Forecasting Vineyard Water Needs in Southern Poland Under Climate Change Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Scheme
2.2. Assessment of Water Requirements
2.3. Assessment of Precipitation Deficits
2.4. Assessment of Net Volume of the Water Reservoir for Irrigation
2.5. Assessment of Irrigation Water Demand
2.6. Statistical Analysis
3. Results
3.1. Statistical Characteristics of Grapevine Water Requirements
3.2. Daily and Cumulative Vineyard Water Requirements in the Growing Season
3.3. Temporal Trends in Grapevine Water Requirements
3.4. Comparison of Grapevine Water Requirements in the Reference and Forecast Periods
3.5. Precipitation Deficit During the Grapevine Growing Season
3.6. Water Reservoir Capacity for Vineyard Irrigation
3.7. Irrigation Water Demand in Grapevine Cultivation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Myśliwiec, R. Uprawa Winorośli [Viticulture]; PWRiL: Warszawa, Poland, 2013. [Google Scholar]
- Mazurkiewicz-Pizlo, A.; Pizlo, W. Determinants of the development of vineyards and wine tourism in Poland. Acta Sci. Pol. Oecon. 2018, 17, 115–121. [Google Scholar] [CrossRef]
- Greinert, A.; Kostecki, J.; Vystavna, Y. The history of viticultural land use as a determinant of contemporary regional development in Western Poland. Land Use Policy 2019, 85, 249–258. [Google Scholar] [CrossRef]
- Koźmiński, C.; Mąkosza, A.; Michalska, B.; Nidzgorska-Lencewicz, J. Thermal conditions for viticulture in Poland. Sustainability 2020, 12, 5665. [Google Scholar] [CrossRef]
- Winnice w Polsce [Vineyards in Poland]. Available online: https://winogrodnicy.pl/ (accessed on 18 December 2024).
- NASC (National Agricultural Support Center). Ewidencja Winnic [Vineyard Records]; KOWR: Warszawa, Poland, 2020. Available online: https://www.gov.pl/web/kowr/wykazy--rejestry (accessed on 28 December 2024).
- Jones, G.V.; Alves, F. Impact of climate change on wine production: A global overview and regional assessment in the Douro Valley of Portugal. Int. J. Glob. Warm. 2012, 4, 383–406. [Google Scholar] [CrossRef]
- Santos, J.A.; Malheiro, A.C.; Pinto, J.G.; Jones, G.V. Macroclimate and viticultural zoning in Europe: Observed trends and atmospheric forcing. Clim. Res. 2013, 51, 89–103. [Google Scholar] [CrossRef]
- Keller, M. Managing grapevines to optimise fruit development in a challenging environment: A climate change primer for viticulturists. Aust. J. Grape Wine Res. 2016, 16, 56–69. [Google Scholar] [CrossRef]
- Maciejczak, M.; Mikiciuk, J. Climate change impact on viticulture in Poland. Int. J. Clim. Change Str. Manag. 2019, 11, 254–264. [Google Scholar] [CrossRef]
- Robinson, J.; Johnson, H. The World Atlas of Wine; Mitchell Beazley: London, UK, 2019. [Google Scholar]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Droulia, F.; Charalampopoulos, I. Future climate change impacts on European viticulture: A review on recent scientific advances. Atmosphere 2021, 12, 495. [Google Scholar] [CrossRef]
- Eitzinger, J.; Kubu, G.; Formayer, H.; Gerersdorfer, T. Climatic wine growing potential under future climate scenarious in Austria. In Sustainable Development and Bioclimate: Reviewed Conference Proceedings, Vienna, Austria; Academia: San Francisco, CA, USA, 2009; pp. 146–147. [Google Scholar]
- Karvonen, J. Northern european viticulture compared to Central European high altitude viticulture: Annual growth cycle of grapevines in the years 2012–2013. Int. J. Wine Res. 2014, 6, 1–7. [Google Scholar] [CrossRef]
- Karvonen, J. The annual growth cycle of grapevines in Southern Finland. Vitis 2014, 53, 175–180. [Google Scholar]
- Skjöldebrand, C.; Hansson, H.; Nordmark, L.; Lindén, J. The Nordic Light Terroir. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014), IV 1115, Brisbane, Australia, 17 August 2014; pp. 189–194. [Google Scholar]
- Kryza, M.; Szymanowski, M.; Błaś, M.; Migała, K.; Werner, M.; Sobik, M. Observed changes in SAT and GDD and the climatological suitability of the Poland-Germany-Czech Republic transboundary region for wine grapes cultivation. Theor. Appl. Climatol. 2015, 122, 207–218. [Google Scholar] [CrossRef]
- Maciejczak, M. The external benefits of sustainable vineyards in Poland under the conditions of climate change. Ann. Agric. Econ. Rural Dev. 2019, 106, 97–109. [Google Scholar]
- Maciejewska, D.; Olewnicki, D.; Stangierska-Mazurkiewicz, D.; Tyminski, M.; Latocha, P. Impact of Climate Change on the Development of Viticulture in Central Poland: Autoregression Modeling SAT Indicator. Agriculture 2024, 14, 748. [Google Scholar] [CrossRef]
- Ashenfelter, O.; Storchmann, K. Climate change and wine: A review of the economic implications. J. Wine Econ. 2016, 11, 105–138. [Google Scholar] [CrossRef]
- Ashenfelter, O.; Storchmann, K. The economics of wine, weather, and climate change. Rev. Environ. Econ. Policy 2016, 10, 25–45. [Google Scholar] [CrossRef]
- Cunha, M.; Richter, C. The impact of climate change on the wine grape vineyards of the Portuguese Douro region. Clim. Change 2016, 138, 239–251. [Google Scholar] [CrossRef]
- Mosedale, J.R.; Abernethy, K.E.; Smart, R.E.; Wilson, R.J.; Maclean, I.M. Climate change impacts and adaptive strategies: Lessons from the grapevine. Glob. Change Biol. 2016, 22, 3814–3828. [Google Scholar] [CrossRef]
- Ollat, N.; Touzard, J.M.; van Leeuwen, C. Climate change impacts and adaptations: New challenges for the wine industry. J. Wine Econ. 2016, 11, 139–149. [Google Scholar] [CrossRef]
- Schultz, H.R. Global climate change, sustainability, and some challenges for grape and wine production. J. Wine Econ. 2016, 11, 181–200. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Darriet, P. The impact of climate change on viticulture and wine quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- Fraga, H.; de Cortázar Atauri, I.G.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J.A. Viticulture in Portugal: A review of recent trends and climate change projections. Oeno One 2017, 51, 61–69. [Google Scholar] [CrossRef]
- Neethling, E.; Petitjean, T.; Quénol, H.; Barbeau, G. Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change. Mitig. Adapt. Strateg. Glob. Change 2017, 22, 777–803. [Google Scholar] [CrossRef]
- Ramos, M.C. Projection of phenology response to climate change in rainfed vineyards in north-east Spain. Agric. Forest Meteorol. 2017, 247, 104–115. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Destrac-Irvine, A. Modified grape composition under climate change conditions requires adaptations in the vineyard. Oeno One 2017, 51, 147–154. [Google Scholar] [CrossRef]
- Fraga, H.; Santos, J.A. Vineyard mulching as a climate change adaptation measure: Future simulations for Alentejo, Portugal. Agric. Syst. 2018, 164, 107–115. [Google Scholar] [CrossRef]
- Fraga, H.; Pinto, J.G.; Santos, J.A. Climate change projections for chilling and heat forcing conditions in European vineyards and olive orchards: A multi-model assessment. Clim. Change 2019, 152, 179–193. [Google Scholar] [CrossRef]
- Rollan, À.; Hernández-Matías, A.; Real, J. Organic farming favours bird communities and their resilience to climate change in Mediterranean vineyards. Agric. Ecosyst. Environ. 2019, 269, 107–115. [Google Scholar] [CrossRef]
- Santillán, D.; Iglesias, A.; La Jeunesse, I.; Garrote, L.; Sotes, V. Vineyards in transition: A global assessment of the adaptation needs of grape producing regions under climate change. Sci. Total Environ. 2019, 657, 839–852. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Pieri, P.; Gowdy, M.; Ollat, N.; Roby, J.P. Reduced density is an environmental friendly and cost effective solution to increase resilience to drought in vineyards in a context of climate change. Oeno One 2019, 53, 129–146. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Resseguier, L.; Ollat, N. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Aguilera, P.; Ortiz, N.; Becerra, N.; Turrini, A.; Gaínza-Cortés, F.; Silva-Flores, P.; Aguilar-Paredes, A.; Romero, J.K.; Jorquera-Fontena, E.; de La Luz Mora, M.; et al. Application of arbuscular mycorrhizal fungi in vineyards: Water and biotic stress under a climate change scenario: New challenge for Chilean grapevine crop. Front. Microbiol. 2022, 13, 826571. [Google Scholar] [CrossRef] [PubMed]
- Rogiers, S.Y.; Greer, D.H.; Liu, Y.; Baby, T.; Xiao, Z. Impact of climate change on grape berry ripening: An assessment of adaptation strategies for the Australian vineyard. Front. Plant Sci. 2022, 13, 1094633. [Google Scholar] [CrossRef] [PubMed]
- IPCC. AR4 Climate Change 2007. Fourth Assessment Report. Intergovernmental Panel on Climate Change. Available online: https://www.ipcc.ch/assessment-report/ar4/ (accessed on 10 December 2024).
- Bąk, B.; Łabędzki, L. Thermal conditions in Bydgoszcz region in growing seasons 2011–2050 in view of expected climate change. J. Water Land Dev. 2014, 23, 21–29. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Santos, J.A. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob. Change Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef]
- Bąk, B.; Łabędzki, L. Prediction of precipitation deficit and excess in Bydgoszcz region in view of predicted climate change. J. Water Land Dev. 2014, 23, 11–19. [Google Scholar] [CrossRef]
- Kasperska-Wołowicz, W.; Rolbiecki, S.; Sadan, H.A.; Rolbiecki, R.; Jagosz, B.; Stachowski, P.; Liberacki, D.; Bolewski, T.; Prus, P.; Pal-Fam, F. Impact of the projected climate change on soybean water needs in the Kuyavia region in Poland. J. Water Land Dev. 2021, 51, 199–207. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Biniak-Pieróg, M.; Żyromski, A.; Kasperska-Wołowicz, W.; Jagosz, B.; Stachowski, P.; Liberacki, D.; Kanecka-Geszke, E.; Sadan, A.H.; Rolbiecki, R.; et al. Effect of forecast climate changes on water needs of giant miscanthus cultivated in the Kuyavia region in Poland. Energies 2021, 14, 6628. [Google Scholar] [CrossRef]
- Liberacki, D.; Kocięcka, J.; Stachowski, P.; Rolbiecki, R.; Rolbiecki, S.; Sadan, H.A.; Figas, A.; Jagosz, B.; Wichrowska, D.; Ptach, W.; et al. Water needs of willow (Salix L.) in western Poland. Energies 2022, 15, 484. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Kasperska-Wołowicz, W.; Jagosz, B.; Sadan, H.A.; Rolbiecki, R.; Szczepanek, M.; Kanecka-Geszke, E.; Łangowski, A. Water and irrigation requirements of Glycine max (L.) Merr. in 1981–2020 in central Poland, central Europe. Agronomy 2023, 13, 2429. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Jagosz, B.; Kasperska-Wołowicz, W.; Kanecka-Geszke, E.; Stachowski, P.; Kocięcka, J.; Bąk, B. Water needs of sweet cherry trees in the light of predicted climate warming in the Bydgoszcz Region, Poland. Atmosphere 2023, 14, 511. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Kuśmierek-Tomaszewska, R.; Żarski, J.; Jagosz, B.; Kasperska-Wołowicz, W.; Sadan, H.; Łangowski, A. Influence of forecast climate changes on water needs of jerusalem artichoke grown in the Kuyavia region in Poland. Energies 2023, 16, 533. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Sadan, H.A.; Jagosz, B.; Kasperska-Wołowicz, W.; Kanecka-Geszke, E.; Pal-Fam, F.; Atilgan, A.; Krakowiak-Bal, A.; Kuśmierek-Tomaszewska, R.; et al. Sustainable water management of drip-irrigated asparagus under conditions of central Poland: Evapotranspiration, water needs and rainfall deficits. Sustainability 2024, 16, 966. [Google Scholar] [CrossRef]
- Jagosz, B.; Rolbiecki, S.; Stachowski, P.; Ptach, W.; Łangowski, A.; Kasperska-Wołowicz, W.; Sadan, H.A.; Rolbiecki, R.; Prus, P.; Kazula, M.J. Assessment of water needs of grapevines in western Poland from the perspective of climate change. Agriculture 2020, 10, 477. [Google Scholar] [CrossRef]
- Jagosz, B.; Rolbiecki, S.; Rolbiecki, R.; Łangowski, A.; Sadan, H.A.; Ptach, W.; Stachowski, P.; Kasperska-Wołowicz, W.; Pal-Fam, F.; Liberacki, D. The water needs of grapevines in Central Poland. Agronomy 2021, 11, 416. [Google Scholar] [CrossRef]
- Jagosz, B.; Rolbiecki, S.; Rolbiecki, R.; Ptach, W.; Sadan, H.A.; Kasperska-Wolowicz, W.; Pal-Fam, F.; Atilgan, A. Effect of the forecast air temperature change on the water needs of vines in the region of Bydgoszcz, northern Poland. Agronomy 2022, 12, 1561. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving water use efficiency of vineyards in semi-arid regions. A review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef]
- Terrón, J.M.; Blanco, J.; Moral, F.J.; Mancha, L.A.; Uriarte, D.; Marques da Silva, J.R. Evaluation of vineyard growth under four irrigation regimes using vegetation and soil on-the-go sensors. Soil 2015, 1, 459–473. [Google Scholar] [CrossRef]
- Zarrouk, O.; Costa, J.M.; Francisco, R.; Lopes, C.; Chaves, M.M. Drought and water management in Mediterranean vineyards. In Grapevine in a Changing Environment; Gerós, H., Chaves, M.M., Medrano Gil, H., Delrot, S., Eds.; John Wiley & Sons: New York, NY, USA, 2016; pp. 38–59. [Google Scholar]
- Campos, I.; Balbontín, C.; González-Piqueras, J.; González-Dugo, M.P.; Neale, C.M.; Calera, A. Combining a water balance model with evapotranspiration measurements to estimate total available soil water in irrigated and rainfed vineyards. Agric. Water Manag. 2016, 165, 141–152. [Google Scholar] [CrossRef]
- Cancela, J.J.; Fandiño, M.; Rey, B.J.; Dafonte, J.; González, X.P. Discrimination of irrigation water management effects in pergola trellis system vineyards using a vegetation and soil index. Agric. Water Manag. 2017, 183, 70–77. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J. Effect of pit irrigation on soil water content, vigor, and water use efficiency within vineyards in extremely arid regions. Sci. Hortic. 2017, 218, 30–37. [Google Scholar] [CrossRef]
- Mendoza-Espinosa, L.G.; Burgess, J.E.; Daesslé, L.; Villada-Canela, M. Reclaimed water for the irrigation of vineyards: Mexico and South Africa as case studies. Sustain. Cities Soc. 2019, 51, 101769. [Google Scholar] [CrossRef]
- Knipper, K.R.; Kustas, W.P.; Anderson, M.C.; Alfieri, J.G.; Prueger, J.H.; Hain, C.R.; Gao, F.; McKee, L.G.; Nieto, H.; Hipps, L.E.; et al. Evapotranspiration estimates derived using thermal-based satellite remote sensing and data fusion for irrigation management in California vineyards. Irrig. Sci. 2019, 37, 431–449. [Google Scholar] [CrossRef]
- Ortuani, B.; Facchi, A.; Mayer, A.; Bianchi, D.; Bianchi, A.; Brancadoro, L. Assessing the effectiveness of variable-rate drip irrigation on water use efficiency in a Vineyard in Northern Italy. Water 2019, 11, 1964. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, G.; Xia, D.; Ma, J.; Han, T.; Ma, T.; Zhang, K.; Shang, S. The characteristics of evapotranspiration and crop coefficients of an irrigated vineyard in arid Northwest China. Agric. Water Manag. 2019, 212, 388–398. [Google Scholar] [CrossRef]
- López-Urrea, R.; Sánchez, J.M.; Montoro, A.; Mañas, F.; Intrigliolo, D.S. Effect of using pruning waste as an organic mulching on a drip-irrigated vineyard evapotranspiration under a semi-arid climate. Agric. Forest Meteorol. 2020, 291, 108064. [Google Scholar] [CrossRef]
- Wilson, T.G.; Kustas, W.P.; Alfieri, J.G.; Anderson, M.C.; Gao, F.; Prueger, J.H.; McKee, L.G.; Alsina, M.M.; Sanchez, L.A.; Alstad, K.P. Relationships between soil water content, evapotranspiration, and irrigation measurements in a California drip-irrigated Pinot noir vineyard. Agric. Water Manag. 2020, 237, 106186. [Google Scholar] [CrossRef]
- Bellvert, J.; Mata, M.; Vallverdú, X.; Paris, C.; Marsal, J. Optimizing precision irrigation of a vineyard to improve water use efficiency and profitability by using a decision-oriented vine water consumption model. Precis. Agric. 2021, 22, 319–341. [Google Scholar] [CrossRef]
- Fernandes de Oliveira, A.; Mameli, M.G.; Lo Cascio, M.; Sirca, C.; Satta, D. An index for user-friendly proximal detection of water requirements to optimized irrigation management in vineyards. Agronomy 2021, 11, 323. [Google Scholar] [CrossRef]
- Darouich, H.; Ramos, T.B.; Pereira, L.S.; Rabino, D.; Bagagiolo, G.; Capello, G.; Simionesei, L.; Cavallo, E.; Biddoccu, M. Water use and soil water balance of Mediterranean vineyards under rainfed and drip irrigation management: Evapotranspiration partition and soil management modelling for resource conservation. Water 2022, 14, 554. [Google Scholar] [CrossRef]
- Romero, P.; Navarro, J.M.; Ordaz, P.B. Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update. Agric. Water Manag. 2022, 259, 107216. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Santos, J.A. Viticultural irrigation demands under climate change scenarios in Portugal. Agric. Water Manag. 2018, 196, 66–74. [Google Scholar] [CrossRef]
- Klimada 2.0. Klimat scenariusze [Climate Scenarios]. Available online: https://klimada2.ios.gov.pl/klimat-scenariusze-portal/ (accessed on 28 December 2024).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization: Rome, Italy, 1998. [Google Scholar]
- Łabędzki, L. Susze rolnicze. Zarys problematyki oraz metody monitorowania i klasyfikacji [Agricultural droughts. Outline of the issues and methods of monitoring and classification]. Woda-Sr.-Obsz. Wiejskie. Rozpr. Nauk. Monogr. [Water-Environ.-Rural. Areas. Sci. Diss. Monogr.] 2006, 17, 1–107. [Google Scholar]
- Treder, W. Racjonalne Nawadnianie Roślin Sadowniczych [Rational Irrigation of Fruit Plants]; Centrum Doradztwa Rolniczego: Brwinów, Polska, 2021. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; FAO Irrigation and Drainage Paper 24; Food and Agriculture Organization: Rome, Italy, 1977. [Google Scholar]
- Doorenbos, J.; Kassam, A. Yield Response to Water; FAO Irrigation and Drainage Paper 33; Food and Agriculture Organization of the United Nations: Rome, Italy, 1979. [Google Scholar]
- Łabędzki, L.; Szajda, J.; Szuniewicz, J. Ewapotranspiracja upraw rolniczych—Terminologia, definicje, metody obliczania—Przegląd stanu wiedzy [Evapotranspiration of agricultural crops—Terminology, definitions, calculation methods. Review]. IMUZ Falenty 1996, 33, 1–15. [Google Scholar]
- Łabędzki, L.; Kanecka-Geszke, E.; Bąk, B.; Słowińska, S. Estimation of reference evapotranspiration using the FAO Penman–Monteith method for climatic conditions of Poland. In Evapotranspiration; Łabędzki, L., Ed.; InTech: Rijeka, Croatia, 2011; pp. 275–294. [Google Scholar]
- Tabaszewski, J. Elementy Inżynierii Wodnej [Elements of Water Engineering]; ART: Olsztyn, Poland, 1980. [Google Scholar]
- Żakowicz, S.; Hewelke, P. Podstawy Inżynierii Środowiska [Basics of Environmental Engineering]; SGGW: Warszawa, Poland, 2002. [Google Scholar]
- Żakowicz, S.; Hewelke, P.; Gnatowski, T. Podstawy Infrastruktury Technicznej w Przestrzeni Produkcyjnej [Basics of Technical Infrastructure in Production Space]; SGGW: Warszawa, Poland, 2009; p. 192. [Google Scholar]
- Pittenger, D. Methodology for Estimating Landscape Irrigation Demand—Review and Recommendations; Barton Springs/Edwards Aquifer Conservation District: Austin, TX, USA, 2014; Available online: https://bseacd.org/uploads/BSEACD_Irr_Demand_Meth_Rprt_2014_Final_140424.pdf (accessed on 21 May 2025).
- Platt, C. Problemy Rachunku Prawdopodobieństwa i Statystyki Matematycznej [Probability Theory and Mathematical Statistics]; PWN: Warszawa, Poland, 1978. [Google Scholar]
- Serra, I.; Strever, A.; Myburgh, P.; Deloire, A. Review: The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Ausralian. J. Grape Wine Res. 2014, 20, 1–14. [Google Scholar] [CrossRef]
- Jones, G.V.; Edwards, E.J.; Bonada, M.; Sadras, V.O.; Krstic, M.P.; Herderich, M.J. Climate Change and Its Consequences for Viticulture. Manag. Wine Qual. Vol. One Vitic. Wine Qual. 2022, 1, 727–778. [Google Scholar]
- Parry, M.L. Assessment of Potential Effects and Adaptation for Climate Change in Europe: The Europe ACACIA Project; Jackson Environmental Institute, University of East Anglia: Norwich, UK, 2000. [Google Scholar]
- Kundzewicz, Z. Scenariusze zmian klimatu [Climate change scenarios]. In Czy Polsce Grożą Katastrofy Klimatyczne? [Is Poland at Risk of Climate Disasters?]; PAN: Warszawa, Poland, 2003; pp. 14–31. [Google Scholar]
- Kundzewicz, Z. Projekcje zmian klimatu—Ekstrema hydrometeorologiczne [Climate change projections—Hydrometeorological extremes]. In Proceedings of the I Polish Conference ADAGIO, Poznań, Poland, 24 April 2007. [Google Scholar]
- Alcamo, J.; Moreno, J.M.; Nováky, B.; Hindi, M.; Corobov, R.; Devoy, R.J.N.; Giannakopoulos, C.; Martin, E.; Olesn, J.E.; Shvidenko, A. Europe. Climate Change 2007. Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 541–580. [Google Scholar]
- Randall, D.A.; Wood, R.A.; Bony, S.; Colman, R.; Fichefet, T.; Fyfe, J.; Kattsov, V.; Pitman, A.; Shukla, J.; Srinivasan, J.; et al. Climate models and their evaluation. In Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- European Environment Agency (EEA). Climate Change, Impacts and Vulnerability in Europe 2016. An Indicator-Baseed Report; Publications Office of the European Union: Luxembourg, 2017; ISSN 1977-8449. Available online: https://www.eea.europa.eu/en/analysis/publications/climate-change-impacts-and-vulnerability-2016 (accessed on 21 May 2025).
- Jaster, D.; Tomczyk, A.M.; Hildebrandt-Radke, I.; Matulewski, P. Agroclimatic indicators for grapevines in the Zielona Góra wine region (Poland) in the era of advancing global warming. Atmosphere 2024, 15, 657. [Google Scholar] [CrossRef]
- Fabjanowicz, M.; Kosek, K.; Płotka-Wasylka, J.; Namieśnik, J. Evaluation of the influence of grapevine growing conditions on wine quality. Monatshefte Für Chem.-Chem. Mon. 2019, 150, 1579–1584. [Google Scholar] [CrossRef]
- Jeziorska-Biel, P.; Leśniewska-Napierała, K.; Czapiewski, K. (Circular) Path Dependence—The role of vineyards in land use, society and regional development—The case of Lubuskie region (Poland). Energies 2021, 14, 8425. [Google Scholar] [CrossRef]
- Maciejczak, M. Innovations in viticultural production in Poland under climate change conditions. Ann. Pol. Assoc. Agric. Agribus. Econ. 2017, 19, 151–157. [Google Scholar]
- Usowicz, B.; Lipiec, J.; Ferrero, A. Thermal properties in relation to soil water status in sloping vineyard. Teka Kom. Ochr. Kształtowania Środ. Przyr. 2009, 6, 386–410. [Google Scholar]
- Maciejczak, M. The economic effects of applying beneficial microorganisms in viticultural production under climate change conditions. Ann. Pol. Assoc. Agric. Agribus. Econ. 2019, 21, 299–307. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Rolbiecki, S.; Piszczek, P.; Figas, A.; Jagosz, B.; Ptach, W.; Prus, P.; Kazula, M.J. Impact of nitrogen fertigation on watermelon yield grown on the very light soil in Poland. Agronomy 2020, 10, 213. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Sadan, H.; Rolbiecki, S.; Jagosz, B.; Szczepanek, M.; Figas, A.; Atilgan, A.; Pal-Fam, F.; Pańka, D. Effect of subsurface drip fertigation with nitrogen on the yield of asparagus grown for the green spears on a light soil in central Poland. Agronomy 2022, 12, 241. [Google Scholar] [CrossRef]
- Figas, A.; Rolbiecki, R.; Rolbiecki, S.; Jagosz, B.; Łangowski, A.; Sadan-Ozdemir, H.A.; Pal-Fam, F.; Atilgan, A. Towards water-efficient irrigation of cup plant (Silphium perfoliatum L.) for energy production: Water requirements and rainfall deficit. Sustainability 2024, 16, 5451. [Google Scholar] [CrossRef]
- Stachowski, P.; Jagosz, B.; Rolbiecki, S.; Rolbiecki, R. Predictive capacity of rainfall data to estimate the water needs of fruit plants in water deficit areas. Atmosphere 2021, 12, 550. [Google Scholar] [CrossRef]
- Kustas, W.P.; McElrone, A.J.; Agam, N.; Knipper, K. From vine to vineyard: The GRAPEX multi-scale remote sensing experiment for improving vineyard irrigation management. Irrig. Sci. 2022, 40, 435–444. [Google Scholar] [CrossRef]
- Pérez-Álvarez, E.P.; Molina, D.I.; Vivaldi, G.A.; García-Esparza, M.J.; Lizama, V.; Álvarez, I. Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: I. Water relations, vine performance and grape composition. Agric. Water Manag. 2021, 248, 106772. [Google Scholar] [CrossRef]
- Copp, C.R.; Levin, A.D. Irrigation improves vine physiology and fruit composition in grapevine red blotch virus-infected Vitis vinifera L. Am. J. Enol. Vitic. 2021, 72, 307–317. [Google Scholar] [CrossRef]
- Łabedzki, L.; Bak, B. Monitoring i prognozowanie przebiegu i skutków deficytu wody na obszarach wiejskich [Monitoring and forecasting the course and impact of water deficit in rural areas]. Infrastruct. Ecol. Rural Areas 2013, 2/I, 65–76. [Google Scholar]
- Jararweh, Y.; Fatima, S.; Jarrah, M.; AlZu’bi, S. Smart and sustainable agriculture: Fundamentals, enabling technologies, and future directions. Comput. Electr. Eng. 2023, 110, 108799. [Google Scholar] [CrossRef]
- Pereira, L.S. Water, agriculture and food: Challenges and issues. Water Resour. Manag. 2017, 31, 2985–2999. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Jagosz, B.; Rolbiecki, R.; Ptach, W.; Stachowski, P.; Kasperska-Wołowicz, W.; Łangowski, A.; Sadan, H.A.; Klimek, A.; Dobosz, K. The water needs of grapevines in the different regions of Poland. J. Ecol. Eng. 2019, 20, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Łabędzki, L. Expected development of irrigation in Poland in the context of climate change. J. Water Land Dev. 2009, 13b, 17–29. [Google Scholar] [CrossRef]
- Łabędzki, L. Foreseen climate changes and irrigation development in Poland. Infrastruct. Ecol. Rural Areas 2009, 3, 7–18. [Google Scholar]
- Martínez-Valderrama, J.; Olcina, J.; Delacámara, ·G.; Guirado, E.; Maestre, F.T. Complex policy mixes are needed to cope with agricultural water demands under climate change. Water Resour. Manag. 2023, 37, 2805–2834. [Google Scholar] [CrossRef]
Region | Characteristic | Months of the Growing Season | ||||||
---|---|---|---|---|---|---|---|---|
April | May | June | July | August | September | October | ||
Monthly average air temperature (°C) | ||||||||
Krakow | Minimum | 5.6 | 10.4 | 14.4 | 16.2 | 15.1 | 10.5 | 6.1 |
Maximum | 14.5 | 17.7 | 22.8 | 22.4 | 22.0 | 16.3 | 12.7 | |
Mean | 9.1 | 14.1 | 17.5 | 19.1 | 18.4 | 13.9 | 9.0 | |
Rzeszow | Minimum | 4.6 | 9.6 | 14.3 | 15.4 | 14.6 | 10.3 | 5.7 |
Maximum | 14.0 | 17.0 | 21.5 | 21.9 | 22.3 | 16.3 | 12.5 | |
Mean | 8.3 | 13.4 | 16.9 | 18.5 | 17.9 | 13.5 | 8.6 | |
Monthly precipitation totals (mm) | ||||||||
Krakow | Minimum | 4.4 | 23.3 | 4.2 | 14.2 | 12.2 | 6.5 | 0.1 |
Maximum | 127.7 | 302.4 | 196.8 | 285.0 | 185.9 | 179.8 | 160.3 | |
Mean | 47.0 | 78.0 | 87.3 | 92.1 | 79.4 | 57.9 | 45.9 | |
Rzeszow | Minimum | 3.7 | 9.8 | 4.8 | 10.3 | 4.9 | 7.7 | 3.4 |
Maximum | 133.0 | 177.0 | 174.5 | 233.8 | 164.5 | 141.7 | 182.1 | |
Mean | 44.0 | 73.4 | 81.7 | 91.2 | 69.6 | 57.1 | 44.6 |
Kc Values | Months of the Growing Season | ||||||
---|---|---|---|---|---|---|---|
April | May | June | July | August | September | October | |
A | 0.35 | 0.50 | 0.70 | 0.80 | 0.80 | 0.65 | 0.45 |
B | 0.30 | 0.53 | 0.76 | 0.85 | 0.76 | 0.50 | 0.31 |
C | 0.28 | 0.21 | 0.19 | 0.18 | 0.17 | 0.16 | 0.15 |
Characteristic | Months of the Growing Season | |||||||
---|---|---|---|---|---|---|---|---|
Apr | May | Jun | Jul | Aug | Sep | Oct | Apr–Oct | |
Krakow Region | ||||||||
Minimum (mm) | 19.8 | 45.9 | 71.6 | 83.9 | 68.4 | 30.8 | 11.4 | 331.7 |
Maximum (mm) | 26.5 | 51.9 | 84.0 | 96.8 | 80.1 | 35.9 | 14.0 | 387.4 |
Mean (mm) | 22.8 | 48.6 | 76.4 | 90.5 | 73.1 | 33.0 | 13.0 | 357.4 |
Median (mm) | 23.0 | 49.1 | 76.2 | 91.0 | 73.4 | 33.0 | 12.9 | 353.9 |
Standard Deviation (mm) | 2.4 | 2.4 | 4.2 | 4.9 | 4.2 | 1.5 | 0.8 | 18.3 |
Variation Coefficient (%) | 10.3 | 4.9 | 5.5 | 5.4 | 5.8 | 4.6 | 6.2 | 5.1 |
Rzeszow Region | ||||||||
Minimum (mm) | 17.4 | 43.2 | 69.2 | 81.6 | 66.7 | 30.2 | 11.0 | 320.7 |
Maximum (mm) | 24.9 | 49.8 | 81.0 | 94.6 | 78.7 | 35.4 | 13.6 | 375.8 |
Mean (mm) | 20.8 | 46.3 | 73.6 | 87.7 | 71.2 | 32.1 | 12.3 | 344.0 |
Median (mm) | 21.1 | 46.8 | 72.8 | 87.4 | 69.4 | 32.3 | 12.5 | 338.0 |
Standard Deviation (mm) | 2.5 | 2.7 | 3.8 | 4.9 | 4.3 | 1.7 | 0.8 | 18.9 |
Variation Coefficient (%) | 12.2 | 5.8 | 5.2 | 5.5 | 6.1 | 5.4 | 6.4 | 5.5 |
Characteristic | Months of the Growing Season | |||||||
---|---|---|---|---|---|---|---|---|
Apr | May | Jun | Jul | Aug | Sep | Oct | Apr–Oct | |
Krakow Region | ||||||||
Minimum (mm) | 22.3 | 46.9 | 75.8 | 93.9 | 76.0 | 36.1 | 14.3 | 366.1 |
Maximum (mm) | 25.0 | 49.7 | 78.4 | 97.7 | 79.6 | 38.0 | 15.5 | 382.3 |
Mean (mm) | 23.7 | 48.2 | 77.1 | 95.9 | 78.6 | 36.9 | 15.0 | 375.3 |
Median (mm) | 23.5 | 47.6 | 77.1 | 95.8 | 79.2 | 36.6 | 15.0 | 377.0 |
Standard Deviation (mm) | 0.9 | 1.1 | 1.1 | 1.5 | 1.2 | 0.8 | 0.5 | 5.8 |
Variation Coefficient (%) | 3.9 | 2.3 | 1.4 | 1.5 | 1.6 | 2.1 | 3.1 | 1.6 |
Rzeszow Region | ||||||||
Minimum (mm) | 22.8 | 48.0 | 77.1 | 95.3 | 76.8 | 36.1 | 14.2 | 371.1 |
Maximum (mm) | 25.5 | 50.7 | 79.7 | 99.1 | 80.4 | 38.0 | 15.5 | 387.6 |
Mean (mm) | 24.2 | 49.3 | 78.6 | 97.1 | 79.4 | 37.0 | 14.9 | 380.5 |
Median (mm) | 24.0 | 48.7 | 78.8 | 96.7 | 80.0 | 36.8 | 14.9 | 382.1 |
Standard Deviation (mm) | 1.0 | 1.1 | 1.0 | 1.4 | 1.2 | 0.7 | 0.5 | 5.7 |
Variation Coefficient (%) | 4.1 | 2.2 | 1.3 | 1.4 | 1.5 | 1.9 | 3.2 | 1.5 |
Characteristic | Months of the Growing Season | |||||||
---|---|---|---|---|---|---|---|---|
Apr | May | Jun | Jul | Aug | Sep | Oct | Apr–Oct | |
Krakow Region | ||||||||
Minimum (mm) | 23.5 | 47.3 | 75.3 | 94.4 | 76.8 | 36.4 | 14.9 | 368.6 |
Maximum (mm) | 28.8 | 54.5 | 84.0 | 105.7 | 88.0 | 42.8 | 17.9 | 421.8 |
Mean (mm) | 25.7 | 49.9 | 79.6 | 99.3 | 82.2 | 39.2 | 16.4 | 392.2 |
Median (mm) | 25.8 | 49.7 | 78.8 | 98.6 | 81.6 | 39.5 | 16.6 | 390.6 |
Standard Deviation (mm) | 1.9 | 2.6 | 3.3 | 4.8 | 4.4 | 2.5 | 1.0 | 20.3 |
Variation Coefficient (%) | 7.5 | 5.2 | 4.1 | 4.8 | 5.4 | 6.5 | 6.2 | 5.2 |
Rzeszow Region | ||||||||
Minimum (mm) | 24.3 | 48.3 | 77.1 | 95.8 | 77.6 | 36.4 | 14.8 | 374.2 |
Maximum (mm) | 29.5 | 55.9 | 85.8 | 107.2 | 89.2 | 42.8 | 17.8 | 428.2 |
Mean (mm) | 26.4 | 51.0 | 81.3 | 100.9 | 82.9 | 39.2 | 16.2 | 397.9 |
Median (mm) | 26.5 | 50.7 | 80.6 | 100.5 | 82.0 | 39.5 | 16.5 | 396.3 |
Standard Deviation (mm) | 1.9 | 2.7 | 3.3 | 4.6 | 4.3 | 2.4 | 1.0 | 20.0 |
Variation Coefficient (%) | 7.0 | 5.3 | 4.1 | 4.5 | 5.2 | 6.2 | 6.1 | 5.0 |
Period | Krakow Region | Rzeszow Region | ||
---|---|---|---|---|
1951–2020 | 1971–2020 | 1951–2020 | 1971–2020 | |
April–October | 6.4 | 13.7 | 7.4 | 13.4 |
June–August | 4.2 | 9.4 | 4.6 | 9.2 |
July | 1.5 | 3.4 | 1.7 | 3.3 |
Period | Krakow Region | Rzeszow Region | ||
---|---|---|---|---|
1951–2020 | 1971–2020 | 1951–2020 | 1971–2020 | |
April–October | 0.757 ** | 0.997 *** | 0.853 ** | 0.993 *** |
June–August | 0.702 * | 0.997 *** | 0.787 ** | 0.997 *** |
July | 0.665 ns | 0.966 *** | 0.739 * | 0.956 ** |
Period | Krakow Region | Rzeszow Region | ||
---|---|---|---|---|
RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | |
April–October | 2.6 | 9.3 | 2.6 | 9.2 |
June–August | 1.3 | 5.7 | 1.3 | 5.6 |
July | 0.5 | 2.2 | 0.5 | 2.1 |
Period | Krakow Region | Rzeszow Region | ||
---|---|---|---|---|
RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | |
April–October | 0.962 *** | 0.992 *** | 0.968 *** | 0.992 *** |
June–August | 0.812 ** | 0.990 *** | 0.815 ** | 0.992 *** |
July | 0.802 ** | 0.976 *** | 0.822 ** | 0.986 *** |
Period | April–October | June–August | July | |||
---|---|---|---|---|---|---|
KR | RZ | KR | RZ | KR | RZ | |
Reference period | ||||||
1951–2020 (A) | 357 | 344 | 240 | 232 | 90 | 88 |
1971–2020 (B) | 360 | 348 | 242 | 235 | 91 | 89 |
Forecast period | ||||||
2031–2100 acc. to RCP 4.5 (C) | 375 | 381 | 252 | 255 | 96 | 97 |
2031–2100 acc. to RCP 8.5 (D) | 392 | 398 | 261 | 265 | 99 | 101 |
Difference | ||||||
C—A | 18 = 5% | 37 = 11% | 12 = 5% | 23 = 10% | 6 = 7% | 9 = 10% |
D—A | 35 = 10% | 54 = 17% | 21 = 9% | 33 = 14% | 9 = 10% | 13 = 15% |
C—B | 15 = 4% | 33 = 9% | 10 = 4% | 20 = 9% | 5 = 5% | 8 = 9% |
D—B | 32 = 9% | 50 = 14% | 19 = 8% | 30 = 13% | 8 = 9% | 12 = 13% |
Period | April–October | June–August | July | |||
---|---|---|---|---|---|---|
KR | RZ | KR | RZ | KR | RZ | |
Reference period | ||||||
1951–1960 (A) | 354 | 333 | 241 | 230 | 92 | 87 |
1971–1980 (B) | 332 | 321 | 224 | 218 | 84 | 82 |
Forecast period | ||||||
2091–2100 acc. to RCP 4.5 (C) | 382 | 388 | 255 | 258 | 98 | 99 |
2091–2100 acc. to RCP 8.5 (D) | 422 | 428 | 278 | 282 | 106 | 107 |
Difference | ||||||
C—A | 28 = 8% | 55 = 17% | 14 = 6% | 28 = 12% | 6 = 7% | 12 = 14% |
D—A | 61 = 17% | 95 = 29% | 37 = 15% | 52 = 23% | 14 = 15% | 20 = 23% |
C—B | 50 = 15% | 67 = 21% | 31 = 14% | 40 = 18% | 14 = 17% | 17 = 21% |
D—B | 90 = 27% | 107 = 33% | 54 = 24% | 64 = 29% | 22 = 26% | 25 = 30% |
Period | Krakow Region | Rzeszow Region | ||||
---|---|---|---|---|---|---|
Normal Years | Medium Dry Years | Very Dry Years | Normal Years | Medium Dry Years | Very Dry Years | |
Reference period | – | 57 | 111 | 3 | 64 | 115 |
Forecast period acc. to RCP 4.5 | 14 | 71 | 122 | 24 | 81 | 132 |
Forecast period acc. to RCP 8.5 | 11 | 71 | 124 | 22 | 82 | 135 |
Characteristic | Krakow Region | Rzeszow Region | ||||
---|---|---|---|---|---|---|
Normal Years | Medium Dry Years | Very Dry Years | Normal Years | Medium Dry Years | Very Dry Years | |
Probability of occurrence | 50% | 25% | 10% | 50% | 25% | 10% |
Protection of the water needs | 50% | 75% | 90% | 50% | 75% | 90% |
Reference period | – | 2850 | 5550 | 150 | 3200 | 5750 |
Forecast period acc. to RCP 4.5 | 700 | 3550 | 6100 | 1200 | 4050 | 6600 |
Forecast period acc. to RCP 8.5 | 550 | 3550 | 6200 | 1100 | 4100 | 6750 |
Characteristic | Krakow Region | Rzeszow Region | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Light Soil | Medium Soil | Heavy Soil | Light Soil | Medium Soil | Heavy Soil | |||||||
ID | UID | ID | UID | ID | UID | ID | UID | ID | UID | ID | UID | |
Reference period | ||||||||||||
Normal years (p = 50%) | – | – | – | – | – | – | – | – | – | – | – | – |
Medium dry years (p = 25%) | 17 | 0.021 | – | – | – | – | 24 | 0.030 | – | – | – | – |
Very dry years (p = 10%) | 71 | 0.067 | 46 | 0.043 | 21 | 0.020 | 75 | 0.071 | 50 | 0.047 | 25 | 0.024 |
Forecast period acc. to RCP 4.5 | ||||||||||||
Normal years (p = 50%) | – | – | – | – | – | – | – | – | – | – | – | – |
Medium dry years (p = 25%) | 31 | 0.039 | 6 | 0.007 | – | – | 41 | 0.052 | 16 | 0.020 | – | – |
Very dry years (p = 10%) | 82 | 0.103 | 57 | 0.072 | 32 | 0.040 | 92 | 0.116 | 67 | 0.084 | 42 | 0.053 |
Forecast period acc. to RCP 8.5 | ||||||||||||
Normal years (p = 50%) | – | – | – | – | – | – | – | – | – | – | – | – |
Medium dry years (p = 25%) | 31 | 0.039 | 6 | 0.007 | – | – | 42 | 0.053 | 17 | 0.021 | – | – |
Very dry years (p = 10%) | 84 | 0.106 | 59 | 0.074 | 34 | 0.043 | 95 | 0.119 | 70 | 0.088 | 45 | 0.057 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolbiecki, S.; Jagosz, B.; Kasperska-Wołowicz, W.; Rolbiecki, R.; Bolewski, T. Forecasting Vineyard Water Needs in Southern Poland Under Climate Change Scenarios. Sustainability 2025, 17, 4766. https://doi.org/10.3390/su17114766
Rolbiecki S, Jagosz B, Kasperska-Wołowicz W, Rolbiecki R, Bolewski T. Forecasting Vineyard Water Needs in Southern Poland Under Climate Change Scenarios. Sustainability. 2025; 17(11):4766. https://doi.org/10.3390/su17114766
Chicago/Turabian StyleRolbiecki, Stanisław, Barbara Jagosz, Wiesława Kasperska-Wołowicz, Roman Rolbiecki, and Tymoteusz Bolewski. 2025. "Forecasting Vineyard Water Needs in Southern Poland Under Climate Change Scenarios" Sustainability 17, no. 11: 4766. https://doi.org/10.3390/su17114766
APA StyleRolbiecki, S., Jagosz, B., Kasperska-Wołowicz, W., Rolbiecki, R., & Bolewski, T. (2025). Forecasting Vineyard Water Needs in Southern Poland Under Climate Change Scenarios. Sustainability, 17(11), 4766. https://doi.org/10.3390/su17114766