scholar] [CrossRef]
- Karna, Y.; Penman, T.; Aponte, C.; Bennett, L. Assessing Legacy Effects of Wildfires on the Crown Structure of Fire-Tolerant Eucalypt Trees Using Airborne LiDAR Data. Remote Sens. 2019, 11, 2433. [Google Scholar] [CrossRef]
- Chrysoulakis, N.; Grimmond, S.; Feigenwinter, C.; Lindberg, F.; Gastellu-Etchegorry, J.-P.; Marconcini, M.; Parlow, E. Urban energy exchanges monitoring from space. Sci. Rep. 2018, 8, 11498. [Google Scholar] [CrossRef] [PubMed]
- Spronken-Smith, R.A.; Oke, T.R.; Lowry, W.P. Advection and the surface energy balance across an irrigated urban park. Int. J. Climatol. 2000, 20, 1033–1047. [Google Scholar] [CrossRef]
- Pau, S.; Detto, M.; Kim, Y.; Still, C.J. Tropical forest temperature thresholds for gross primary productivity. Ecosphere 2018, 9, e02311. [Google Scholar] [CrossRef]
- Skelhorn, C.; Lindley, S.; Levermore, G. The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landsc. Urban Plan. 2014, 121, 129–140. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.-H.; Lee, D.K.; Park, C.Y.; Jeong, S.G. The influence of small green space type and structure at the street level on urban heat island mitigation. Urban For. Urban Green. 2017, 21, 203–212. [Google Scholar] [CrossRef]
- Ueyama, M.; Ando, T. Cooling effect of an urban park by enhanced heat transport efficiency. J. Agric. Meteorol. 2020, 76, 148–153. [Google Scholar] [CrossRef]
- Maskulrath, P.; Bualert, S.; Szymanski, W.W.; Choomanee, P.; Chunkao, K.; Pattamapitoon, T.; Fungkeit, Y. Assessment of urban green areas towards changing surface energy balance fluxes in tropical study sites, Central Thailand. Environ. Chall. 2023, 11, 100715. [Google Scholar] [CrossRef]
- Oke, T.; Mills, G.; Christen, A.; Voogt, J. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Song, Y.; Song, X.; Shao, G. Effects of Green Space Patterns on Urban Thermal Environment at Multiple Spatial–Temporal Scales. Sustainability 2020, 12, 6850. [Google Scholar] [CrossRef]
- Wang, K.Y.; Kellomäki, S.; Zha, T.-S.; Peltola, H. Component carbon fluxes and their contribution to ecosystem carbon exchange in a pine forest: An assessment based on eddy covariance measurements and an integrated model. Tree Physiol. 2004, 24, 19–34. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, T.; Schaaf, C.L.; Kljun, N.; Munger, J.W. Seasonal variation of source contributions to eddy-covariance CO2 measurements in a mixed hardwood-conifer forest. Agric. For. Meteorol. 2018, 253-254, 71–83. [Google Scholar] [CrossRef]
- Qubaja, R.; Yang, F.; Amer, M.; Tatarinov, F.; Yakir, D. Ecophysiology of an urban citrus orchard. Urban For. Urban Green. 2021, 65, 127361. [Google Scholar] [CrossRef]
- Zhao, D.; Cai, J.; Xu, Y.; Liu, Y.; Yao, M. Carbon sinks in urban public green spaces under carbon neutrality: A bibliometric analysis and systematic literature review. Urban For. Urban Green. 2023, 86, 217–229. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Z.; Guo, X.; Wang, X. The Relative Importance of Succession, Stand Age and Stand Factors on Carbon Allocation of Korean Pine Forests in the Northern Mt. Xiaoxing’anling, China. Forests 2020, 11, 512. [Google Scholar] [CrossRef]
- Rodda, S.R.; Thumaty, K.C.; Jha, C.S.; Dadhwal, V.K. Seasonal Variations of Carbon Dioxide, Water Vapor and Energy Fluxes in Tropical Indian Mangroves. Forests 2016, 7, 35. [Google Scholar] [CrossRef]
- Cernusak, L.A.; Winter, K.; Dalling, J.W.; Holtum, J.A.M.; Jaramillo, C.; Körner, C.; Wright, S.J. Tropical forest responses to increasing atmospheric CO2: Current knowledge and opportunities for future research. Funct. Plant Biol. 2013, 40, 531–551. [Google Scholar] [CrossRef] [PubMed]
- Körner, C.; Asshoff, R.; Bignucolo, O.; Hättenschwiler, S.; Keel, S.G.; Peláez-Riedl, S.; Zotz, G. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 2005, 309, 1360–1362. [Google Scholar] [CrossRef]
- Matthews, B.; Schume, H. Tall tower eddy covariance measurements of CO2 fluxes in Vienna, Austria. Atmos. Environ. 2022, 274, 118941. [Google Scholar] [CrossRef]
- Desai, A.R.; Bolstad, P.V.; Cook, B.D.; Davis, K.J.; Carey, E.V. Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA. Agric. For. Meteorol. 2005, 128, 33–55. [Google Scholar] [CrossRef]
- Welp, L.R.; Randerson, J.T.; Liu, H.P. The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agric. For. Meteorol. 2007, 147, 172–185. [Google Scholar] [CrossRef]
- Vázquez-Lule, A.; Vargas, R. Biophysical drivers of net ecosystem and methane exchange across phenological phases in a tidal salt marsh. Agric. For. Meteorol. 2021, 300, 1–14. [Google Scholar] [CrossRef]
- Kordowski, K.; Kuttler, W. Carbon dioxide fluxes over an urban park area. Atmos. Environ. 2010, 44, 2722–2730. [Google Scholar] [CrossRef]
- Weissert, L.F.; Salmond, J.A.; Turnbull, J.C.; Schwendenmann, L. Temporal variability in the sources and fluxes of CO2 in a residential area in an evergreen subtropical city. Atmos. Environ. 2016, 143, 164–176. [Google Scholar] [CrossRef]
- Song, T.; Wang, Y.; Sun, Y. Estimation of carbon dioxide flux and source partitioning over Beijing, China. J. Environ. Sci. 2013, 25, 2429–2434. [Google Scholar] [CrossRef]
Instrument Model | Data Collected | Unit |
---|---|---|
3D Sonic anemometer | Sensible heat flux | W m−2 |
Latent heat flux | W m−2 | |
Wind speed and direction | m s−1 and degrees | |
Infrared analyzer (IRGASON) | CO2 density | mg m−3 |
H2O density | g m−3 | |
CO2 and H2O eddy 3D movement | mg m−2 s−1 | |
SQ110 PAR sensor | Photosynthesis active radiation | mmol m−2 s−1 |
NR01 4-way net radiometer | Short-wave radiation upward and downward | W m−2 |
Long-wave radiation upward and downward | W m−2 | |
Temperature | K | |
Temperature probe | Ambient temperature | °C |
Soil heat flux | Ground heat flux | W m−2 |
Soil humidity and temperature | Soil humidity | dS m−1 |
Temperature | °C | |
Other metrological measurements | Friction velocity | m s−1 |
Ambient pressure | kPa |
Data Acquisition Time (Duration in Days) | Season |
---|---|
(1) December 2021 (14) | Dry |
(2) October 2022 (14) | Wet |
(3) February 2023 (14) | Dry |
(4) September 2023 (14) | Wet |
Parameter | Unit | Year | Difference | ||
---|---|---|---|---|---|
2021 | 2022 | 2023 | |||
Density | Number of trees per square meter (tree/m2) | 2.27 | 2.10 | 1.73 | −0.54 (decreased) |
Height | Centimeter (cm) | 60.28 | 141.99 | 310.0 | +249.72 (increased) |
DBH/RCM | Centimeter (cm) | 0.76 | 1.55 | 2.68 | +1.92 (increased) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maskulrath, P.; Szymanski, W.W.; Jinjaruk, T.; Bualert, S.; Saiohai, J.; Narisara, S.; Fungkeit, Y. Urban Green Space in a Tropical Area—Quantification of Surface Energy Balance and Carbon Dioxide Flux Dynamics. Urban Sci. 2025, 9, 153. https://doi.org/10.3390/urbansci9050153
Maskulrath P, Szymanski WW, Jinjaruk T, Bualert S, Saiohai J, Narisara S, Fungkeit Y. Urban Green Space in a Tropical Area—Quantification of Surface Energy Balance and Carbon Dioxide Flux Dynamics. Urban Science. 2025; 9(5):153. https://doi.org/10.3390/urbansci9050153
Chicago/Turabian StyleMaskulrath, Parkin, Wladyslaw W. Szymanski, Thanawat Jinjaruk, Surat Bualert, Jutapas Saiohai, Siriwattananonkul Narisara, and Yossakorn Fungkeit. 2025. "Urban Green Space in a Tropical Area—Quantification of Surface Energy Balance and Carbon Dioxide Flux Dynamics" Urban Science 9, no. 5: 153. https://doi.org/10.3390/urbansci9050153
APA StyleMaskulrath, P., Szymanski, W. W., Jinjaruk, T., Bualert, S., Saiohai, J., Narisara, S., & Fungkeit, Y. (2025). Urban Green Space in a Tropical Area—Quantification of Surface Energy Balance and Carbon Dioxide Flux Dynamics. Urban Science, 9(5), 153. https://doi.org/10.3390/urbansci9050153