Analysis of Spatial and Temporal Dynamics of Climate Aridization in Rostov Oblast in 1951–2054 Using ERA5 and CMIP6 Data and the De Martonne Index
Abstract
1. Introduction
2. Materials and Methods
2.1. Characterization of the Study Area
2.2. Scheme of the Study
3. Results
3.1. Historical Climate and Aridity Analysis (1951–2024)
3.2. Future Climate and Aridity Scenarios (2025–2054)
4. Discussion
4.1. Crop Adaptation Strategies
4.2. Limitations of the Study
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yao, J.; Liu, H.; Huang, J.; Gao, Z.; Wang, G.; Li, D.; Yu, H.; Chen, X. Accelerated Dryland Expansion Regulates Future Variability in Dryland Gross Primary Production. Nat. Commun. 2020, 11, 1665. [Google Scholar] [CrossRef] [PubMed]
- Coleine, C.; Delgado-Baquerizo, M.; DiRuggiero, J.; Guirado, E.; Harfouche, A.L.; Perez-Fernandez, C.; Singh, B.K.; Selbmann, L.; Egidi, E. Dryland Microbiomes Reveal Community Adaptations to Desertification and Climate Change. ISME J. 2024, 18, wrae056. [Google Scholar] [CrossRef] [PubMed]
- Schlaepfer, D.R.; Bradford, J.B.; Lauenroth, W.K.; Munson, S.M.; Tietjen, B.; Hall, S.A.; Wilson, S.D.; Duniway, M.C.; Jia, G.; Pyke, D.A.; et al. Climate Change Reduces Extent of Temperate Drylands and Intensifies Drought in Deep Soils. Nat. Commun. 2017, 8, 14196. [Google Scholar] [CrossRef] [PubMed]
- Burrell, A.L.; Evans, J.P.; De Kauwe, M.G. Anthropogenic Climate Change Has Driven over 5 Million Km2 of Drylands towards Desertification. Nat. Commun. 2020, 11, 3853. [Google Scholar] [CrossRef] [PubMed]
- Lewin, A.; Murali, G.; Rachmilevitch, S.; Roll, U. Global Evaluation of Current and Future Threats to Drylands and Their Vertebrate Biodiversity. Nat. Ecol. Evol. 2024, 8, 1448–1458. [Google Scholar] [CrossRef] [PubMed]
- Spinoni, J.; Barbosa, P.; De Jager, A.; McCormick, N.; Naumann, G.; Vogt, J.V.; Magni, D.; Masante, D.; Mazzeschi, M. A New Global Database of Meteorological Drought Events from 1951 to 2016. J. Hydrol. Reg. Stud. 2019, 22, 100593. [Google Scholar] [CrossRef] [PubMed]
- Romanello, M.; Walawender, M.; Hsu, S.-C.; Moskeland, A.; Palmeiro-Silva, Y.; Scamman, D.; Ali, Z.; Ameli, N.; Angelova, D.; Ayeb-Karlsson, S.; et al. The 2024 Report of the Lancet Countdown on Health and Climate Change: Facing Record-Breaking Threats from Delayed Action. Lancet 2024, 404, 1847–1896. [Google Scholar] [CrossRef] [PubMed]
- Greve, P.; Seneviratne, S.I. Assessment of Future Changes in Water Availability and Aridity. Geophys. Res. Lett. 2015, 42, 5493–5499. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Titkova, T.B.; Ananicheva, M.D. Using ERA5-Land Reanalysis and Data from Weather Stations in the Mountainous Regions of Russia to Assess Changes in the Glacial Systems of Eastern Siberia and the Far East. Ice Snow 2023, 63, 199–213. [Google Scholar] [CrossRef]
- Seifu, T.K.; Eshetu, K.D. Characterizing the Aridity Indices and Potential Evapotranspiration Using CMIP6-GCMs in Two Distinct Regions of Ethiopia. J. Water Clim. Change 2024, 15, 1507–1531. [Google Scholar] [CrossRef]
- Jafarpour, M.; Adib, A.; Lotfirad, M.; Kisi, Ö. Spatial Evaluation of Climate Change-Induced Drought Characteristics in Different Climates Based on De Martonne Aridity Index in Iran. Appl. Water Sci. 2023, 13, 133. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Y.; Cheng, T.F.; Lu, M. Future Changes in Global Atmospheric Rivers Projected by CMIP6 Models. J. Geophys. Res. Atmos. 2024, 129, e2023JD039359. [Google Scholar] [CrossRef]
- Wu, F.; Jiao, D.; Yang, X.; Cui, Z.; Zhang, H.; Wang, Y. Evaluation of NEX-GDDP-CMIP6 in Simulation Performance and Drought Capture Utility over China—Based on DISO. Hydrol. Res. 2023, 54, 703–721. [Google Scholar] [CrossRef]
- Li, X.; Tan, J.; Wang, X.; Shang, Q.; Li, H.; Li, X. Analysis of Future Drought Risk and Wheat Meteorological Disaster in Ningxia (Northwest China) Based on CMIP6 and SPEI. Agronomy 2024, 14, 3051. [Google Scholar] [CrossRef]
- Taguela, T.N.; Pokam, W.M.; Dyer, E.; James, R.; Washington, R. Low-Level Circulation over Central Equatorial Africa as Simulated from CMIP5 to CMIP6 Models. Clim. Dyn. 2024, 62, 8333–8351. [Google Scholar] [CrossRef]
- Fu, Y.; Lin, Z.; Guo, D. Improvement of the Simulation of the Summer East Asian Westerly Jet from CMIP5 to CMIP6. Atmos. Ocean. Sci. Lett. 2020, 13, 550–558. [Google Scholar] [CrossRef]
- Zivanovic, S.; Gocic, M. The influence of climatic conditions on the occurrence of large forest fires: A case study of Stara Planina Nature Park in 2007 and 2019. J. Appl. Life Sci. Environ. 2023, 56, 195–209. [Google Scholar] [CrossRef]
- Derdous, O.; Tachi, S.E.; Bouguerra, H. Spatial Distribution and Evaluation of Aridity Indices in Northern Algeria. Arid Land Res. Manag. 2021, 35, 1–14. [Google Scholar] [CrossRef]
- Sales, E.S.G.; Matsunaga, W.K.; Braga, C.C.; Sakamoto, M.S.; Lucena, D.B.; de Brito, J.I.B. Climate classification for Northeast Brazil using reanalysis data and the Absolute Aridity Index. Rev. Bras. Geogr. Física 2024, 17, 1478–1500. [Google Scholar] [CrossRef]
- Liu, C.; Yang, C.; Yang, Q.; Wang, J. Spatiotemporal Drought Analysis by the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) in Sichuan Province, China. Sci. Rep. 2021, 11, 1280. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Nkemelang, T.; New, M.; Zaroug, M. Temperature and Precipitation Extremes under Current, 1.5 °C and 2.0 °C Global Warming above Pre-Industrial Levels over Botswana, and Implications for Climate Change Vulnerability. Environ. Res. Lett. 2018, 13, 065016. [Google Scholar] [CrossRef]
- Stefanidis, S.; Tegos, A.; Alexandridis, V. How Has Aridity Changed at a Fir (Abies Borisii-Regis) Forest Site in Central Greece during the Past Six Decades? Environ. Sci. Proc. 2023, 26, 121. [Google Scholar] [CrossRef]
- Nazarenko, O. Regional Climate Change in the South of Rostov Region: A Case of Arid Steppe. E3S Web Conf. 2023, 407, 02006. [Google Scholar] [CrossRef]
- Medyanik, N.; Cherednichenko, O.; Dovgotko, N.; Rybasova, Y. Climatic Adaptation as Priority of Sustainable Development of the Agrifood System in the Southern Regions of Russia. BIO Web Conf. 2021, 37, 00118. [Google Scholar] [CrossRef]
- Gudko, V.N.; Usatov, A.V.; Azarin, K.V. Analysis of Hydrothermal Conditions in the Rostov Region in the Period 1960–2019. Arid Ecosyst. 2021, 11, 337–342. [Google Scholar] [CrossRef]
- Nazarenko, O.V. Moisture Changes in the Rostov Region in 1966–2019. UNNCRNSS 2022, 4, 45–52. [Google Scholar] [CrossRef]
- Bezuglova, O.S.; Golozubov, O.M.; Poluyan, D.I. Regional Features of Desertification Processes in Rostov Oblast. Arid Ecosyst. 2015, 5, 10–13. [Google Scholar] [CrossRef]
- Novikova, A.F. Ameliorative Status of Irrigated Soils in Rostov Oblast. Eurasian Soil Sci. 2008, 41, 529–541. [Google Scholar] [CrossRef]
- Gudko, V.; Usatov, A.; Ioshpa, A.; Denisenko, Y.; Shevtsova, V.; Azarin, K. Agro-Climatic Conditions of the Southern Federal District of Russia in the Context of Climate Change. Theor. Appl. Clim. 2021, 145, 989–1006. [Google Scholar] [CrossRef]
- Oleg, B.; Nikolaevich, S.P. Effective Activity of Small Agricultural Regional Entrepreneurship as the Basis for Forming Food Independence of the Country. Mosc. Econ. J. 2024, 9, 180–191. [Google Scholar] [CrossRef]
- Brock, G. COVID and Sanctions Resiliency in a Russian Region: The Case of Rostov Oblast 2010–2022. J. East-West Bus. 2024, 30, 114–132. [Google Scholar] [CrossRef]
- Mandzhieva, S.S.; Goncharova, L.Y.; Batukaev, A.A.; Minkina, T.M.; Bauer, T.V.; Shertnev, A.K.; Chaplygin, V.A.; Sushkova, S.N.; Poluektov, E.V.; Burachevskaya, M.V.; et al. Current State of Haplic Chernozems in Specially Protected Natural Areas of the Steppe Zone. OnLine J. Biol. Sci. 2017, 17, 363–371. [Google Scholar] [CrossRef]
- Pivovarov, S.; Popova, O. Russian Farmers Fight to Salvage Harvest as Major Region Cuts Forecast. TimesLIVE, 16 July 2024. Available online: https://www.timeslive.co.za/news/world/2024-07-17-russian-farmers-fight-to-salvage-harvest-as-major-region-cuts-forecast/ (accessed on 3 July 2025).
- Agapkin, A.M.; Makhotina, I.A. The Grain Market of Russia. IOP Conf. Ser Earth Environ. Sci. 2021, 839, 022023. [Google Scholar] [CrossRef]
- Novikov, A.; Pakhomova, A. Level of Fisheries Development and Its Impact on the Socio-Economic Development of the Region. E3S Web Conf. 2020, 175, 13017. [Google Scholar] [CrossRef]
- Udalov, A.; Udalova, Z. The Analysis of Foreign Economic Activity of Agricultural Producers of the Southern Federal District. E3S Web Conf. 2020, 193, 01064. [Google Scholar] [CrossRef]
- De Martonne, E. Pénéplaine ou Pénéplan. Bull. L’association Géographes Français 1925, 2, 1–2. [Google Scholar] [CrossRef]
- Dikareva, T.V.; Rymyantsev, V.Y.; Soldatov, M.S.; Malkhazova, S.M. Medicinal Plants of Arid and Semiarid Biomes of Russia. Arid Ecosyst. 2021, 11, 62–72. [Google Scholar] [CrossRef]
- Jamali, Z.; Heidarizadi, Z. Future Changes in Dry Conditions Using Statistical Downscaling Model (SDSM) in the Western Region of Gorgan Plain, Iran. Arid Ecosyst. 2022, 12, 345–352. [Google Scholar] [CrossRef]
- Kazeev, K.S.; Kozun, Y.S.; Samokhvalova, L.S.; Kolesnikov, S.I. Influence of Aridity and Continentality of Climate on Soil Biological Properties in Transect of Rostov-on-Don–Astrakhan. Izv. Akad. Nauk SSSR Ser. Geogr. 2015, 5, 46–53. [Google Scholar] [CrossRef]
- Gutjahr, O.; Putrasahan, D.; Lohmann, K.; Jungclaus, J.H.; von Storch, J.-S.; Brüggemann, N.; Haak, H.; Stössel, A. Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev. 2019, 12, 3241–3281. [Google Scholar] [CrossRef]
- Swart, N.C.; Cole, J.N.S.; Kharin, V.V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Hanna, S.; et al. The Canadian Earth System Model Version 5 (CanESM5.0.3). Geosci. Model Dev. 2019, 12, 4823–4873. [Google Scholar] [CrossRef]
- Xin, X.; Zhang, J.; Zhang, F.; Wu, T.; Shi, X.; Li, J.; Chu, M.; Liu, Q.; Yan, J.; Ma, Q.; et al. BCC BCC-CSM2MR Model Output Prepared for CMIP6 CMIP; World Data Center for Climate: Hamburg, Germany, 2018. [Google Scholar]
- Ferreiro-Lera, G.-B.; Penas, Á.; del Río, S. Unveiling Deviations from IPCC Temperature Projections through Bayesian Downscaling and Assessment of CMIP6 General Circulation Models in a Climate-Vulnerable Region. Remote Sens. 2024, 16, 1831. [Google Scholar] [CrossRef]
- Ferreira, V.; Bonfim, O.T.; Mortarini, L.; Valdes, R.H.; Costa, F.D.; Maroneze, R. Atmospheric Blocking Events over the Southeast Pacific and Southwest Atlantic Oceans in the CMIP6 Present-Day Climate. Climate 2024, 12, 84. [Google Scholar] [CrossRef]
- Adelodun, B.; Ahmad, M.J.; Odey, G.; Adeyi, Q.; Choi, K.S. Performance-Based Evaluation of CMIP5 and CMIP6 Global Climate Models and Their Multi-Model Ensembles to Simulate and Project Seasonal and Annual Climate Variables in the Chungcheong Region of South Korea. Atmosphere 2023, 14, 1569. [Google Scholar] [CrossRef]
- Xie, W.; Wang, S.; Yan, X. Diurnal Temperature Range in Winter Wheat–Growing Regions of China: CMIP6 Model Evaluation and Comparison. Theor. Appl. Clim. 2023, 152, 123–134. [Google Scholar] [CrossRef]
- Reboita, M.S.; Willian de Souza Ferreira, G.; Gabriel Martins Ribeiro, J.; Ali, S. Assessment of Precipitation and Near-Surface Temperature Simulation by CMIP6 Models in South America. Environ. Res. Clim. 2024, 3, 025011. [Google Scholar] [CrossRef]
- Xiao, H.; Zhuo, Y.; Sun, H.; Pang, K.; An, Z. Evaluation and Projection of Climate Change in the Second Songhua River Basin Using CMIP6 Model Simulations. Atmosphere 2023, 14, 1429. [Google Scholar] [CrossRef]
- Azad, N.; Ahmadi, A. Assessment of CMIP6 Models and Multi-Model Averaging for Temperature and Precipitation over Iran. Sci. Rep. 2024, 14, 24165. [Google Scholar] [CrossRef] [PubMed]
- Virgin, J.G.; Fletcher, C.G.; Cole, J.N.S.; von Salzen, K.; Mitovski, T. Cloud Feedbacks from CanESM2 to CanESM5.0 and Their Influence on Climate Sensitivity. Geosci. Model Dev. 2021, 14, 5355–5372. [Google Scholar] [CrossRef]
- Thrasher, B.; Maurer, E.P.; McKellar, C.; Duffy, P.B. Technical Note: Bias Correcting Climate Model Simulated Daily Temperature Extremes with Quantile Mapping. Hydrol. Earth Syst. Sci. 2012, 16, 3309–3314. [Google Scholar] [CrossRef]
- Thrasher, B.; Wang, W.; Michaelis, A.; Melton, F.; Lee, T.; Nemani, R. NASA Global Daily Downscaled Projections, CMIP6. Sci. Data 2022, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Grigorev, V.Y.; Frolova, N.L.; Kireeva, M.B.; Stepanenko, V.M. Spatial and Temporal Variability of ERA5 Precipitation Accuracy over Russia. Izv. Ross. Akad. Nauk. Seriya Geogr. 2022, 86, 435–446. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, T.; Li, L.; Furtado, K.; Xin, X.; Xie, C.; Zheng, M.; Zhao, H.; Zhou, Y. Constraint on Regional Land Surface Air Temperature Projections in CMIP6 Multi-Model Ensemble. npj Clim. Atmos. Sci. 2023, 6, 85. [Google Scholar] [CrossRef]
- Sklyarenko, G.Y.; Shehurdin, G.R. Features of the Thermal Field of the City of Rostov-on-Don According to Remote Sensing Data. UNNCRNSS 2024, 97–104. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, S.; Li, Z.; Luo, Y. An Evaluation of CRA40 and ERA5 Precipitation Products over China. Remote Sens. 2023, 15, 5300. [Google Scholar] [CrossRef]
- Lavers, D.A.; Hersbach, H.; Rodwell, M.J.; Simmons, A. An Improved Estimate of Daily Precipitation from the ERA5 Reanalysis. Atmos. Sci. Lett. 2024, 25, e1200. [Google Scholar] [CrossRef]
Climate Type | De Martonne Aridity Index Values |
---|---|
Arid | |
Semi-Arid | |
Mediterranean | |
Semi-Humid | |
Humid | |
Very Humid | |
Extremely Humid |
Name | Dataset Name | Variable Name | Model |
---|---|---|---|
ERA5-Land Monthly Aggregated—ECMWF Climate Reanalysis | ECMWF/ERA5_LAND/ MONTHLY_AGGR | temperature_2m | - |
total_precipitation_sum | - | ||
NEX-GDDP-CMIP6: NASA Earth Exchange Global Daily Bias-Corrected and Downscaled Data | NASA/GDDP-CMIP6 | tas | MPI-ESM1-2-HR, CanESM5, BCC-CSM2-MR |
pr |
Zone | Risk Level | Main Crops | Supplementary Crops | Adaptation Level |
---|---|---|---|---|
West | Low | corn, soybeans, winter wheat | Sorghum (drought resisted crops) | Minimal |
North | ||||
Central | ||||
Southwest | ||||
Southeast | High | Sorghum, chickpeas | Winter wheat (limited) | Significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krivoguz, D. Analysis of Spatial and Temporal Dynamics of Climate Aridization in Rostov Oblast in 1951–2054 Using ERA5 and CMIP6 Data and the De Martonne Index. Climate 2025, 13, 151. https://doi.org/10.3390/cli13070151
Krivoguz D. Analysis of Spatial and Temporal Dynamics of Climate Aridization in Rostov Oblast in 1951–2054 Using ERA5 and CMIP6 Data and the De Martonne Index. Climate. 2025; 13(7):151. https://doi.org/10.3390/cli13070151
Chicago/Turabian StyleKrivoguz, Denis. 2025. "Analysis of Spatial and Temporal Dynamics of Climate Aridization in Rostov Oblast in 1951–2054 Using ERA5 and CMIP6 Data and the De Martonne Index" Climate 13, no. 7: 151. https://doi.org/10.3390/cli13070151
APA StyleKrivoguz, D. (2025). Analysis of Spatial and Temporal Dynamics of Climate Aridization in Rostov Oblast in 1951–2054 Using ERA5 and CMIP6 Data and the De Martonne Index. Climate, 13(7), 151. https://doi.org/10.3390/cli13070151