Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (455)

Search Parameters:
Keywords = enzyme recycle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1206 KB  
Article
Investigation of Biophotocatalytic Conversion of Used Cooking Oil into Olefins
by Pimvipa Nantawong, Phittayaporn Khonchan, Anuson Sansee and Filip Kielar
Catalysts 2025, 15(9), 822; https://doi.org/10.3390/catal15090822 - 29 Aug 2025
Viewed by 246
Abstract
The possibility of biophotocatalytic conversion of used cooking oil was investigated. The targeted transformation of used cooking oil into the desired olefin products was demonstrated using a modification of a previously published protocol, which resulted in the yield of the desired olefin products [...] Read more.
The possibility of biophotocatalytic conversion of used cooking oil was investigated. The targeted transformation of used cooking oil into the desired olefin products was demonstrated using a modification of a previously published protocol, which resulted in the yield of the desired olefin products of 36.1% (±6.1%). Subsequently, the possibility to replace the originally used solvent dichloromethane with two more environmentally benign solvents 2-methyltetrahydrofuran and tert-butyl methyl ether was investigated, and tert-butyl methyl ether was identified as a potential replacement solvent. The yield of the desired olefin products for the reactions conducted using tert-butyl methyl ether was 41.2% (±2.6%). Furthermore, the potential of recycling the catalytic system was investigated both in dichloromethane and in tert-butyl methyl ether. Recycling was possible only when tert-butyl methyl ether was used, as loss of enzyme activity after the initial run of the reaction was observed in dichloromethane. Potential for recycling of the entire catalytic system was demonstrated as well. Scaled up experiments exhibited reduced reaction yield, which was ascribed to the need for extension of reaction time. The feasibility of the reaction was also demonstrated with waste pork fat. Finally, GC-MS analysis indicates that the product makeup corresponds to the fatty acid composition of the starting materials. Full article
Show Figures

Graphical abstract

16 pages, 37852 KB  
Article
Curcumin-Mediated Photodynamic Treatment Enhances Storage Quality of Fresh Wolfberries via Antioxidant System Modulation
by Yan-Fei Shen, Wen-Ping Ma, Run-Hui Ma, Kiran Thakur, Zhi-Jing Ni, Wei Wang and Zhao-Jun Wei
Foods 2025, 14(16), 2843; https://doi.org/10.3390/foods14162843 - 16 Aug 2025
Viewed by 278
Abstract
Photodynamic inactivation (PDI) is an innovative non-thermal sterilization and preservation method that has recently emerged as a safe, effective, cost-effective and environmentally sustainable alternative for biomedical applications. Curcumin (Cur), a commonly used food additive, possesses photosensitizing properties. In this study, we investigated the [...] Read more.
Photodynamic inactivation (PDI) is an innovative non-thermal sterilization and preservation method that has recently emerged as a safe, effective, cost-effective and environmentally sustainable alternative for biomedical applications. Curcumin (Cur), a commonly used food additive, possesses photosensitizing properties. In this study, we investigated the effect of curcumin-mediated photodynamic treatment (Cur-PDT) on the preservation of fresh wolfberries. Our experimental data revealed that a Cur-PDT treatment using a cur concentration of 500 μmol/L for 30 min, with 20 W irradiation, achieved the best preservation effect on fresh wolfberries. This intervention significantly slowed the decline in post-harvest hardness and delayed the progression of decay. It also reduced the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (•O2). Notably, at day 3, the enzymatic activities of catalase (CAT) and ascorbate peroxidase (APX) in Cur-PDT-treated wolfberries were 1.12 and 1.88 times higher, respectively, than those in the control group. These elevated enzyme activities promoted the biosynthesis and recycling of ascorbic acid (AsA) and glutathione (GSH), leading to their substantial accumulation under oxidative stress conditions. By modulating the antioxidant defense system, Cur-PDT has the potential to extend the shelf-life of post-harvest wolfberries and enhance their overall quality attributes, thereby maintaining physiological homeostasis during storage. Full article
Show Figures

Graphical abstract

15 pages, 3854 KB  
Article
PVC Inhibits Radish (Raphanus sativus L.) Seedling Growth by Interfering with Plant Hormone Signal Transduction and Phenylpropanoid Biosynthesis
by Lisi Jiang, Zirui Liu, Wenyuan Li, Yangwendi Yang, Zirui Yu, Jiajun Fan, Lixin Guo, Chang Guo and Wei Fu
Horticulturae 2025, 11(8), 896; https://doi.org/10.3390/horticulturae11080896 - 3 Aug 2025
Viewed by 430
Abstract
Polyvinyl chloride (PVC) is commonly employed as mulch in agriculture to boost crop yields. However, its toxicity is often overlooked. Due to its chemical stability, resistance to degradation, and the inadequacy of the recycling system, PVC tends to persist in farm environments, where [...] Read more.
Polyvinyl chloride (PVC) is commonly employed as mulch in agriculture to boost crop yields. However, its toxicity is often overlooked. Due to its chemical stability, resistance to degradation, and the inadequacy of the recycling system, PVC tends to persist in farm environments, where it can decompose into microplastics (MPs) or nanoplastics (NPs). The radish (Raphanus sativus L.) was chosen as the model plant for this study to evaluate the underlying toxic mechanisms of PVC NPs on seedling growth through the integration of multi-omics approaches with oxidative stress evaluations. The results indicated that, compared with the control group, the shoot lengths in the 5 mg/L and 150 mg/L treatment groups decreased by 33.7% and 18.0%, respectively, and the root lengths decreased by 28.3% and 11.3%, respectively. However, there was no observable effect on seed germination rates. Except for the peroxidase (POD) activity in the 150 mg/L group, all antioxidant enzyme activities and malondialdehyde (MDA) levels were higher in the treated root tips than in the control group. Both transcriptome and metabolomic analysis profiles showed 2075 and 4635 differentially expressed genes (DEGs) in the high- and low-concentration groups, respectively, and 1961 metabolites under each treatment. PVC NPs predominantly influenced seedling growth by interfering with plant hormone signaling pathways and phenylpropanoid production. Notably, the reported toxicity was more evident at lower concentrations. This can be accounted for by the plant’s “growth-defense trade-off” strategy and the manner in which nanoparticles aggregate. By clarifying how PVC NPs coordinately regulate plant stress responses via hormone signaling and phenylpropanoid biosynthesis pathways, this research offers a scientific basis for assessing environmental concerns related to nanoplastics in agricultural systems. Full article
(This article belongs to the Special Issue Stress Physiology and Molecular Biology of Vegetable Crops)
Show Figures

Figure 1

19 pages, 4279 KB  
Article
Identification of Anticancer Target Combinations to Treat Pancreatic Cancer and Its Associated Cachexia Using Constraint-Based Modeling
by Feng-Sheng Wang, Ching-Kai Wu and Kuang-Tse Huang
Molecules 2025, 30(15), 3200; https://doi.org/10.3390/molecules30153200 - 30 Jul 2025
Viewed by 498
Abstract
Pancreatic cancer is frequently accompanied by cancer-associated cachexia, a debilitating metabolic syndrome marked by progressive skeletal muscle wasting and systemic metabolic dysfunction. This study presents a systems biology framework to simultaneously identify therapeutic targets for both pancreatic ductal adenocarcinoma (PDAC) and its associated [...] Read more.
Pancreatic cancer is frequently accompanied by cancer-associated cachexia, a debilitating metabolic syndrome marked by progressive skeletal muscle wasting and systemic metabolic dysfunction. This study presents a systems biology framework to simultaneously identify therapeutic targets for both pancreatic ductal adenocarcinoma (PDAC) and its associated cachexia (PDAC-CX), using cell-specific genome-scale metabolic models (GSMMs). The human metabolic network Recon3D was extended to include protein synthesis, degradation, and recycling pathways for key inflammatory and structural proteins. These enhancements enabled the reconstruction of cell-specific GSMMs for PDAC and PDAC-CX, and their respective healthy counterparts, based on transcriptomic datasets. Medium-independent metabolic biomarkers were identified through Parsimonious Metabolite Flow Variability Analysis and differential expression analysis across five nutritional conditions. A fuzzy multi-objective optimization framework was employed within the anticancer target discovery platform to evaluate cell viability and metabolic deviation as dual criteria for assessing therapeutic efficacy and potential side effects. While single-enzyme targets were found to be context-specific and medium-dependent, eight combinatorial targets demonstrated robust, medium-independent effects in both PDAC and PDAC-CX cells. These include the knockout of SLC29A2, SGMS1, CRLS1, and the RNF20–RNF40 complex, alongside upregulation of CERK and PIKFYVE. The proposed integrative strategy offers novel therapeutic avenues that address both tumor progression and cancer-associated cachexia, with improved specificity and reduced off-target effects, thereby contributing to translational oncology. Full article
(This article belongs to the Special Issue Innovative Anticancer Compounds and Therapeutic Strategies)
Show Figures

Graphical abstract

15 pages, 1527 KB  
Article
Marine-Inspired Ovothiol Analogs Inhibit Membrane-Bound Gamma-Glutamyl-Transpeptidase and Modulate Reactive Oxygen Species and Glutathione Levels in Human Leukemic Cells
by Annalisa Zuccarotto, Maria Russo, Annamaria Di Giacomo, Alessandra Casale, Aleksandra Mitrić, Serena Leone, Gian Luigi Russo and Immacolata Castellano
Mar. Drugs 2025, 23(8), 308; https://doi.org/10.3390/md23080308 - 30 Jul 2025
Viewed by 543
Abstract
The enzyme γ-glutamyl transpeptidase (GGT), located on the surface of cellular membranes, hydrolyzes extracellular glutathione (GSH) to guarantee the recycling of cysteine and maintain intracellular redox homeostasis. High expression levels of GGT on tumor cells are associated with increased cell proliferation and resistance [...] Read more.
The enzyme γ-glutamyl transpeptidase (GGT), located on the surface of cellular membranes, hydrolyzes extracellular glutathione (GSH) to guarantee the recycling of cysteine and maintain intracellular redox homeostasis. High expression levels of GGT on tumor cells are associated with increased cell proliferation and resistance against chemotherapy. Therefore, GGT inhibitors have potential as adjuvants in treating GGT-positive tumors; however, most have been abandoned during clinical trials due to toxicity. Recent studies indicate marine-derived ovothiols as more potent non-competitive GGT inhibitors, inducing a mixed cell-death phenotype of apoptosis and autophagy in GGT-overexpressing cell lines, such as the chronic B leukemic cell HG-3, while displaying no toxicity towards non-proliferative cells. In this work, we characterize the activity of two synthetic ovothiol analogs, L-5-sulfanylhistidine and iso-ovothiol A, in GGT-positive cells, such as HG-3 and HL-60 cells derived from acute promyelocytic leukemia. The two compounds inhibit the activity of membrane-bound GGT, without altering cell vitality nor inducing cytotoxic autophagy in HG-3 cells. We provide evidence that a portion of L-5-sulfanylhistidine enters HG-3 cells and acts as a redox regulator, contributing to the increase in intracellular GSH. On the other hand, ovothiol A, which is mostly sequestered by external membrane-bound GGT, induces intracellular ROS increase and the consequent autophagic pathways. These findings provide the basis for developing ovothiol derivatives as adjuvants in treating GGT-positive tumors’ chemoresistance. Full article
(This article belongs to the Special Issue Marine-Derived Novel Antioxidants)
Show Figures

Graphical abstract

22 pages, 5319 KB  
Article
Exogenous Sucrose Improves the Vigor of Aged Safflower Seeds by Mediating Fatty Acid Metabolism and Glycometabolism
by Tang Lv, Lin Zhong, Juan Li, Cuiping Chen, Bin Xian, Tao Zhou, Chaoxiang Ren, Jiang Chen, Jin Pei and Jie Yan
Plants 2025, 14(15), 2301; https://doi.org/10.3390/plants14152301 - 25 Jul 2025
Viewed by 363
Abstract
Safflower (Carthamus tinctorius L.) seeds, rich in triacylglycerols, have poor fatty acid-to-sugar conversion during storage, affecting longevity and vigor. Previous experiments have shown that the aging of safflower seeds is mainly related to the impairment of energy metabolism pathways such as glycolysis, [...] Read more.
Safflower (Carthamus tinctorius L.) seeds, rich in triacylglycerols, have poor fatty acid-to-sugar conversion during storage, affecting longevity and vigor. Previous experiments have shown that the aging of safflower seeds is mainly related to the impairment of energy metabolism pathways such as glycolysis, fatty acid degradation, and the tricarboxylic acid cycle. The treatment with exogenous sucrose can partially promote the germination of aged seeds. However, the specific pathways through which exogenous sucrose promotes the germination of aged safflower seeds have not yet been elucidated. This study aimed to explore the molecular mechanism by which exogenous sucrose enhances the vitality of aged seeds. Phenotypically, it promoted germination and seedling establishment in CDT-aged seeds but not in unaged ones. Biochemical analyses revealed increased soluble sugars and fatty acids in aged seeds with sucrose treatment. Enzyme activity and transcriptome sequencing showed up-regulation of key enzymes and genes in related metabolic pathways in aged seeds, not in unaged ones. qPCR confirmed up-regulation of genes for triacylglycerol and fatty acid-to-sugar conversion. Transmission electron microscopy showed a stronger connection between the glyoxylate recycler and oil bodies, accelerating oil body degradation. In conclusion, our research shows that exogenous sucrose promotes aged safflower seed germination by facilitating triacylglycerol hydrolysis, fatty acid conversion, and glycometabolism, rather than simply serving as a source of energy to supplement the energy deficiency of aged seeds. These findings offer practical insights for aged seeds, especially offering an effective solution to the aging problem of seeds with high oil content. Full article
(This article belongs to the Special Issue Molecular Regulation of Seed Development and Germination)
Show Figures

Figure 1

20 pages, 4701 KB  
Article
Effect of Rubber Particle Size and Content on the Mechanical Properties of Rubber–Clay Mixtures Solidified by EICP
by Qiang Ma, Meng Li, Chen Zeng, Hang Shu, Lei Xi, Yue Tao and Xuesong Lu
Materials 2025, 18(15), 3429; https://doi.org/10.3390/ma18153429 - 22 Jul 2025
Viewed by 371
Abstract
Using the enzyme-induced carbonate precipitation (EICP) technique to solidify rubber and clay mixtures as lightweight backfill is a feasible way to reduce waste tire impacts and boost rubber recycling in geotech engineering. In this study, a comprehensive laboratory investigation, including triaxial compression, oedometer, [...] Read more.
Using the enzyme-induced carbonate precipitation (EICP) technique to solidify rubber and clay mixtures as lightweight backfill is a feasible way to reduce waste tire impacts and boost rubber recycling in geotech engineering. In this study, a comprehensive laboratory investigation, including triaxial compression, oedometer, permeability, and nuclear magnetic resonance (NMR) tests, was conducted on EICP-reinforced rubber particle solidified clay (hereafter referred to as EICP-RC solidified clay) to evaluate the effects of rubber particle content and size on the mechanical behavior of the improved soil under various solidification conditions and to elucidate the solidification mechanism. The results show that although rubber particles inhibit EICP, they significantly enhance the mechanical properties of the samples. The addition of 5% rubber particles (rubber A) increased cohesion by 11% and the internal friction angle by 18% compared to EICP-treated clay without rubber. Additionally, incorporating smaller-sized tire particles facilitated pore filling, resulting in lower compression and swelling indices and reduced permeability coefficients, making these materials suitable for use behind retaining walls and in embankment construction. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 1010 KB  
Review
Engineering IsPETase and Its Homologues: Advances in Enzyme Discovery and Host Optimisation
by Tolu Sunday Ogunlusi, Sylvester Sapele Ikoyo, Mohammad Dadashipour and Hong Gao
Int. J. Mol. Sci. 2025, 26(14), 6797; https://doi.org/10.3390/ijms26146797 - 16 Jul 2025
Viewed by 727
Abstract
Polyethylene terephthalate (PET) pollution represents a significant environmental challenge due to its widespread use and recalcitrant nature. PET-degrading enzymes, particularly Ideonella sakaiensis PETases (IsPETase), have emerged as promising biocatalysts for mitigating this problem. This review provides a comprehensive overview of recent [...] Read more.
Polyethylene terephthalate (PET) pollution represents a significant environmental challenge due to its widespread use and recalcitrant nature. PET-degrading enzymes, particularly Ideonella sakaiensis PETases (IsPETase), have emerged as promising biocatalysts for mitigating this problem. This review provides a comprehensive overview of recent advancements in the discovery and heterologous expression of IsPETase and closely related enzymes. We highlight innovative approaches, such as in silico and AI-based enzyme screening and advanced screening assays. Strategies to enhance enzyme secretion and solubility, such as using signal peptides, fusion tags, chaperone co-expression, cell surface display systems, and membrane permeability modulation, are critically evaluated. Despite considerable progress, challenges remain in achieving industrial-scale production and application. Future research must focus on integrating cutting-edge molecular biology techniques with host-specific optimisation to achieve sustainable and cost-effective solutions for PET biodegradation and recycling. This review aims to provide a foundation for further exploration and innovation in the field of enzymatic plastic degradation. Full article
(This article belongs to the Special Issue The Characterization and Application of Enzymes in Bioprocesses)
Show Figures

Figure 1

24 pages, 7889 KB  
Article
Machine Learning-Driven Multi-Objective Optimization of Enzyme Combinations for Plastic Degradation: An Ensemble Framework Integrating Sequence Features and Network Topology
by Ömer Akgüller and Mehmet Ali Balcı
Processes 2025, 13(6), 1936; https://doi.org/10.3390/pr13061936 - 19 Jun 2025
Viewed by 782
Abstract
Plastic waste accumulation presents critical environmental challenges demanding innovative circular economy solutions. This study developed a comprehensive machine learning framework to systematically identify optimal enzyme combinations for polyester depolymerization. We integrated kinetic parameters from the BRENDA database with sequence-derived features and network topology [...] Read more.
Plastic waste accumulation presents critical environmental challenges demanding innovative circular economy solutions. This study developed a comprehensive machine learning framework to systematically identify optimal enzyme combinations for polyester depolymerization. We integrated kinetic parameters from the BRENDA database with sequence-derived features and network topology metrics to train ensemble classifiers predicting enzyme-substrate relationships. A multi-objective optimization algorithm evaluated enzyme combinations across four criteria: prediction confidence, substrate coverage, operational compatibility, and functional diversity. The ensemble classifier achieved 86.3% accuracy across six polymer families, significantly outperforming individual models. Network analysis revealed a modular organization with hub enzymes exhibiting broad substrate specificity. Multi-objective optimization identified 156 Pareto-optimal enzyme combinations, with top-ranked pairs achieving composite scores exceeding 0.89. The Cutinase–PETase combination demonstrated exceptional complementarity (score: 0.875±0.008), combining complete substrate coverage with high catalytic efficiency. Validation against experimental benchmarks confirmed enhanced depolymerization rates for recommended enzyme cocktails. This framework provides a systematic approach for enzyme prioritization in plastic valorization, advancing biological recycling technologies through data-driven biocatalyst selection while identifying key economic barriers requiring technological innovation. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

15 pages, 2577 KB  
Article
Expression and Characterization of L-Arabinose Isomerase and Its Enzymatic Recycling of the Expired Milk
by Zhou Chen, Yuhan Yan, Ziang Wu, Yanyin Song and Jiangqi Xu
Foods 2025, 14(11), 1873; https://doi.org/10.3390/foods14111873 - 25 May 2025
Cited by 2 | Viewed by 700
Abstract
As global milk production continues to rise, the disposal of expired milk contributes to environmental pollution and valuable resource wastage. This study presents the development of a novel L-arabinose isomerase, designated BmAIase12, and its application in the enzymatic recycling of expired milk. [...] Read more.
As global milk production continues to rise, the disposal of expired milk contributes to environmental pollution and valuable resource wastage. This study presents the development of a novel L-arabinose isomerase, designated BmAIase12, and its application in the enzymatic recycling of expired milk. BmAIase12 exhibited a specific activity of 10.7 U/mg and showed optimal performance at 50 °C and pH 7.0. Furthermore, it exhibited higher activity than most other L-arabinose isomerases. It converted D-galactose into D-tagatose with a high conversion ratio of 53.3% after 48 h at 50 °C. The conversion efficiency of expired milk to D-tagatose was recorded at 40.62%, resulting in a maximum tagatose yield of 1.625 g/L. This was accomplished through the incorporation of β-galactosidase (120 U/mL) and Saccharomyces cerevisiae (30 mg/mL) to hydrolyze lactose and metabolize glucose, followed by the addition of 3 U/mL of BmAIase12. Ultimately, following purification, the purity of tagatose was determined to be 98%, and the final yield was 29.8%. These results suggest that BmAIase12 may serve as a promising enzyme for D-tagatose production due to its high conversion yield. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Graphical abstract

13 pages, 2374 KB  
Article
Preparation of Metal-Hybridized Magnetic Nanocellulose for ω-Transaminase Immobilization
by Jiayao Yang, Xingxing Wang, Hongpeng Wang and Jun Huang
Catalysts 2025, 15(6), 510; https://doi.org/10.3390/catal15060510 - 22 May 2025
Viewed by 591
Abstract
The enzyme ω-transaminase (ω-TA) has garnered significant attention due to its capacity to catalyze the synthesis of chiral amines with high efficiency. Nevertheless, the lack of stability of ω-TA and the difficulty of recycling and reuse are still challenges that limit its application. [...] Read more.
The enzyme ω-transaminase (ω-TA) has garnered significant attention due to its capacity to catalyze the synthesis of chiral amines with high efficiency. Nevertheless, the lack of stability of ω-TA and the difficulty of recycling and reuse are still challenges that limit its application. This study developed a novel magnetic nanocellulose composite carrier (NNC@Fe3O4@Ni), synthesized from microcrystalline cellulose via low-eutectic solvent treatment, amine modification, and metal hybridization. The NNC@Fe3O4@Ni was characterized by FTIR, XPS, XRD, BET, and VSM. Additionally, the performance and catalytic behavior of the immobilized enzyme were investigated. The results revealed that NNC@Fe3O4@Ni exhibited a high specific surface area, superparamagnetism, and dual-site functionality (amine/Ni2⁺). Response Surface Methodology (RSM) optimized the carrier-enzyme interaction parameters, yielding optimal immobilization conditions: a mass ratio of 50.8 mg g−1, temperature of 12.5 °C, and duration of 58.6 min, achieving 82.91% enzyme activity recovery. Compared to free enzymes, the immobilized variant demonstrated enhanced catalytic stability, with expanded optimal pH (9.0) and temperature (30 °C). Thermal stability assessments showed 84.39% activity retention after 5 h at 30 °C and 90.30% residual activity post-120 h storage. The catalyst maintained >80% efficiency over 10 reuse cycles. These findings confirm the efficacy of magnetic nanocellulose carriers in enhancing ω-TA stability, reusability, and catalytic performance, offering a viable strategy for industrial biocatalytic processes. Full article
(This article belongs to the Special Issue Catalyst Immobilization)
Show Figures

Figure 1

20 pages, 3840 KB  
Article
Vacuolar Proteases of Candida auris from Clades III and IV and Their Relationship with Autophagy
by Daniel Clark-Flores, Alvaro Vidal-Montiel, Ricardo Mondragón-Flores, Eulogio Valentín-Gómez, César Hernández-Rodríguez, Margarita Juárez-Montiel and Lourdes Villa-Tanaca
J. Fungi 2025, 11(5), 388; https://doi.org/10.3390/jof11050388 - 18 May 2025
Cited by 1 | Viewed by 908
Abstract
Candida auris is a multidrug-resistant pathogen with a high mortality rate and widespread distribution. Additionally, it can persist on inert surfaces for extended periods, facilitating its transmissibility in hospital settings. Autophagy is a crucial cellular mechanism that enables fungal survival under adverse conditions. [...] Read more.
Candida auris is a multidrug-resistant pathogen with a high mortality rate and widespread distribution. Additionally, it can persist on inert surfaces for extended periods, facilitating its transmissibility in hospital settings. Autophagy is a crucial cellular mechanism that enables fungal survival under adverse conditions. A fundamental part of this process is mediated by vacuolar proteases, which play an essential role in the degradation and recycling of cellular components. The present work explores the relationship between C. auris vacuolar peptidases and autophagy, aiming to establish a precedent for understanding the survival mechanisms of this emerging fungus. Thus, eight genes encoding putative vacuolar peptidases in the C. auris genomes were identified: PEP4, PRB1, PRC1, ATG42, CPS, LAP4, APE3, and DAP2. Analysis of the protein domains and their phylogenetic relationships suggests that these enzymes are orthologs of Saccharomyces cerevisiae vacuolar peptidases. Notably, both vacuolar protease gene expression and the proteolytic activity of cell-free extracts increased under nutritional stress and rapamycin. An increase in the expression of the ATG8 gene and the presence of autophagic bodies were also observed. These results suggest that proteases could play a role in yeast autophagy and survival during starvation conditions. Full article
Show Figures

Graphical abstract

20 pages, 6095 KB  
Article
Phase-Separated Multienzyme Condensates for Efficient Synthesis of Imines from Carboxylic Acids with Enhanced Dual-Cofactor Recycling
by Tingxiao Guo, Lifang Zeng, Jiaxu Liu, Xiaoyan Zhang and Yunpeng Bai
Int. J. Mol. Sci. 2025, 26(10), 4795; https://doi.org/10.3390/ijms26104795 - 16 May 2025
Cited by 1 | Viewed by 554
Abstract
Enzyme catalysis represents a promising approach for sustainable chemical synthesis, yet its industrial applications face limitations due to the inefficient regeneration and high cost of essential cofactors, such as adenosine-5′-triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). While natural metabolic systems efficiently recycle [...] Read more.
Enzyme catalysis represents a promising approach for sustainable chemical synthesis, yet its industrial applications face limitations due to the inefficient regeneration and high cost of essential cofactors, such as adenosine-5′-triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). While natural metabolic systems efficiently recycle cofactors through spatially organized enzymes, replicating this efficiency in vitro remains challenging. Here, we prepare a five-enzyme condensate system using liquid–liquid phase separation (LLPS) mediated by intrinsically disordered proteins (IDPs). By colocalizing a carboxylic acid reductase from Norcadia iowensis (NiCAR) with a reductive aminase from Aspergillus oryzae (AspRedAm) and three cofactor-regenerating enzymes, we generated a phase-separated catalytic condensate that enhanced ATP and NADPH recycling efficiency by 4.7-fold and 1.9-fold relative to free enzymes, respectively. Catalytic performance was correlated with the extent of phase separation, as confirmed by fluorescence microscopy, which revealed clear enrichment of ATP and NADPH within the condensates. This proximity effect enabled efficient cofactor turnover in the one-step reaction, achieving substrate conversion above 90% within 6 h and enhancing the space–time yield (STY) of the chiral imines 1.6-fold, with only one-fifth of the standard cofactor load. This approach creates a scalable and economic tool for performing multienzyme cascade reactions in vitro that are driven by the efficient recycling of multiple cofactors. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 3772 KB  
Article
Fermentation Preparation of Umami Sauce and Peptides from Kelp Scraps by Natural Microbial Flora
by Jizi Huang, Ruimei Wu, Yijing Wu, Feiyang Liang, Yiming Chen, Fujia Yang, Huawei Zheng, Zonghua Wang, Huibin Xu, Songbiao Chen and Guangshan Yao
Foods 2025, 14(10), 1751; https://doi.org/10.3390/foods14101751 - 15 May 2025
Viewed by 736
Abstract
Kelp (Laminaria japonica) is renowned for its rich content of flavor-enhancing amino acids and nucleotides; however, approximately 40% of kelp, including the thin edges and root areas, is discarded during its processing due to its inferior taste. To recycle these kelp [...] Read more.
Kelp (Laminaria japonica) is renowned for its rich content of flavor-enhancing amino acids and nucleotides; however, approximately 40% of kelp, including the thin edges and root areas, is discarded during its processing due to its inferior taste. To recycle these kelp byproducts, we have cultivated a functional microbial consortium through continuous enrichment. Analysis via 16S rRNA sequencing has shown that during the three fed-batch fermentation stages of kelp waste, the microbial community was predominantly and consistently composed of three phyla: Halanaerobiaeota, Bacteroidota, and Proteobacteria. At the genus level, Halanaerobium emerged as the dominant player, exhibiting a trend of initial increase followed by a decline throughout the fermentation process. Enzymes such as alginate lyases and both acidic and neutral proteases were found to play crucial roles in the degradation of kelp residues into sauces. Notably, electronic tongue analysis revealed that the fermented kelp sauce demonstrated strong umami characteristics. Furthermore, four novel umami peptides, EIL, STEV, GEEE, and SMEAVEA, from kelp were identified for the first time, with their umami effect largely attributed to strong hydrogen bond interactions with the T1R1–T1R3 umami receptors. In conclusion, this study proposed a sustainable method for kelp by-product utilization, with implications for other seaweed processing. Full article
Show Figures

Figure 1

14 pages, 2541 KB  
Article
Phlebia formosana Strain SMF410-5-1 and Auricularia cornea Strain ME1-1 Display Potential in Wood Degradation and Forest Waste Reutilization
by Hao-Long Qin, Yi Ren, Jin-Hua Huang, Jian-Ling Ren, Jiyun Yang, Jiao He, De-Wei Li and Lin Huang
Forests 2025, 16(5), 795; https://doi.org/10.3390/f16050795 - 9 May 2025
Viewed by 441
Abstract
Wood waste, primarily composed of lignin, cellulose, and hemicellulose, which is typically disposed of through burning and crushing, poses environmental challenges. However, conventional wood waste disposal methods present critical limitations, such as environmental pollution and resource waste. To develop sustainable processing strategies to [...] Read more.
Wood waste, primarily composed of lignin, cellulose, and hemicellulose, which is typically disposed of through burning and crushing, poses environmental challenges. However, conventional wood waste disposal methods present critical limitations, such as environmental pollution and resource waste. To develop sustainable processing strategies to dispose wood waste, we identified two fungal isolates, SMF410-5-1 and ME1-1, from decayed wood trunks, demonstrating high lignocellulose-degrading enzyme activities, including laccase (Lac, 125.7 U/mL), manganese peroxidase (MnP, 89.3 U/mL), and lignin peroxidase (LiP, 67.9 U/mL). Isolates of ME1-1 and SMF410-5-1 both exhibited superior poplar lignin degradation, while SMF410-5-1 excelled in coniferous wood weight losses, which reached 19.7% for pine after 180 days post inoculation. Moreover, biochemical analyses revealed that isolates of ME1-1 and SMF410-5-1 accelerated the degradation by producing various lignocellulose-degrading enzymes to hydrolyze wood waste. In addition, through multi-locus phylogenetic analysis using sequences of the internal transcribed spacer (ITS), large subunit ribosomal RNA (LSU), and RNA polymerase II second largest subunit (RPB2), SMF410-5-1 and ME1-1 were identified as Phlebia formosana and Auricularia cornea, respectively. This study provides novel insights into fungal-driven biodegradation, offering eco-friendly solutions for forest waste recycling and supporting circular bioeconomy strategies. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

Back to TopTop