Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,183)

Search Parameters:
Keywords = enzyme production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3775 KB  
Article
Genomic Insights into a Thermophilic Bacillus licheniformis Strain Capable of Degrading Polyethylene Terephthalate Intermediate
by Pedro Eugenio Sineli, Fernando Gabriel Martínez, Federico Zannier, Luciana Costas, José Horacio Pisa, Analía Álvarez and Cintia Mariana Romero
Processes 2026, 14(2), 381; https://doi.org/10.3390/pr14020381 (registering DOI) - 22 Jan 2026
Abstract
Bacillus licheniformis Mb1, a thermophilic strain isolated from the Yungas rainforest in northwestern Argentina, was analyzed through genomic and experimental approaches to explore its biotechnological potential. Phylogenomic analysis confirmed its close relationship with B. licheniformis reference strains. The genome revealed multiple genes associated [...] Read more.
Bacillus licheniformis Mb1, a thermophilic strain isolated from the Yungas rainforest in northwestern Argentina, was analyzed through genomic and experimental approaches to explore its biotechnological potential. Phylogenomic analysis confirmed its close relationship with B. licheniformis reference strains. The genome revealed multiple genes associated with hydrolytic, oxidative, carbohydrate-active, and polyester-degrading activities, indicating a wide enzymatic capacity. Experimental assays demonstrated strong extracellular hydrolytic activities and efficient degradation of bis(2-hydroxyethyl) terephthalate (BHET), a key polyethylene terephthalate (PET) intermediate. In liquid cultures with 3 mg/mL BHET, B. licheniformis Mb1 achieved 99.9% depletion within four days, with transient BHET dimer accumulation and progressive terephthalic acid (TPA) production, reaching 1.17 mg/mL after 15 days. Mono (2-hydroxyethyl) terephthalate (MHET) and vanillic acid were not detected. Complete BHET and dimer degradation suggests the presence of versatile hydrolases acting on short-chain polyester intermediates. Sequence and molecular docking analyses identified a BHETase-like carboxylesterase as the main enzyme candidate, featuring a truncated lidC region that generates a more open catalytic cleft. This structural trait, not previously reported in bacterial BHETases, enables the accommodation of bulkier substrates such as BHET dimer. These findings highlight B. licheniformis Mb1 as a promising biocatalyst for polyester depolymerization and a valuable microbial resource for future enzyme discovery and plastic bioremediation strategies. Full article
Show Figures

Figure 1

28 pages, 5519 KB  
Article
Study of Fermentation Conditions Optimization for Xylanase Production by Aspergillus tubingensis FS7Y52 and Application in Agricultural Wastes Degradation
by Tianjiao Wang, Jinghao Ma, Yujun Zhong, Shaokang Liu, Wenqi Cui, Xiaoyan Liu and Guangsen Fan
Foods 2026, 15(2), 399; https://doi.org/10.3390/foods15020399 (registering DOI) - 22 Jan 2026
Abstract
This study aimed to systematically optimize the fermentation process for xylanase production by Aspergillus tubingensis FS7Y52, elucidate its enzymatic properties, and evaluate its application potential in the biodegradation of agricultural wastes. Key influencing factors were initially identified through single-factor experiments, followed by the [...] Read more.
This study aimed to systematically optimize the fermentation process for xylanase production by Aspergillus tubingensis FS7Y52, elucidate its enzymatic properties, and evaluate its application potential in the biodegradation of agricultural wastes. Key influencing factors were initially identified through single-factor experiments, followed by the screening of significant factors using the Plackett–Burman design. The optimal values were then approached employing the steepest ascent path method and Response Surface Methodology. The final determined optimal fermentation conditions were: corn husk (20–40 mesh) 40 g/L, tryptone 13.7 g/L, Tween-20 0.75 g/L, pH 6.5, fermentation temperature 42.1 °C, fermentation time 2 days, shaking speed 140 rpm, inoculum size 1 × 107 spores/30 mL, and liquid loading volume 30 mL/250 mL. Under these conditions, xylanase activity reached 115.23 U/mL, representing a significant increase of 90.7% compared to pre-optimization levels. Studies on enzymatic properties revealed that the enzyme exhibited maximum activity at pH 5.0 and 55 °C, and demonstrated good stability within the pH range of 4.5–7.0 and at temperatures below 50 °C. In the degradation of agricultural waste, the enzyme system produced by this strain exhibits significant degradation effects on agricultural waste. A pronounced additive effect exists between xylanase and cellulase. When the dosages were 2430 U/g and 15.7 U/g for xylanase and cellulase, respectively, the maximum reducing sugar release reached 23.3%. The degradation rates of cellulose, hemicellulose, and lignin reached 57.8%, 51.9%, and 55.0%, respectively. Additionally, the strain itself exhibits significant degradation effects on substances such as cellulose in agricultural waste, achieving degradation rates of 78.8%, 70.8%, and 52.5% for cellulose, hemicellulose, and lignin, respectively. This study provides a solid theoretical foundation and technical support for the efficient production of xylanase by A. tubingensis and its industrial application in the resource utilization of agricultural wastes. From an economic perspective, the optimized strategy significantly enhances enzyme production efficiency while reducing substrate consumption and operational costs per unit of enzyme produced. This makes the resulting enzyme mixture more economically viable for large-scale applications. The utilization of this enzyme system to convert tobacco stems into sugars represents a compelling case for agricultural wastes reuse. It transforms residual biomass into high-value products, contributing to a circular bioeconomy by reducing waste and creating new renewable alternatives to conventional products. It provides an economically viable solution for the high-value utilization of woody lignocellulosic biomass. Full article
Show Figures

Figure 1

47 pages, 5133 KB  
Review
Current Progress and Future Directions of Enzyme Technology in Food Nutrition: A Comprehensive Review of Processing, Nutrition, and Functional Innovation
by Yu-Yang Yao, Yuan Ye, Ke Xiong, Shu-Can Mao, Jia-Wen Jiang, Yi-Qiang Chen, Xiang Li, Han-Bing Liu, Lin-Chang Liu, Bin Cai and Shuang Song
Foods 2026, 15(2), 402; https://doi.org/10.3390/foods15020402 (registering DOI) - 22 Jan 2026
Abstract
Enzyme technology, characterized by high efficiency, environmental compatibility, and precise controllability, has become a pivotal biocatalytic approach for quality enhancement and nutritional improvement in modern food industries. This review summarizes recent advances and underlying mechanisms of enzyme applications in food processing optimization, nutritional [...] Read more.
Enzyme technology, characterized by high efficiency, environmental compatibility, and precise controllability, has become a pivotal biocatalytic approach for quality enhancement and nutritional improvement in modern food industries. This review summarizes recent advances and underlying mechanisms of enzyme applications in food processing optimization, nutritional enhancement, and functional food development. In terms of process optimization, enzymes such as transglutaminase, laccase, and peroxidase enhance protein crosslinking, thereby markedly improving the texture and stability of dairy products, meat products, and plant-based protein systems. Proteases and lipases play essential roles in flavor development, maturation, and modulation of sensory attributes. From a nutritional perspective, enzymatic hydrolysis significantly improves the bioavailability of proteins, minerals, and dietary fibers, while simultaneously degrading antinutritional factors and harmful compounds, including phytic acid, tannins, food allergens, and acrylamide, thus contributing to improved food safety and nutritional balance. With respect to functional innovation, enzyme-directed production of bioactive peptides has demonstrated notable antihypertensive, antioxidant, and immunomodulatory activities. In addition, enzymatic synthesis of functional oligosaccharides and rare sugars, glycosylation-based modification of polyphenols, and enzyme-assisted extraction of plant bioactive compounds provide novel strategies and technological support for the development of functional foods. Owing to their high specificity and eco-friendly nature, enzyme technologies are driving food and nutrition sciences toward more precise, personalized, and sustainable development pathways. Despite these advances, critical research gaps remain, particularly in the limited mechanistic understanding of enzyme behavior in complex food matrices, the insufficient integration of multi-omics data with enzymatic process design, and the challenges associated with translating laboratory-scale enzymatic strategies into robust, data-driven, and scalable industrial applications. Full article
(This article belongs to the Special Issue Enzyme Technology: Applications in Food Nutrition)
Show Figures

Figure 1

13 pages, 1790 KB  
Article
Impact of Melatonin on Sepsis-Associated Acute Kidney Injury in Rat Model of Lipopolysaccharide Endotoxemia
by Milan Potić, Ivan Ignjatović, Dragoslav Bašić, Ljubomir Dinić, Aleksandar Skakić, Zoran Damnjanović, Nebojša Jovanović, Milica Mitić and Dušan Sokolović
Curr. Issues Mol. Biol. 2026, 48(1), 119; https://doi.org/10.3390/cimb48010119 (registering DOI) - 22 Jan 2026
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a frequent and life-threatening condition, characterized by rapid functional decline, which is followed by intense inflammation and tissue injury. Experimental lipopolysaccharide (LPS)-induced sepsis reproduces functional and morphological features of human S-AKI and enables investigation of melatonin which [...] Read more.
Sepsis-associated acute kidney injury (S-AKI) is a frequent and life-threatening condition, characterized by rapid functional decline, which is followed by intense inflammation and tissue injury. Experimental lipopolysaccharide (LPS)-induced sepsis reproduces functional and morphological features of human S-AKI and enables investigation of melatonin which has numerous beneficial properties, such as antioxidant properties. In this study, the effects of melatonin (50 mg/kg) on kidney dysfunction, oxidative damage, inflammation, apoptosis, and histopathological alterations in a rat model of S-AKI induced by LPS application (10 mg/kg) were studied. Acute LPS exposure caused statistically significant (p ≤ 0.05) marked renal dysfunction, increased lipid and protein oxidation, suppression of antioxidant enzymes, enhanced NO/iNOS signaling, elevated pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), activation of apoptotic pathways, and pronounced tubular and glomerular injury. Co-administration of melatonin statistically significantly (p ≤ 0.05) attenuated oxidative stress, reduced production of inflammatory cytokines, suppressed apoptosis, and ameliorated structural kidney damage, leading to partial restoration of renal function. These findings suggest that melatonin exerts renoprotective effects in S-AKI through combined antioxidant, anti-inflammatory, and anti-apoptotic actions, likely involving modulation of different signaling pathways. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

16 pages, 7594 KB  
Article
Rooting Ability of Eucalyptus dunnii Maiden Mini-Cuttings Is Conditioned by Stock Plant Nighttime Temperature
by Matías Nión, Silvia Ross, Jaime González-Tálice, Leopoldo Torres, Sofía Bottarro, Mariana Sotelo-Silveira, Selene Píriz-Pezzutto, Fábio Antônio Antonelo and Arthur Germano Fett-Neto
Plants 2026, 15(2), 335; https://doi.org/10.3390/plants15020335 (registering DOI) - 22 Jan 2026
Abstract
Clonal propagation often must incorporate heaters to warm stock plants and stabilize growth. This study investigates the impact that different temperature regimes for stock plants have on the rooting capacity of mini-cuttings derived therefrom. Experiments were conducted in growth chambers using two clones [...] Read more.
Clonal propagation often must incorporate heaters to warm stock plants and stabilize growth. This study investigates the impact that different temperature regimes for stock plants have on the rooting capacity of mini-cuttings derived therefrom. Experiments were conducted in growth chambers using two clones of Eucalyptus dunnii Maiden, with clone A’s rooting being moderately better that that of clone B in commercial production. Root primordia differentiation and elongation were faster in clone A than clone B. Stock plants were maintained for one month under two temperature conditions: Δ0 (26/26 °C day/night) and Δ10 (26/16 °C). The main results indicate that rooting significantly decreased with the reduction in nocturnal temperature. Clone A exhibited a 38% reduction in rooting, whereas clone B showed a more pronounced decrease of 65%. In cold nights, soluble carbohydrates at the cutting bases dropped by approximately 25% considering both clones, and overall foliar nutrients also decreased. Cutting base transcript profiles revealed that cold nights decreased the expression of efflux auxin transporter PIN1, increased expression of auxin catabolism-related enzyme DAO, and that expression of auxin nuclear receptor TIR1 remained stable. Fine management of clonal gardens by adjusting thermal conditions can optimize the physiological status of donor plants and enhance the rooting potential and establishment of the derived cuttings. Full article
Show Figures

Figure 1

16 pages, 2343 KB  
Article
One-Step Activation, Purification, and Immobilization of Bovine Chymosin via Adsorption on Magnetic Particles
by Paulina G. Gonçalves, Paz García-García, Honoria S. Chipaca-Domingos, Gloria Fernandez-Lorente, Miguel Ladero and Benevides C. Pessela
Fermentation 2026, 12(1), 66; https://doi.org/10.3390/fermentation12010066 (registering DOI) - 22 Jan 2026
Abstract
Chymosin is an aspartyl protease widely used in the food industry for milk coagulation during cheesemaking. Although recombinant production has replaced natural extraction from rennet, current heterologous expression systems still face significant challenges, including low solubility, costly purification steps, and enzyme instability after [...] Read more.
Chymosin is an aspartyl protease widely used in the food industry for milk coagulation during cheesemaking. Although recombinant production has replaced natural extraction from rennet, current heterologous expression systems still face significant challenges, including low solubility, costly purification steps, and enzyme instability after activation. To address these limitations, we sought to develop a more efficient and economical production strategy for bovine chymosin by cloning its codon-optimized prochymosin A gene into Escherichia coli using the pBAD/His vector under the control of the L-arabinose-inducible PBAD promoter. Overexpression of the recombinant gene resulted in the formation of inclusion bodies, which were solubilized with NaOH and refolded by dilution and pH adjustment with glycine. The folded prochymosin was then activated by acidification. To simplify the downstream process and improve enzyme recovery, different immobilization strategies were explored to combine activation, purification, and immobilization in a single step. While polymeric agarose-based supports showed low immobilization efficiency (<20%) due to pore clogging, magnetic nanoparticles completely overcame these limitations, achieving nearly 100% immobilization yield and retaining about 85% of enzymatic activity. This integrated magnetic-based approach provides a cost-effective and scalable alternative for the production and stabilization of active chymosin. Full article
Show Figures

Figure 1

38 pages, 3487 KB  
Review
A Comprehensive Review on Steviol Glycosides: Sources, Properties, Bioactivities, Sensory-Functional Enhancement and Bioproduction Strategies
by Liangzhen Jiang, Xun Zhao, Wei Li, Guiru Tang, Yiming Yuan, Jie Cheng, Jun Hua and Liang Zou
Plants 2026, 15(2), 324; https://doi.org/10.3390/plants15020324 - 21 Jan 2026
Abstract
Steviol glycosides (SGs) are high-intensity, zero-calorie natural sweeteners with demonstrated safety and potential health benefits, positioning them as ideal sucrose substitutes for metabolic disorder management. However, their broad application is limited by inherent drawbacks such as bitterness, low solubility, and inefficient production systems. [...] Read more.
Steviol glycosides (SGs) are high-intensity, zero-calorie natural sweeteners with demonstrated safety and potential health benefits, positioning them as ideal sucrose substitutes for metabolic disorder management. However, their broad application is limited by inherent drawbacks such as bitterness, low solubility, and inefficient production systems. This review provides a comprehensive summary of recent advances in SG research, covering their sources, properties, and bioactivities. A particular focus is placed on innovative bioproduction strategies—including enzyme engineering, metabolic pathway optimization, and sustainable extraction techniques. Strategies to overcome these challenges through sensory-function enhancement—including formulation and structural modification—are discussed. Furthermore, it highlights emerging trends like microbial chassis-based production and next-generation sweetener design, providing actionable insights for overcoming industrial bottlenecks. By integrating multidisciplinary advances in bioengineering, sensory science, and sustainable processing, this review offers a forward-looking perspective on the development and application of SGs as functional sweeteners in the global food industry. Full article
25 pages, 1232 KB  
Review
Oxidative Stress and Its Role in Vascular Damage and Atherosclerosis
by Adela Pozo Giráldez, Adrián Bravo Gómez, Pilar Calmarza, Paula Sienes Bailo, Anita Dayaldasani Khialani, Silvia Montolio Breva, Nerea Sainz-Pastor and Isabel Fort Gallifa
Int. J. Mol. Sci. 2026, 27(2), 1075; https://doi.org/10.3390/ijms27021075 - 21 Jan 2026
Abstract
Oxidative stress (OS) resulting from an imbalance between reactive oxygen species (ROS) generation and antioxidant defenses plays a pivotal role in vascular diseases such as atherosclerosis and hypertension. ROS derived from NADPH oxidase, mitochondria, and xanthine oxidase promote endothelial dysfunction by inducing lipid [...] Read more.
Oxidative stress (OS) resulting from an imbalance between reactive oxygen species (ROS) generation and antioxidant defenses plays a pivotal role in vascular diseases such as atherosclerosis and hypertension. ROS derived from NADPH oxidase, mitochondria, and xanthine oxidase promote endothelial dysfunction by inducing lipid and protein oxidation, apoptosis, and pro-inflammatory signaling, thereby enhancing smooth muscle proliferation and atherogenesis. This review summarizes the molecular mechanisms linking OS to vascular injury and aims to systematically elucidate the role of OS in vascular diseases, with a specific focus on critiquing the current challenges in translating biomarkers to clinical practice and the emerging trends in personalized antioxidant therapy. Particular attention is given to biomarkers of oxidative stress, including those assessing antioxidant enzyme activity and oxidative damage products, which possess potential for clinical use. Therapeutic strategies targeting OS, including dietary and pharmacological antioxidants, show promise in improving vascular health, although clinical outcomes have been inconsistent and it is necessary to resolve the standardization and validation of these biomarkers, develop precise targeted therapies against specific ROS sources (e.g., NOX inhibitors, mitochondrial antioxidants), and explore personalized clinical trials based on redox stratification. Overall, OS is a central mediator in vascular pathology, and progress in biomarker validation and targeted therapies will be essential to translate current knowledge into effective prevention, diagnosis, and treatment of cardiovascular diseases. Personalized approaches based on accurate redox profiling may enhance efficacy. Full article
(This article belongs to the Special Issue Oxidation in Human Health and Disease)
15 pages, 4774 KB  
Article
Solid-State Fermentation of Jatropha curcas Cake by Pleurotus ostreatus or Ganoderma lucidum Mycelium to Determine Multi-Bioactivities
by Enrique Javier Olloqui, Emmanuel Pérez-Escalante, Raúl Velasco-Azorsa, Carlos Gutierrez, Juan Carlos Moreno-Seceña and Daniel Martínez-Carrera
Foods 2026, 15(2), 386; https://doi.org/10.3390/foods15020386 - 21 Jan 2026
Abstract
Non-toxic Jatropha curcas cake is a by-product rich in protein that can be used in the food industry. Proteolytic kinetics were used to identify and quantify its antioxidant, antidiabetic, angiotensin-converting enzyme inhibitory, and hypocholesterolemic capacities. J. curcas cake was subjected to two systems [...] Read more.
Non-toxic Jatropha curcas cake is a by-product rich in protein that can be used in the food industry. Proteolytic kinetics were used to identify and quantify its antioxidant, antidiabetic, angiotensin-converting enzyme inhibitory, and hypocholesterolemic capacities. J. curcas cake was subjected to two systems of solid-state fermentation (SSF) hydrolysis by Pleurotus ostreatus (FPO) or Ganoderma lucidum (FGL), recording every 6 d until 24 d had passed. The maximum proteolytic capacity in FPO was reached on day 6 of the study, whereas FGL was achieved at 12 d. The FPO and FGL electrophoresis gels revealed the presence of 28 bands corresponding to peptides with molecular weights of less than 10 kDa in both systems analyzed. The highest FRAP values were obtained at 12 d for FPO and at the start of SSF for FGL. The highest antidiabetic capacity of FPO was obtained at 18 d and that of FGL at 24 d. The best antihypertensive activity obtained for FPO and FGL was observed at 6 d. FPO’s highest hypocholesterolemic activity was observed at the start of the SSF, while FGL’s was obtained at 24 d, which is the first report of the hypocholesterolemic activity of J. curcas. It should be noted that fermentation with G. lucidum outperformed fermentation with P. ostreatus, confirming its greater multi-bioactivity. The authors consider this method easy, practical, and generally recognized as safe (GRAS) for obtaining bioactive peptides. Full article
Show Figures

Figure 1

17 pages, 5670 KB  
Article
Gne-Depletion in C2C12 Myoblasts Leads to Alterations in Glycosylation and Myopathogene Expression
by Carolin T. Neu, Aristotelis Antonopoulos, Anne Dell, Stuart M. Haslam and Rüdiger Horstkorte
Cells 2026, 15(2), 199; https://doi.org/10.3390/cells15020199 - 20 Jan 2026
Abstract
GNE myopathy is a rare genetic neuromuscular disorder caused by mutations in the GNE gene. The respective gene product, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), is a bifunctional enzyme that initiates endogenous sialic acid biosynthesis. Sialic acids are important building blocks [...] Read more.
GNE myopathy is a rare genetic neuromuscular disorder caused by mutations in the GNE gene. The respective gene product, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), is a bifunctional enzyme that initiates endogenous sialic acid biosynthesis. Sialic acids are important building blocks for the glycosylation machinery of cells and are typically found at the terminal ends of glycoprotein N- and O-glycans. The exact pathomechanism of GNE myopathy remains elusive, and a better understanding of the disease is urgently needed for the development of therapeutic strategies. The purpose of this study was to examine the effects of hyposialylation on glycan structures and subsequent downstream effects in the C2C12 Gne knockout cell model. No overall remodeling of N-glycans was observed in the absence of Gne, but differences in glycosaminoglycan expression and O-GlcNAcylation were detected. Expression analysis of myopathogenes revealed concomitant down-regulation of muscle-specific genes. Among the top candidates were the sodium channel protein type 4 subunit α (Scn4a), voltage-dependent L-type calcium channel subunit α-1s (Cacna1s), ryanodine receptor 1 (Ryr1), and glycogen phosphorylase (Pygm), which are associated with excitation-contraction coupling and energy metabolism. The results suggest that remodeling of the glycome could have detrimental effects on intracellular signaling, excitability of skeletal muscle tissue, and glucose metabolism. Full article
20 pages, 4141 KB  
Article
Genome-Wide Identification, Characterization and Expression Profiles of the CCD Gene Family in Potato
by Hai Shen, Qianyu Zhang, Ningjing Tang, Peihua Li, Kaimei Zhang, Zhangshuyi Wang, Xiaoting Fang, Chao Wu, Fang Wang, Xueli Huang, Cuiqin Yang, Hong Zhai, Shunlin Zheng and Zhitong Ren
Agronomy 2026, 16(2), 250; https://doi.org/10.3390/agronomy16020250 - 20 Jan 2026
Abstract
Carotenoids are a class of C40 isoprenoid-derived fat-soluble pigments that play vital roles in plant physiology and human health and serve as precursors for several biologically critical regulatory molecules. Carotenoid cleavage dioxygenases (CCDs) are key enzymes that catalyze the selective oxidative cleavage of [...] Read more.
Carotenoids are a class of C40 isoprenoid-derived fat-soluble pigments that play vital roles in plant physiology and human health and serve as precursors for several biologically critical regulatory molecules. Carotenoid cleavage dioxygenases (CCDs) are key enzymes that catalyze the selective oxidative cleavage of carotenoids into apocarotenoids, thereby significantly influencing plant development and responses to abiotic stress. Although extensive research has been conducted on many model species, comprehensive studies on the StCCD gene family in potato remain limited. In this study, we conducted a genome-wide analysis to identify and characterize the CCD gene family in potato. Phylogenetic and structural analyses classified the 17 StCCD genes into six distinct subfamilies, which are distributed across five chromosomes of the genome. Analysis of cis-acting regulatory elements revealed that the promoters of most StCCD genes contain various elements associated with light responsiveness, stress signaling, and phytohormone regulation. Molecular docking analysis indicated that CCD proteins exhibit distinct substrate specificity in their binding to carotenoids and intermediate products. The expression profiling of StCCD genes uncovered pronounced specificity in their expression, which was evident across tissues, throughout tuber maturation, and following exposure to abiotic stresses and hormonal applications. This specificity strongly implicates these genes in the regulation of developmental processes and stress adaptation mechanisms. This study provides a comprehensive genomic and transcriptomic overview of the CCD gene family in potato, establishing a foundation for functional characterization of individual genes in the future. Full article
Show Figures

Figure 1

23 pages, 3627 KB  
Article
Probiotic Combination of Lactiplantibacillus plantarum M1 and Limosilactobacillus reuteri K4 Alleviates Early Weaning-Induced Intestinal Injury in Lambs via Modulation of Oxidative and Inflammatory Pathways
by Qicheng Lu, Peng Zhang, Yujie Niu, Chuying Wang, Fengshuo Zhang, Junli Niu, Weibin Zeng, Cheng Chen and Wenju Zhang
Antioxidants 2026, 15(1), 132; https://doi.org/10.3390/antiox15010132 - 20 Jan 2026
Abstract
Early weaning in intensive lamb production improves reproductive efficiency but predisposes lambs to diarrhea, oxidative stress, and intestinal barrier dysfunction, highlighting the need for non-antibiotic strategies to protect gut health. This study evaluated whether a sheep-derived mixed probiotic could alleviate early weaning–induced intestinal [...] Read more.
Early weaning in intensive lamb production improves reproductive efficiency but predisposes lambs to diarrhea, oxidative stress, and intestinal barrier dysfunction, highlighting the need for non-antibiotic strategies to protect gut health. This study evaluated whether a sheep-derived mixed probiotic could alleviate early weaning–induced intestinal injury and clarified its potential molecular mechanisms. Early weaning reduced body weight, average daily gain and feed efficiency, increased diarrhea, decreased plasma and colonic catalase (CAT), glutathione peroxidase (GSH-PX), and superoxide dismutase (SOD) activities, increased malondialdehyde (MDA), elevated interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), reduced interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), increased plasma and mucosal immunoglobulin A, M, and G (IgA, IgM, IgG), and increased colonic lipopolysaccharide (LPS) with reduced diamine oxidase (DAO). Intestinally, EW induced villus atrophy, deeper crypts, lower villus height-to-crypt depth ratios, goblet cell loss, higher histopathological scores, and decreased colonic mucin 2, zonula occludens-1, claudin-1, and occludin. Probiotic supplementation partially reversed these alterations, restoring antioxidant enzyme activities, improving villus architecture and barrier protein expression, and rebalancing cytokine and immunoglobulin profiles. Transcriptomic and network analyses showed that early weaning activated Cytokine–cytokine receptor, NF-κB, TNF and Th17 pathways, whereas probiotics suppressed a weaning-responsive inflammatory gene module, downregulated key hub genes, and enhanced peroxisome proliferator-activated receptor (PPAR) signaling. These results show that supplementing early-weaned lambs with a mixed probiotic generated from sheep is an efficient nutritional strategy to reduce intestinal oxidative and inflammatory damage associated with weaning and to enhance their health and performance. Full article
Show Figures

Figure 1

15 pages, 8865 KB  
Article
Functional Analysis Identifies Multiple Effectors of Candidatus Liberibacter Asiaticus Suppressing Plant Pattern-Triggered Immunity
by Zhuoyuan He, Hongyan Li, Zonghui Zhao, Desen Wang, Hong Wu, Mei Bai, Xiangxiu Liang and Jian-Bin Yu
Plants 2026, 15(2), 308; https://doi.org/10.3390/plants15020308 - 20 Jan 2026
Abstract
Candidatus Liberibacter spp. can infect most citrus plants and rely entirely on phloem sieve tube cells of the host plant for survival. Candidatus Liberibacter primarily contains Ca. L. asiaticus (CLas), Ca. L. africanus (CLaf), and Ca. L. americanus (CLam). Among these, CLas is [...] Read more.
Candidatus Liberibacter spp. can infect most citrus plants and rely entirely on phloem sieve tube cells of the host plant for survival. Candidatus Liberibacter primarily contains Ca. L. asiaticus (CLas), Ca. L. africanus (CLaf), and Ca. L. americanus (CLam). Among these, CLas is the most harmful and widely distributed and is the primary pathogen of the devastating citrus disease Huanglongbing (HLB). Effectors are among the core weapons secreted by pathogens into plant cells to attack the plant immune system. In this study, we focused on CLas-specific effectors and those that are highly expressed during the infection stage to identify essential virulence effectors. Using secretion signal peptide prediction analysis, 40 candidate effectors with potential secretory capabilities were identified. Transient expression of these candidate effectors in Nicotiana benthamiana revealed their impact on pattern-triggered immunity, including INF-induced cell death and microbial pattern-induced reactive oxygen species (ROS) bursts, and the resistance of N. benthamiana to the bacterial pathogen Pst DC3000. 10 candidate effectors capable of suppressing plant immunity were identified. The stable expression of these candidate effectors in Arabidopsis showed that several candidate effectors enhanced plant susceptibility to Pst DC3000 and inhibited flg22-induced ROS production and MAPK activation. Among the three candidate effectors that significantly suppressed ROS burst, one effector, E3 (CLIBASIA_03085), interacts with the plant NADPH oxidase RbohD, a key enzyme responsible for ROS production. This suggests that E3 likely inhibits ROS accumulation by directly targeting RbohD. Here, we identified multiple candidate effectors capable of suppressing microbial pattern-triggered immunity that may be essential virulence factors for CLas infection, enhancing our understanding of CLas pathogenesis. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

22 pages, 6486 KB  
Article
Regenerative Skin Remodeling by a Dual Hyaluronic Acid Hybrid Complex in Multimodal Preclinical Models
by Hyojin Roh, Ngoc Ha Nguyen, Jinyoung Jung, Jewan Kaiser Hwang, Young In Lee, Inhee Jung and Ju Hee Lee
Int. J. Mol. Sci. 2026, 27(2), 1027; https://doi.org/10.3390/ijms27021027 - 20 Jan 2026
Abstract
Skin aging arises from extracellular matrix degradation, inflammation, and pigmentation dysregulation, yet most existing rejuvenation strategies target only a subset of these processes. This study investigated the multimodal rejuvenation potential of a dual hyaluronic acid compound (DHC), composed of low- and high-molecular-weight HA [...] Read more.
Skin aging arises from extracellular matrix degradation, inflammation, and pigmentation dysregulation, yet most existing rejuvenation strategies target only a subset of these processes. This study investigated the multimodal rejuvenation potential of a dual hyaluronic acid compound (DHC), composed of low- and high-molecular-weight HA integrated within a minimally cross-linked hybrid complex. In vitro assays using dermal fibroblasts, melanoma cells, and macrophages demonstrated that DHC enhanced fibroblast viability, collagen I/III and elastin production, antioxidant enzyme activity, and wound-healing capacity while reducing senescence markers. DHC markedly suppressed melanogenesis by downregulating the gene expression of MITF, TYR, and TRP1, and exerted strong anti-inflammatory activity by decreasing nitric oxide (NO) production and key cytokines, including TNF-α, IL-1β, IL-6, and CCL1. In a UVB-induced photoaging rat model, DHC reduced wrinkle depth, epidermal thickening, and melanin accumulation while improving elasticity, collagen density, hydration, and barrier integrity. Across these outcomes, DHC demonstrated biological effects that were comparable to, and in selected endpoints greater than, those of commonly used biostimulators and HA fillers in preclinical models. Collectively, these laboratory findings suggest that DHC exhibits broad preclinical bioactivity through combined biostimulatory, antioxidant, anti-inflammatory, and pigmentation-modulating effects. Further mechanistic and clinical studies are required to determine its translational relevance. Full article
(This article belongs to the Collection Advances in Cell and Molecular Biology)
Show Figures

Figure 1

19 pages, 2095 KB  
Article
Immunomodulatory Peptides Derived from Tylorrhynchus heterochaetus: Identification, In Vitro Activity, and Molecular Docking Analyses
by Huiying Zhu, Zhilu Zeng, Yanping Deng, Jia Mao, Lisha Hao, Ziwei Liu, Yanglin Hua and Ping He
Foods 2026, 15(2), 363; https://doi.org/10.3390/foods15020363 - 20 Jan 2026
Abstract
Tylorrhynchus heterochaetus is an aquatic food with both edible and medicinal value in China. With a protein-rich body wall, it has strong potential for producing bioactive peptides. To explore its potential as a source of immunomodulatory peptides, in this study, flavor enzymes were [...] Read more.
Tylorrhynchus heterochaetus is an aquatic food with both edible and medicinal value in China. With a protein-rich body wall, it has strong potential for producing bioactive peptides. To explore its potential as a source of immunomodulatory peptides, in this study, flavor enzymes were selected as the optimal hydrolases, and the hydrolyzed products were subjected to ultrafiltration fractionation. The <3000 Da portion exhibited the most effective immune-stimulating activity in RAW 264.7 macrophages, enhancing phagocytosis and promoting the secretion of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and nitric oxide (NO) in a concentration dependent manner. Peptide omics analysis, combined with the activity and safety screened by bioinformatics, identified 43 candidate peptides. Molecular docking predicts that three novel peptides, LPWDPL, DDFVFLR and LPVGPLFN, exhibit strong binding affinity with toll-like receptor 4/myeloid differentiation factor-2 (TLR4/MD-2) receptors through hydrogen bonding and hydrophobic/π stacking interactions. Synthetic verification confirmed that these peptides were not only non-toxic to cells at concentrations ranging from 62.5 to 1000 µg/mL, but also effective in activating macrophages and stimulating the release of immune mediators. This study successfully identified the specific immunomodulatory peptides of the Tylorrhynchus heterochaetus, supporting its high-value utilization as a natural source of raw materials for immunomodulatory functional foods. Full article
Show Figures

Figure 1

Back to TopTop