The Response of NDVI to Climate Change in the Lowest and Hottest Basin in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. NDVI Data
2.2.2. Climate Data
2.3. Research Methods
2.3.1. Hargreaves Model
2.3.2. Theil–Sen Trend Analysis and Mann–Kendall Significance Test
2.3.3. Pearson Correlation Analysis
2.4. Research Workflow
3. Results and Analysis
3.1. Characteristics of Climate Factor Variations
3.2. Temporal and Spatial Dynamic Changes in NDVI
3.2.1. Analysis of Annual Interannual Variation Characteristics in NDVI
3.2.2. Analysis of Spatial Variations in NDVI
3.3. Analysis of NDVI Spatial Variation Trend
3.4. Correlation Analysis of NDVI and Climate Factors in the Turpan-Hami Basin
4. Discussion
5. Conclusions
- NDVI in the Turpan-Hami Basin exhibited a significant upward trend from 2001 to 2020, indicating gradual improvements in vegetation coverage and growth conditions. The most substantial increases occurred in winter, while the highest values were observed in summer. Spatially, high-value areas were concentrated in oases and mountainous forest and grassland zones, whereas low-value areas predominated in desert Gobi regions. Notably, 34.2% of the region experienced significant vegetation improvement, yet some areas (particularly the western and central regions) showed marked degradation.
- Overall, no significant correlation was found between temperature and NDVI, and precipitation exhibited limited influence, with only localized positive responses. In contrast, PET demonstrated a significant positive correlation with NDVI across 46.8% of the study area, challenging the traditional paradigm that evapotranspiration represents water stress.
- Human activities, such as irrigation and shelterbelt projects, have significantly driven the restoration of oasis vegetation. However, excessive reliance on groundwater may lead to unsustainable water resource consumption, highlighting the need for careful management.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, C.; Zhang, B.; Cheng, L.; Hu, L.; Chen, F. Vegetation dynamics and their effects on surface water-energy balance over the Three-North Region of China. Agric. For. Meteorol. 2019, 275, 79–90. [Google Scholar] [CrossRef]
- Lavergne, A.; Graven, H.; De Kauwe, M.G.; Keenan, T.F.; Medlyn, B.E.; Prentice, I.C. Observed and modelled historical trends in the water-use efficiency of plants and ecosystems. Glob. Change Biol. 2019, 25, 2242–2257. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.J.; Dong, K.; Jiang, M.; Liu, Y.L.; He, L.Y.; Wang, J.L.; Zhao, N.X.; Gao, Y.B. Soil moisture and species richness interactively affect multiple ecosystem functions in a microcosm experiment of simulated shrub encroached grasslands. Sci. Total Environ. 2022, 803, 149950. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Q.; Liu, H.; Zuo, Q.; Yu, J.T.; Li, Y. Spatiotemporal change of fractional vegetation cover in the Yellow River Basin during 2000–2019. Resour. Sci. 2021, 43, 849–858. [Google Scholar] [CrossRef]
- Sun, W.Y.; Song, X.Y.; Mu, X.M.; Gao, P.; Wang, F.; Zhao, G.J. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209–210, 87–99. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.P.; Li, H.W.; Liu, Y.C.; Wang, C. Analysis of drought change and its impact in Central Asia. Adv. Earth Sci. 2022, 37, 37–50. [Google Scholar] [CrossRef]
- Olusegun, C.F.; Adeyewa, Z.D. Spatial and temporal variation of normalized difference vegetation index (NDVI) and rainfall in the north east arid zone of Nigeria. Atmos. Clim. Sci. 2013, 3, 421–426. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, F.M.; Weng, S.H.; Liu, Q. Spatio-temporal changes of NDVI and its response to climate in China from 2001 to 2021. China Environ. Sci. 2023, 43, 5519–5528. [Google Scholar] [CrossRef]
- Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Aarar, G.; Nemami, R.R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Schmidt, M.; Klein, D.; Conrad, C.; Dech, S.; Paeth, H. On the relationship between vegetation and climate in tropical and northern Africa. Theor. Appl. Climatol. 2014, 115, 341–353. [Google Scholar] [CrossRef]
- Zhang, R.H.; Gong, Y.S.; Tan, M.H. Regional comparison of changes in NDVI in arid regions of Central Asia. Res. Environ. Sci. 2025, 38, 90–100. [Google Scholar] [CrossRef]
- McGwire, K.; Minor, T.; Fenstermaker, L. Hyperspectral mixture modeling for quantifying sparse vegetation cover in arid environments. Remote Sens. Environ. 2000, 72, 360–374. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhang, C.X.; Hasi, E.; Dong, Z.B. Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China? J. Arid Environ. 2010, 74, 13–22. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Zeng, N. Greening of the earth and its drivers. Nat. Clim. Change 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Lian, X.; Piao, S.; Chen, A.; Wang, K.; Li, X.; Buermann, W.; Myneni, R.B. Seasonal biological carryover dominates northern vegetation growth. Nat. Commun. 2021, 12, 983. [Google Scholar] [CrossRef]
- Yan, X.Y.; Zhang, Q.; Zhang, W.B.; Ren, X.Y.; Wang, S.; Zhao, F.N. Analysis of climate characteristics in the Pan-Central-Asia arid region. Arid Zone Res. 2021, 38, 1–11. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, K.; Fang, J.Y. NDVI-based interannual and seasonal variations of vegetation activity in Xinjiang during the period of 1982–2006. Arid Zone Res. 2011, 28, 10–16. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Shankman, D.; Wang, C.; Wang, X.; Zhang, H. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Li, X.B.; Shi, P.J. Sensitivity analysis of variation in NDVI, temperature and precipitation in typical vegetation types across China. Chin. J. Plant Ecol. 2000, 24, 379. [Google Scholar] [CrossRef]
- Li, X.H.; Shi, Q.D.; Guo, J.; Bayindala, C.S.L.; Qi, J.G. The response of NDVI to climate variability in northwest arid of China from 1981 to 2001. J. Arid Land Resour. Environ. 2009, 23, 12–16. [Google Scholar] [CrossRef]
- Guo, N.; Zhu, Y.J.; Wang, J.M.; Deng, C.P. The relationship between NDVI and climate element for 22 years in different vegetation areas of northwest China. Chin. J. Plant Ecol. 2008, 32, 319–327. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Long-term trends and seasonality detection of the observed flow in Yangtze River using Mann-Kendall and Sen’s innovative trend method. Water 2019, 11, 1855. [Google Scholar] [CrossRef]
- Li, P.; Wang, J.; Liu, M.; Xue, Z.; Bagherzadeh, A.; Liu, M. Spatio-temporal variation characteristics of NDVI and its response to climate on the Loess Plateau from 1985 to 2015. Catena 2021, 203, 105331. [Google Scholar] [CrossRef]
- Chen, W.Y.; Xia, L.H.; Xu, G.L.; Yu, S.Q.; Chen, H.; Chen, J.F. Dynamic variation of NDVI and its influencing factors in the Pearl River Basin from 2000 to 2020. Ecol. Environ. 2022, 31, 1306–1316. [Google Scholar] [CrossRef]
- Emmett, K.D.; Renwick, K.M.; Poulter, B. Disentangling climate and disturbance effects on regional vegetation greening trends. Ecosystems 2019, 22, 873–891. [Google Scholar] [CrossRef]
- Liu, D.D.; Pan, P.; Fu, J.; Ouyang, X.Z. Spatiotemporal variation and driving factors of vegetation coverage from 2000 to 2020 in southern Jiangxi Province, China. Chin. J. Appl. Ecol. 2023, 34, 2919–2928. [Google Scholar]
- Jia, X.; Shao, M.A.; Zhu, Y.; Luo, Y. Soil moisture decline due to afforestation across the Loess Plateau, China. J. Hydrol. 2017, 546, 113–122. [Google Scholar] [CrossRef]
- Aliabad, F.A.; Ghaderpour, E. Modeling soil heat flux from MODIS products for arid regions. Ecol. Inform. 2025, 86, 5. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Ciais, P.; Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Change Biol. 2006, 12, 672–685. [Google Scholar] [CrossRef]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Sun, Y.; Chen, Z.; Ji, F.; Feng, G.; Ma, Q. Analysis of land surface temperature sensitivity to vegetation in China. Remote Sens. 2023, 15, 4544. [Google Scholar] [CrossRef]
- Abiye, O.E.; Matthew, O.J.; Sunmonu, L.A.; Babatunde, O.A. Potential evapotranspiration trends in West Africa from 1906 to 2015. SN Appl. Sci. 2019, 1, 1434. [Google Scholar] [CrossRef]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 2016, 531, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, X.; Ju, W.; Zhou, Y.; Cheng, X. Improved estimation of global gross primary productivity during 1981–2020 using the optimized P model. Sci. Total Environ. 2022, 838, 156172. [Google Scholar] [CrossRef]
- Yisilayili, G.; He, B.; Song, Y.; Luo, X.; Yang, W.; Chen, Y. Simulation of vegetation NPP in typical Arid regions based on the CASA model and quantification of its driving factors. Land 2025, 14, 371. [Google Scholar] [CrossRef]
- Wang, L.; d’Odorico, P.; Evans, J.P.; Eldridge, D.J.; McCabe, M.F.; Caylor, K.K.; King, E.G. Dryland ecohydrology and climate change: Critical issues and technical advances. Hydrol. Earth Syst. Sci. 2012, 16, 2585–2603. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Smith, D.M.S.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.; Downing, T.E.; Dowlatabadi, H.; Fernández, R.J.; Herrick, J.E.; et al. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Mazzanti, P.; Scarascia Mugnozza, G.; Bozzano, F. Coherency and phase delay analyses between land cover and climate across Italy via the least-squares wavelet software. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103241. [Google Scholar] [CrossRef]
- Chen, X.P.; Zhao, X.Y.; Zhang, J.; Wang, R.X.; Lu, J.N. Variation of NDVI spatio-temporal characteristics and its driving factors based on geodetector model in Horqin Sandy Land, China. Chin. J. Plant Ecol. 2023, 47, 1082–1093. [Google Scholar] [CrossRef]
Parameter | Abbreviation | Unit | Original Resolution | Data Source |
---|---|---|---|---|
Mean annual temperature | MAT | °C | 1 km | https://cstr.cn/18406.11.Meteoro.tpdc.270961 accessed on 2 November 2024 |
Mean annual precipitation | MAP | mm | 1 km | https://doi.org/10.5281/zenodo.3114194 accessed on 3 November 2024 |
Maximum temperature | Max-T | °C | 1 km | https://doi.org/10.5281/zenodo.3185722 accessed on 2 November 2024 |
Minimum temperature | Min-T | °C | 1 km | https://doi.org/10.5281/zenodo.3185722 accessed on 2 November 2024 |
SNDVI | |Z| | Change Trends | |
---|---|---|---|
1 | S > 0 | |Z| ≧ 2.58 | Extremely significant decrease |
2 | S > 0 | 1.96 ≦ |Z| < 2.58 | Significant decrease |
3 | S > 0 | |Z| < 1.96 | Insignificant decrease |
4 | S < 0 | |Z| ≧ 2.58 | Extremely significant increase |
5 | S < 0 | 1.96 ≦ |Z| < 2.58 | Significant increase |
6 | S < 0 | |Z| < 1.96 | Insignificant increase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Yu, Y.; Sun, L.; He, J.; Zhang, H.; Lu, Y.; Guo, Z.; Zhang, L.; Malik, I.; Wistuba, M.; et al. The Response of NDVI to Climate Change in the Lowest and Hottest Basin in China. Atmosphere 2025, 16, 778. https://doi.org/10.3390/atmos16070778
Li C, Yu Y, Sun L, He J, Zhang H, Lu Y, Guo Z, Zhang L, Malik I, Wistuba M, et al. The Response of NDVI to Climate Change in the Lowest and Hottest Basin in China. Atmosphere. 2025; 16(7):778. https://doi.org/10.3390/atmos16070778
Chicago/Turabian StyleLi, Chunlan, Yang Yu, Lingxiao Sun, Jing He, Haiyan Zhang, Yuanbo Lu, Zengkun Guo, Lingyun Zhang, Ireneusz Malik, Malgorzata Wistuba, and et al. 2025. "The Response of NDVI to Climate Change in the Lowest and Hottest Basin in China" Atmosphere 16, no. 7: 778. https://doi.org/10.3390/atmos16070778
APA StyleLi, C., Yu, Y., Sun, L., He, J., Zhang, H., Lu, Y., Guo, Z., Zhang, L., Malik, I., Wistuba, M., & Yu, R. (2025). The Response of NDVI to Climate Change in the Lowest and Hottest Basin in China. Atmosphere, 16(7), 778. https://doi.org/10.3390/atmos16070778