Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = evaporation front

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10371 KB  
Article
Numerical Simulation of Gas-Liquid Two-Phase Flow in a Downhole Multistage Axial Compressor Under Different Inlet Conditions
by Mingchen Cao, Wei Pang, Huanle Liu, Shifan Su, Yufan Wang and Weihao Zhang
Energies 2026, 19(1), 275; https://doi.org/10.3390/en19010275 - 5 Jan 2026
Viewed by 203
Abstract
During natural gas field extraction, downhole compressors frequently encounter gas-liquid two-phase flow conditions, yet the internal flow characteristics and performance evolution mechanisms remain insufficiently understood. This paper investigates a small-scale, low-pressure-ratio five-stage axial compressor using a multiphase numerical simulation method based on the [...] Read more.
During natural gas field extraction, downhole compressors frequently encounter gas-liquid two-phase flow conditions, yet the internal flow characteristics and performance evolution mechanisms remain insufficiently understood. This paper investigates a small-scale, low-pressure-ratio five-stage axial compressor using a multiphase numerical simulation method based on the Euler-Lagrange framework. The study systematically examines the effects of different inlet pressures (0.1 MPa, 1 MPa, 8 MPa) and liquid mass fraction (0%, 5%, 10%) on its overall and stage-by-stage performance, droplet evolution, and flow field structure. The results indicate that the inlet pressure exerts a decisive influence on the overall efficiency trend of wet compression. The stage efficiency response displays a trend of an initial decrease in the front stages followed by an increase in the rear stages, showing significant variation under different inlet pressures. Flow field analysis reveals that increased inlet pressure intensifies droplet aerodynamic breakup, leading to higher flow losses in the compressor. Simultaneously, under high-pressure conditions, the cumulative cooling effect resulting from droplet heat transfer and evaporation effectively enhances the flow stability in the rear stages. This research elucidates the interstage interaction mechanisms of gas-liquid two-phase flow in low-pressure-ratio multistage compressors and highlights the competing influences of droplet breakup and evaporation effects on performance under different pressure conditions, providing a theoretical basis for the optimal design of downhole wet gas compression technology. Full article
Show Figures

Figure 1

33 pages, 3160 KB  
Article
A Unified Optimization Approach for Heat Transfer Systems Using the BxR and MO-BxR Algorithms
by Ravipudi Venkata Rao, Jan Taler, Dawid Taler and Jaya Lakshmi
Energies 2026, 19(1), 34; https://doi.org/10.3390/en19010034 - 20 Dec 2025
Viewed by 383
Abstract
In this work, three novel optimization algorithms—collectively referred to as the BxR algorithms—and their multi-objective versions, referred to as the MO-BxR algorithms, are applied to diverse heat transfer systems. Five representative case studies are presented: two single-objective problems involving a heat exchanger network [...] Read more.
In this work, three novel optimization algorithms—collectively referred to as the BxR algorithms—and their multi-objective versions, referred to as the MO-BxR algorithms, are applied to diverse heat transfer systems. Five representative case studies are presented: two single-objective problems involving a heat exchanger network and a jet-plate solar air heater; a two-objective optimization of Y-type fins in phase-change thermal energy storage units; and two three-objective problems involving TPMS–fin three-fluid heat exchangers and Tesla-valve evaporative cold plates for LiFePO4 battery modules. The proposed algorithms are compared with leading evolutionary optimizers, including IUDE, εMAgES, iL-SHADEε, COLSHADE, and EnMODE, as well as NSGA-II, NSGA-III, and NSWOA. The results demonstrated improved convergence characteristics, better Pareto front diversity, and reduced computational burden. A decision-making framework is also incorporated to identify balanced, practically feasible, and engineering-preferred solutions from the Pareto sets. Overall, the results demonstrated that the BxR and MO-BxR algorithms are capable of effectively handling diverse thermal system designs and enhancing heat transfer performance. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

17 pages, 3818 KB  
Article
Water and Soil Salinization Mechanism in the Arid Barkol Inland Basin in NW China
by Ziyue Wang, Chaoyao Zan, Yajing Zhao, Bo Xu, Rui Long, Xiaoyong Wang, Jun Zhang and Tianming Huang
Water 2025, 17(24), 3462; https://doi.org/10.3390/w17243462 - 5 Dec 2025
Viewed by 621
Abstract
Identifying the dominant mechanisms of water and soil salinization in arid and semi-arid endorheic basins is fundamental for our understanding of basin-scale water–salt balance and supports water resources management. In many inland basins, mineral dissolution, evaporation, and transpiration govern salinization, but disentangling these [...] Read more.
Identifying the dominant mechanisms of water and soil salinization in arid and semi-arid endorheic basins is fundamental for our understanding of basin-scale water–salt balance and supports water resources management. In many inland basins, mineral dissolution, evaporation, and transpiration govern salinization, but disentangling these processes remains difficult. Using the Barkol Basin in northwestern China as a representative endorheic system, we sampled waters and soils along a transect from the mountain front through alluvial fan springs and rivers to the terminal lake. We integrated δ18O–δ2H with hydrochemical analyses, employing deuterium excess (d-excess) to partition salinity sources and quantify contributions. The results showed that mineral dissolution predominated, contributing 65.8–81.8% of groundwater salinity in alluvial fan settings and ~99.7% in the terminal lake, whereas direct evapoconcentration was minor (springs and rivers ≤ 4%; lake ≤ 0.2%). Water chemistry types evolved from Ca-HCO3 in mountainous runoff, to Ca·Na-HCO3·SO4 in groundwater and groundwater-fed rivers, and finally to Na-SO4·Cl in the terminal lake. The soil profiles showed that groundwater flow and vadose-zone water–salt transport control spatial patterns: surface salinity rises from basin margins (<1 mg/g) to the lakeshore and is extremely high near the lake (23.85–244.77 mg/g). In spring discharge belts and downstream wetlands, the sustained evapotranspiration of groundwater-supported soil moisture drives surface salt accumulation, making lakeshores and wetlands into terminal sinks. The d-excess-based method can robustly separate the salinization processes despite its initial isotopic variability. Full article
Show Figures

Figure 1

25 pages, 9706 KB  
Article
The Eulerian–Lagrangian Model for Simulating the Moisture Content Effect on the Characteristics of MSW Combustion in a 50 T/D Grate Incinerator
by Jiacheng Dai, Yingnan Du, Yuanbo Xie, Dongkuan Zhang, Li Liu, Yang Gui and Guozhao Ji
Processes 2025, 13(12), 3928; https://doi.org/10.3390/pr13123928 - 4 Dec 2025
Viewed by 307
Abstract
Municipal solid waste (MSW) composition and properties play a critical role in determining the efficiency and environmental impact of waste incineration processes. However, the effects of moisture variation in MSW on combustion performance in full-scale grate systems remain insufficiently understood. To reveal how [...] Read more.
Municipal solid waste (MSW) composition and properties play a critical role in determining the efficiency and environmental impact of waste incineration processes. However, the effects of moisture variation in MSW on combustion performance in full-scale grate systems remain insufficiently understood. To reveal how the moisture variation in municipal solid waste (MSW) properties affects the combustion process in full-scale grate systems, a 50 t/d mechanical grate incinerator was modeled. The influence of MSW inlet moisture content (42.85%, 35.71%, and 28.57%) was investigated. When the moisture content is 35.71%, the horizontal and vertical temperature gradient of the incinerator was least pronounced, and the high-temperature zone in the incinerator would not be locally concentrated. The moderate ignition position could reduce the corrosion of the front and rear arches of the grate incinerator. In the combustion process of three moisture contents, the complete evaporation positions were located at X = 4.23 m in the combustion section, X = 3.15 m in the drying section and X = 2.63 m in the drying section, the corresponding ignition points were X = 6 m, X = 4.47 m, and X = 3.74 m in the combustion section, respectively. After the moisture content was reduced to 35.71% and 28.57%, the drying process was advanced by 25.5% and 37.8%, respectively; the ignition points were advanced by 25.5% and 37.7%, respectively. It is recommended that the moisture content of MSW be maintained within the range of 33.8% to 41.6% under practical operating conditions. With the decrease in the moisture content of the MSW, the O2 content at the incinerator outlet decreased; the CO2 content increased. The findings offer quantitative guidance on feed pre-treatment for MSW incineration plants. Full article
Show Figures

Figure 1

33 pages, 10610 KB  
Article
Impact of Fluid Sloshing on BOG Generation in Type B LNG Tanks During Ship Emergency Stops
by Haikang Zhao, Gang Wu, Jiachen Chen, Xigang Pu, Sicong Wang, Yuhao Yuan and Ang Sun
J. Mar. Sci. Eng. 2025, 13(11), 2100; https://doi.org/10.3390/jmse13112100 - 4 Nov 2025
Viewed by 755
Abstract
The safe and efficient transport of Liquefied Natural Gas (LNG) is critically dependent on understanding fluid dynamics within cargo tanks, which directly influence structural integrity and operational safety. Study employs the Volume of Fluid (VOF) method to simulate fluid sloshing and phase change [...] Read more.
The safe and efficient transport of Liquefied Natural Gas (LNG) is critically dependent on understanding fluid dynamics within cargo tanks, which directly influence structural integrity and operational safety. Study employs the Volume of Fluid (VOF) method to simulate fluid sloshing and phase change dynamics in Type B LNG cargo tanks during emergency stop conditions. The transient simulations employ a time step of 5 × 10−3 s, a model with 46,840 grids, and the analysis focuses on impact forces on tank walls, their dependence on filling levels. Results show that the flow disturbance caused by vessel rolling increases BOG generation fluctuations by approximately 35%. Sloshing significantly increases BOG generation, particularly after a 10 s relaxation period, as the initial shock enhances heat transfer and mixing, accelerating vapor production. Original components of LNG are sensitive to BOG generation and impact forces on the front bulkhead are significantly higher than on the rear, with peak impacts occurring. The filling rate is a critical parameter influencing fluid dynamics and safety in LNG transportation. Impact magnitude increases with fill level up while at about 80% it declines; impact timing shortens at higher fill ratios. A BOG generation mechanism in which microscale turbulence and ongoing thermal imbalance govern the kinetics of evaporation phase transitions was proposed. It was discovered that the impact forces and BOG production exhibit rise–fall–rise patterns driven by impact dynamics, condensation, and evaporation processes. The findings highlight the critical role of fluid sloshing in affecting tank safety and operational efficiency, offering insights into designing more resilient LNG cargo tanks and optimizing transportation safety and economy. Full article
(This article belongs to the Special Issue Advanced Studies in Ship Fluid Mechanics)
Show Figures

Figure 1

11 pages, 2042 KB  
Article
Numerical Simulation of Drying Patterns of Nanofluids in an Open Square Domain
by Zhenlong Song, Yibo Hu and Yanguang Shan
Colloids Interfaces 2025, 9(5), 71; https://doi.org/10.3390/colloids9050071 - 15 Oct 2025
Viewed by 480
Abstract
The drying of nanofluid films on a surface can form various patterns and plays an important role in painting, surface patterning, and nano-fabrication processes. In this paper, a two-dimensional Kinetic Monte Carlo (KMC) model is developed based on the two-dimensional Ising model to [...] Read more.
The drying of nanofluid films on a surface can form various patterns and plays an important role in painting, surface patterning, and nano-fabrication processes. In this paper, a two-dimensional Kinetic Monte Carlo (KMC) model is developed based on the two-dimensional Ising model to investigate the drying patterns of nanofluids in an open domain. In the KMC model, the effective chemical potential is approximated by a linear function, in contrast to the constant value used in previous studies. This ensures that the dewetting front in the open domain consistently recedes from the edges toward the center. Simulation results show that nanoparticles, initially uniformly distributed, can assemble into branched structures that remain on the substrate after complete evaporation of the nanofluid. Furthermore, the structures observed in our study differ from the fractal cavities investigated in previous studies conducted in closed domains. A parametric study reveals that both the particle diffusion rate and the chemical potential distribution significantly influence the resulting patterns. Full article
Show Figures

Figure 1

9 pages, 11666 KB  
Article
Quantitative Analysis of Droplet Evaporation Based on Wedge Prism Digital Holographic Microscope
by Jiankun Wang, Han Wang, Yang Luo, Zhuoji Liang, Gengliang Chen, Meng Wang, Guoliang Zheng and Xuhui Zhang
Micromachines 2025, 16(10), 1114; https://doi.org/10.3390/mi16101114 - 29 Sep 2025
Viewed by 491
Abstract
This study presents a prism-based self-referencing digital holographic microscopy (PSDHM) system that utilizes a wedge prism. The front and rear surfaces of the prism have a wedge angle of 2°, which can reflect the parallel incident light, respectively, to generate a lateral displacement [...] Read more.
This study presents a prism-based self-referencing digital holographic microscopy (PSDHM) system that utilizes a wedge prism. The front and rear surfaces of the prism have a wedge angle of 2°, which can reflect the parallel incident light, respectively, to generate a lateral displacement that varies with the propagation distance of the optical path. Focusing on the quantitative analysis of droplets, this innovative system effectively images water droplets and their dynamic evaporation processes. Results show that the evaporation process of water droplets undergoes three stages, each stage corresponding to a theoretical model. These are the constant contact radius (CCR) mode, the stick-slip (SS) mode, and the stick-jump (SJ) mode. Furthermore, by comprehensively analyzing the contact angle and the specific morphology of the droplet’s contact area, we revealed that the hydrophilicity of the cover glass influences the droplet morphology, contact area, and the evaporation process. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

15 pages, 3232 KB  
Article
Effect of Methanol Injection Timing on Performance of Marine Diesel Engines and Emission Reduction
by Hao Guo, Veysi Başhan, Cairui Yu, Firat Bolat, Hakan Demirel and Xin Tian
J. Mar. Sci. Eng. 2025, 13(5), 949; https://doi.org/10.3390/jmse13050949 - 13 May 2025
Cited by 1 | Viewed by 2094
Abstract
Methanol is a promising low-carbon fuel that can effectively reduce environmental pollution from ships compared to traditional fuels. The timing of methanol injection is a major factor affecting the performance of internal combustion engines, and either too late or too early injection can [...] Read more.
Methanol is a promising low-carbon fuel that can effectively reduce environmental pollution from ships compared to traditional fuels. The timing of methanol injection is a major factor affecting the performance of internal combustion engines, and either too late or too early injection can severely impact the combustion efficiency of an engine. This paper focused on a 4135Aca marine diesel engine produced by the Shanghai Diesel Engine Factory in China. Using CONVERGE/3.0 software for numerical simulation, the study analyzed the impact of methanol injection timing on the combustion and emission characteristics of marine diesel engines. It was found that the determination of methanol injection timing should comprehensively consider the effects of the combustion start point, mixture quality, flame front propagation speed, and evaporation heat absorption. Appropriate methanol injection timing can improve the combustion duration, cylinder pressure, and heat release rate, enhancing the power performance of marine diesel engines. This study shows that methanol injection at −30 °CA can effectively control the in-cylinder combustion process, improve combustion efficiency, and significantly reduce the emissions of pollutants such as soot (by 60.5%), HC (by 3.6%), CO (by 95.3%), etc. However, it can lead to an increase in NOx (by 3.7%) generation under high-temperature conditions. This research can provide a certain reference for the engineering application of methanol direct injection engines for ships. Full article
Show Figures

Figure 1

23 pages, 5980 KB  
Article
Study on Moisture Phase Changes in Bread Baking Using a Coupling Model
by Luo Zhang, Wei Yang, Kai Xu, Linshuang Long and Hong Ye
Foods 2025, 14(9), 1649; https://doi.org/10.3390/foods14091649 - 7 May 2025
Cited by 3 | Viewed by 2132
Abstract
Moisture phase change (MPC), a key process in bread baking, significantly impacts heat and mass transfer, as confirmed by experiments. However, existing models poorly characterize this phenomenon, and its quantitative impact on baking needs systematic study. This research develops a coupled multiphase model [...] Read more.
Moisture phase change (MPC), a key process in bread baking, significantly impacts heat and mass transfer, as confirmed by experiments. However, existing models poorly characterize this phenomenon, and its quantitative impact on baking needs systematic study. This research develops a coupled multiphase model for heat and mass transfer with large deformation, employing both equilibrium and nonequilibrium approaches to describe MPC in closed and open pores, respectively. Experimentally calibrated pore-opening functions and viscosity variations revealed that pore-opening primarily occurs at 71–81 °C, whereas dough solidification occurs at 50–110 °C. Model-based analysis indicates that in closed pores, evaporation–diffusion–condensation is the primary mode of moisture transport and heat transfer with contributing approximately 60% of the total effective thermal conductivity, and when pores open, water vapor evaporates or condenses on pore walls, forming an ‘evaporation front’ and ‘condensation front’. The content of liquid water increases at the ‘condensation front’ and decreases at the ‘evaporation front’. Bread deformation is predominantly governed by pressure differentials between closed pores and the ambient environment, with the partial pressure of water vapor emerging as the principal driver because its average content exceeds 70% within closed pores. These findings demonstrate that MPC governs heat and mass transfer and deformation during bread baking. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

20 pages, 9657 KB  
Article
Experimental and Numerical Analysis of Evaporation Processes in a Semi-Arid Region
by Xuanming Zhang, Zaiyong Zhang, Wenke Wang and Zhoufeng Wang
Water 2025, 17(8), 1113; https://doi.org/10.3390/w17081113 - 8 Apr 2025
Cited by 1 | Viewed by 920
Abstract
This study combines field experiments and numerical analysis using the HYDRUS model to investigate the impact of water table depths on evaporation processes in semi-arid regions with shallow groundwater. Two lysimeters with different water table depths were set up in the Ordos Basin, [...] Read more.
This study combines field experiments and numerical analysis using the HYDRUS model to investigate the impact of water table depths on evaporation processes in semi-arid regions with shallow groundwater. Two lysimeters with different water table depths were set up in the Ordos Basin, Northwest China, and instrumented with multi-depth soil moisture and temperature sensors. The experimental data were used to calibrate and validate numerical models that simulated both non-isothermal and isothermal flows. The results reveal that groundwater levels significantly influence the evaporation rate, dictating the position of the evaporation front and zero-flux plane. Isothermal models underestimated cumulative evaporation by 14.7% and 44.2% for the shallow and deep-water table lysimeters, respectively, while non-isothermal models produced more accurate results with 0.95% overestimation and 5.2% underestimation. The study demonstrates that incorporating both water and heat transport into numerical models enhances the accuracy of evaporation estimates under varying groundwater conditions. Furthermore, the findings show that when the evaporation front occurs near the surface, liquid water flux dominates, whereas water vapor flux plays a crucial role when the evaporation front is located below the surface. These results offer valuable insights for refining water management strategies and models in agricultural and ecological systems of semi-arid areas, underscoring the critical role of considering soil moisture and temperature dynamics, along with groundwater levels, in accurately quantifying evaporation for improved resource management. Full article
Show Figures

Figure 1

19 pages, 13798 KB  
Article
RANFIS-Based Sensor System with Low-Cost Multi-Sensors for Reliable Measurement of VOCs
by Keunyoung Kim and Woosung Yang
Technologies 2025, 13(3), 111; https://doi.org/10.3390/technologies13030111 - 7 Mar 2025
Viewed by 1467
Abstract
This study describes a sensor system for continuous monitoring of volatile organic compounds (VOCs) emitted from small industrial facilities in urban centers, such as automobile paint facilities and printing facilities. Previously, intermittent measurements were made using expensive flame ionization detector (FID)-type instruments that [...] Read more.
This study describes a sensor system for continuous monitoring of volatile organic compounds (VOCs) emitted from small industrial facilities in urban centers, such as automobile paint facilities and printing facilities. Previously, intermittent measurements were made using expensive flame ionization detector (FID)-type instruments that were impossible to install, resulting in a lack of continuous management. This paper develops a low-cost sensor system for full-time management and consists of multi-sensor systems to increase the spatial resolution in the pipe. To improve the accuracy and reliability of this system, a new reinforced adaptive neuro fuzzy inference system (RANFIS) model with enhanced preprocessing based on the adaptive neuro fuzzy inference system (ANFIS) model is proposed. For this purpose, a smart sensor module consisting of low-cost metal oxide semiconductors (MOSs) and photo-ionization detectors (PIDs) is fabricated, and an operating controller is configured for real-time data acquisition, analysis, and evaluation. In the front part of the RANFIS, interquartile range (IQR) is used to remove outliers, and gradient analysis is used to detect and correct data with abnormal change rates to solve nonlinearities and outliers in sensor data. In the latter stage, the complex nonlinear relationship of the data was modeled using the ANFIS to reliably handle data uncertainty and noise. For practical verification, a toluene evaporation chamber with a sensor system for monitoring was built, and the results of real-time data sensing after training based on real data were compared and evaluated. As a result of applying the RANFIS model, the RMSE of the MQ135, MQ138, and PID-A15 sensors were 3.578, 11.594, and 4.837, respectively, which improved the performance by 87.1%, 25.9%, and 35.8% compared to the existing ANFIS. Therefore, the precision within 5% of the measurement results of the two experimentally verified sensors shows that the proposed RANFIS-based sensor system can be sufficiently applied in the field. Full article
Show Figures

Figure 1

20 pages, 7434 KB  
Article
Characterizing and Modeling Infiltration and Evaporation Processes in the Shallow Loess Layer: Insight from Field Monitoring Results of a Large Undisturbed Soil Column
by Ye Tan, Fuchu Dai, Zhiqiang Zhao, Cifeng Cheng and Xudong Huang
Water 2025, 17(3), 364; https://doi.org/10.3390/w17030364 - 27 Jan 2025
Viewed by 1152
Abstract
Frequent agricultural irrigation events continuously raise the groundwater table on loess platforms, triggering numerous loess landslides and significantly contributing to soil erosion in the Chinese Loess Plateau. The movement of irrigation water within the surficial loess layer is crucial for comprehending the mechanisms [...] Read more.
Frequent agricultural irrigation events continuously raise the groundwater table on loess platforms, triggering numerous loess landslides and significantly contributing to soil erosion in the Chinese Loess Plateau. The movement of irrigation water within the surficial loess layer is crucial for comprehending the mechanisms of moisture penetration into thick layers. To investigate the infiltration and evaporation processes of irrigation water, a large undisturbed soil column with a 60 cm inner diameter and 100 cm height was extracted from the surficial loess layer. An irrigation simulation event was executed on the undisturbed soil column and the ponding infiltration and subsequent evaporation processes were systematically monitored. A ruler placed above the soil column recorded the ponding height during irrigation. Moisture probes and tensiometers were installed at five depths to monitor the temporal variations in volumetric water content (VWC) and matric suction. Additionally, an evaporation gauge and an automatic weighing balance measured the potential and actual evaporation. The results revealed that the initially high infiltration rate rapidly decreased to a stable value slightly below the saturated hydraulic conductivity (Ks). A fitted Mezencev model successfully replicated the ponding infiltration process with a high correlation coefficient of 0.995. The monitored VWC of the surficial 15 cm-thick loess approached a saturated state upon the advancing of the wetting front, while the matric suction sharply decreased from an initial high value of 65 kPa to nearly 0 kPa. The monitored evaporation process of the soil column was divided into an initial constant rate stage and a subsequent decreasing rate stage. During the constant rate stage, the actual evaporation closely matched or slightly exceeded the potential evaporation rate. In the decreasing rate stage, the actual evaporation rate fell below the potential evaporation rate. The critical VWC ranged from 26% to 28%, with the corresponding matric suction recovering to approximately 25 kPa as the evaporation process transitioned between stages. The complete evaporation process was effectively modeled using a fitted Rose model with a high correlation coefficient (R2 = 0.971). These findings provide valuable insights into predicting water infiltration and evaporation capacities in loess layers, thereby enhancing the understanding of water movement within thick loess deposits and the processes driving soil erosion. Full article
(This article belongs to the Special Issue Monitoring and Control of Soil and Water Erosion)
Show Figures

Figure 1

25 pages, 3264 KB  
Article
Engineering Soil Quality and Water Productivity Through Optimal Phosphogypsum Application Rates
by Anrong Luo, Jun Li, Yanan Xiao, Zijian He and Jiaping Liang
Agronomy 2025, 15(1), 35; https://doi.org/10.3390/agronomy15010035 - 27 Dec 2024
Cited by 2 | Viewed by 1930
Abstract
Water scarcity and soil degradation pose challenges to sustainable agriculture. Phosphogypsum, a low-cost solid waste, shows potential as a soil amendment, but its impact on water saving and soil quality need further study. This research assessed the effects of phosphogypsum application rates (CK: [...] Read more.
Water scarcity and soil degradation pose challenges to sustainable agriculture. Phosphogypsum, a low-cost solid waste, shows potential as a soil amendment, but its impact on water saving and soil quality need further study. This research assessed the effects of phosphogypsum application rates (CK: no phosphogypsum, 0.075%, 0.15%, 0.3% and 0.6%) on soil infiltration, water retention, salinity, soil quality, crop yield and irrigation water productivity (IWP) to identify the optimal rate. Phosphogypsum application altered pore structure and water potential gradients, slowing wetting front migration, increasing infiltration duration (102 to 158 min), cumulative infiltration (17.37 to 27.44 cm) (p < 0.05) and soil water content (18.25% to 24.33%) (p < 0.05) as the rate increased from CK to 0.6%. It also enhanced water retention by enhancing soil aggregation and reducing evaporation.By promoting the formation and stabilization of soil aggregates, phosphogypsum application (CK to 0.6%) reduced bulk density from 1.20 g/cm3 to 1.12 g/cm3 (p < 0.05), while porosity, available nitrogen and urease activity increased by 3.70%, 39.42% and 82.61%, respectively (p < 0.05). These enhancements provided a strong foundation for improved crop performance. Specifically, phosphogypsum enhanced yield through three pathways: (1) improving soil physical properties, which influenced soil nutrients and then improved enzyme activities; (2) directly affecting soil nutrients, which impacted enzyme activities and increased yield; and (3) directly boosting enzyme activities, leading to increased yield. The comprehensive benefits of phosphogypsum initially increased and then decreased, with an optimal application rate of 0.45% determined through TOPSIS, a method that ranks alternatives based on their proximity to an ideal solution, considering factors including soil quality, crop yield and IWP. These findings confirm the feasibility of phosphogypsum as an effective resource to enhance water efficiency and soil quality, promoting sustainable agricultural practices. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

14 pages, 8299 KB  
Article
Hydrochemical Characteristics and Genesis of Sand–Gravel Brine Deposits in the Mahai Basin of the Northern Qinghai–Tibetan Plateau
by Hongkui Bai, Tong Pan, Guang Han, Qishun Fan, Qing Miao and Haiyi Bu
Water 2024, 16(24), 3562; https://doi.org/10.3390/w16243562 - 11 Dec 2024
Cited by 4 | Viewed by 1307
Abstract
The sand–gravel brine deposit in the Mahai Basin is a newly discovered large-scale potassium–bearing brine deposit. The potassium–bearing brine is primarily found at depths exceeding 150 m within the porous alluvial and fluvial sand–gravel reservoir of the Middle to Lower Pleistocene. This deposit [...] Read more.
The sand–gravel brine deposit in the Mahai Basin is a newly discovered large-scale potassium–bearing brine deposit. The potassium–bearing brine is primarily found at depths exceeding 150 m within the porous alluvial and fluvial sand–gravel reservoir of the Middle to Lower Pleistocene. This deposit is characterized by a relatively shallow water table, moderate–to–strong aquifer productivity, high salinity, and a KCl content that meets the conditions for exploitation, with the advantage of reduced salt crystallization during well mining, making it a potential reserve base for potash development. A geochemical analysis of the sand–gravel brine revealed consistent trends for the major ions K+, Na+, Mg2+, Cl, and SO42− along the east–west axis of the alluvial fan, while Ca2+ showed an opposite trend compared to Mg2+. Along the exploration lines from north to south, the concentrations of the main ions gradually increase. The brine is enriched in Na+ and Cl ions, while SO42− and HCO3 are depleted. In the K+-Na+-Mg2+/Cl-H2O (25 °C) quaternary phase diagram, the brine falls within the halite stability field, with the hydrochemical type classified as chloride type. The brine coefficient characteristics indicate a multi-source origin involving residual evaporation, salt rock leaching, and metamorphic sedimentary brine. Comparison studies of the ionic composition and isotopic signatures (δD, δ18O, δ37Cl, and δ7Li) of deep sand–gravel brines in the study area with interstitial and confined brines in the southern depression suggest similar geochemical characteristics between them. The genetic analysis of the deposit proposes that during the basin tectonic evolution, the potassium-rich interstitial and confined brines originally located in the southern depression of the Mahai Basin were displaced under compressional forces and migrated northward as the depositional center shifted, eventually backfilling into the loose alluvial and fluvial sand and gravel reservoirs at the front of the Saishiteng Mountains, forming the deep sand–gravel brine deposits in the foreland. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

22 pages, 3347 KB  
Article
Investigating the Reliability of Heating, Ventilation, and Air Conditioning Systems Utilized in Passenger Vehicles
by Sonali K. Kale, Mahendra Shelar, Shashikant Auti, Prachi V. Ingle, Anindita Roy, Chandrakant R. Sonawane and Rajkumar Bhimgonda Patil
Appl. Sci. 2024, 14(22), 10522; https://doi.org/10.3390/app142210522 - 15 Nov 2024
Cited by 4 | Viewed by 4076
Abstract
A Heating, Ventilation, and Air Conditioning (HVAC) system is often utilized in passenger vehicles to enhance the comfort of both the driver and the passengers. The reliability of an HVAC system refers to the probability that a component within the system will fulfil [...] Read more.
A Heating, Ventilation, and Air Conditioning (HVAC) system is often utilized in passenger vehicles to enhance the comfort of both the driver and the passengers. The reliability of an HVAC system refers to the probability that a component within the system will fulfil its intended function during a specified timeframe while operating according to the predefined operational and environmental conditions. Conducting a reliability analysis for the HVAC system of a passenger vehicle is crucial to ensure safety, comfort, cost-effectiveness, and a positive standing. A methodology for analyzing the reliability analysis of a HVAC system using field failure data were developed to identify the critical failure modes, components, and subsystems. A detailed Pareto analysis was applied at subsystem and failure mode levels in order to prioritize them accordingly to their failure frequency. The analysis showed that the A/C evaporator and blower front sides were observed to be the most critical subsystems, contributing to approximately 50% of all failures. Furthermore, the leakages at the joints and vibrations are the primary failure modes of the HVAC system. The Weibull++ software package (version 2021) was used to estimate the best-fit probability distributions for each subsystem and system reliability modelling using a Reliability Block Diagram. The results show that the exponential distribution fits well for several subsystem’s Time-To-Failure (TTF) data and show that the failures were random and due to external reasons. Full article
Show Figures

Figure 1

Back to TopTop