Impact of Melatonin on Sepsis-Associated Acute Kidney Injury in Rat Model of Lipopolysaccharide Endotoxemia
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animals and Experimental Design
2.3. Serum Biochemical Analysis
2.4. Tissue Biochemical Analyses
2.4.1. Oxidative Stress Parameters and Antioxidative Potential Determination
2.4.2. Nitric Oxide and iNOS Determination
2.4.3. Quantification of Inflammatory Mediators
2.4.4. Apoptosis-Related Parameter Determination
2.5. Histopathological Analysis
2.6. Statistical Analysis
3. Results
3.1. Renal Function
3.2. Tissue Oxidative Stress
3.3. Kidney Tissue Inflammation
3.4. Tissue Apoptosis
3.5. Kidney Tissue Histopathology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AOPP | advanced oxidation protein product |
| AKI | acute kidney injury |
| CAT | catalase |
| DNase | deoxyribonuclease |
| ELISA | enzyme-linked immunosorbent assay |
| HE | hematoxylin and eosin |
| IL-1β | interleukin-1 beta |
| IL-6 | interleukin-6 |
| iNOS | inducible nitric oxide synthase |
| LPS | lipopolysaccharide |
| MAPK | mitogen-activated protein kinase |
| MLT | melatonin |
| NLRP3 | NOD-like receptor protein 3 |
| NO | nitric oxide |
| Nrf2 | nuclear factor erythroid 2-related factor 2 |
| PI3K | phosphoinositide 3-kinase |
| RNS | reactive nitrogen species |
| ROS | reactive oxygen species |
| S-AKI | sepsis-associated acute kidney injury |
| SOD | superoxide dismutase |
| TBARS | thiobarbituric acid reactive substance |
| TLR4 | Toll-like receptor 4 |
| TNF-α | tumor necrosis factor alpha |
References
- Manrique-Caballero, C.L.; Del Rio-Pertuz, G.; Gomez, H. Sepsis-Associated Acute Kidney Injury. Crit. Care Clin. 2021, 37, 279–301. [Google Scholar] [CrossRef]
- Aguilar, M.G.; AlHussen, H.A.; Gandhi, P.D.; Kaur, P.; Pothacamuri, M.A.; Talikoti, M.A.H.; Avula, N.; Shekhawat, P.; Silva, A.B.; Kaur, A.; et al. Sepsis-Associated Acute Kidney Injury: Pathophysiology and Treatment Modalities. Cureus 2024, 16, e75992. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, J.; Chen, X.; Chen, R.; Wang, H. Incidence, risk factors and clinical outcomes of septic acute renal injury in cancer patients with sepsis admitted to the ICU: A retrospective study. Front. Med. 2022, 9, 1015735. [Google Scholar] [CrossRef] [PubMed]
- Plotnikov, E.Y.; Brezgunova, A.A.; Pevzner, I.B.; Zorova, L.D.; Manskikh, V.N.; Popkov, V.A.; Silachev, D.N.; Zorov, D.B. Mechanisms of LPS-Induced Acute Kidney Injury in Neonatal and Adult Rats. Antioxidants 2018, 7, 105. [Google Scholar] [CrossRef]
- Dörtbudak, M.B.; Demircioğlu, M.; Kapucuk, F.S. Micromeria congesta Alleviates LPS-Induced Inflammation, Apoptosis, Oxidative Stress and DNA Damage in Rat Heart and Kidneys. Vet. Med. Sci. 2025, 11, e70264. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, S.; Goggins, E.; Okusa, M.D. The Pathophysiology of Sepsis-Associated AKI. Clin. J. Am. Soc. Nephrol. 2022, 17, 1050–1069. [Google Scholar] [CrossRef]
- Kim, K.; Hong, H.L.; Kim, G.M.; Leem, J.; Kwon, H.H. Eupatilin Ameliorates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting Inflammation, Oxidative Stress, and Apoptosis in Mice. Curr. Issues Mol. Biol. 2023, 45, 7027–7042. [Google Scholar] [CrossRef] [PubMed]
- Kandel, R.; Roy, P.; Singh, K.P. Molecular Basis of Oxidative Stress-Induced Acute Kidney Injury, Kidney Fibrosis, Chronic Kidney Disease, and Clinical Significance of Targeting Reactive Oxygen Species-Regulated Pathways to Treat Kidney Disease. Front. Biosci. 2025, 17, 38963. [Google Scholar] [CrossRef]
- Wu, Z.; Deng, J.; Zhou, H.; Tan, W.; Lin, L.; Yang, J. Programmed Cell Death in Sepsis Associated Acute Kidney Injury. Front. Med. 2022, 9, 883028. [Google Scholar] [CrossRef]
- Sokolović, D.; Lazarević, M.; Milić, D.; Stanojković, Z.; Petković, M.N.; Stojanović, N.M.; Sokolović, D.T. Melatonin reduces lipopolysaccharide-induced kidney damage. Acta Medica Median. 2023, 62, 15–20. [Google Scholar] [CrossRef]
- Chen, L.; Han, Z.; Shi, Z.; Liu, C.; Lu, Q. Melatonin Alleviates Renal Injury in Mouse Model of Sepsis. Front. Pharmacol. 2021, 12, 697643. [Google Scholar] [CrossRef]
- Deng, Z.; He, M.; Hu, H.; Zhang, W.; Zhang, Y.; Ge, Y.; Ma, T.; Wu, J.; Li, L.; Sun, M.; et al. Melatonin attenuates sepsis-induced acute kidney injury by promoting mitophagy through SIRT3-mediated TFAM deacetylation. Autophagy 2024, 20, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Di, S.; Wang, Z.; Hu, W.; Yan, X.; Ma, Z.; Li, X.; Li, W.; Gao, J. The Protective Effects of Melatonin Against LPS-Induced Septic Myocardial Injury: A Potential Role of AMPK-Mediated Autophagy. Front. Endocrinol. 2020, 11, 162. [Google Scholar] [CrossRef]
- Sokolović, D.; Lazarević, M.; Milić, D.; Stanojković, Z.; Mitić, K.; Sokolović, D.T. Melatonin arrests excessive inflammatory response and apoptosis in lipopolysaccharide-damaged rat liver: A deeper insight into its mechanism of action. Tissue Cell 2022, 79, 101904. [Google Scholar] [CrossRef] [PubMed]
- Ničković, V.P.; Novaković, T.; Lazarević, S.; Šulović, L.; Živković, Z.; Živković, J.; Mladenović, B.; Stojanović, N.M.; Petrović, V.; Sokolović, D.T. Pre- vs. post-treatment with melatonin in CCl4-induced liver damage: Oxidative stress inferred from biochemical and pathohistological studies. Life Sci. 2018, 202, 28–34. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Sokolović, D.T.; Lilić, L.; Milenković, V.; Stefanović, R.; Ilić, T.P.; Mekić, B.; Ilić, I.; Stojanović, N.M.; Ilić, I.R. Effects of melatonin on oxidative stress parameters and pathohistological changes in rat skeletal muscle tissue following carbon tetrachloride application. Saudi Pharm. J. 2018, 26, 1044–1050. [Google Scholar] [CrossRef]
- Stojanović, N.M.; Maslovarić, A.; Mihajlović, I.; Marković, A.; Randjelović, P.J.; Sokolović, D. Melatonin treatment prevents carbon-tetrachloride induced rat brain injury. Toxicol. Res. 2023, 12, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, N.M.; Veljković, M.; Pavlović, D.; Dragićević, A.; Zlatković, D.; Sokolović, D. Bilberry (Vaccinium myrtillus L.) Extract Antiinflammatory Activity in Rat Macrophage Cell Culture. Nat. Prod. Commun. 2025, 20, 1–10. [Google Scholar] [CrossRef]
- Lazarević, M.; Kostić, M.; Džopalić, T.; Sokolović, D.; Lazarević, Z.; Milovanović, J.; Ničković, V.; Sokolović, D. Melatonin mediates cardiac tissue damage under septic conditions induced by lipopolysaccharide. Int. J. Mol. Sci. 2024, 25, 11088. [Google Scholar] [CrossRef]
- Stojanović, N.M.; Mitić, K.V.; Nešić, M.; Stanković, M.; Petrović, V.; Baralić, M.; Randjelović, P.J.; Sokolović, D.; Radulović, N. Oregano (Origanum vulgare) Essential Oil and Its Constituents Prevent Rat Kidney Tissue Injury and Inflammation Induced by a High Dose of L-Arginine. Int. J. Mol. Sci. 2024, 25, 941. [Google Scholar] [CrossRef]
- Lee, S.; Kim, W.; Kang, K.P.; Moon, S.O.; Sung, M.J.; Kim, D.H.; Kim, H.J.; Park, S.K. Agonist of peroxisome proliferator-activated receptor-γ, rosiglitazone, reduces renal injury and dysfunction in a murine sepsis model. Nephrol. Dial. Transplant. 2005, 20, 1057–1065. [Google Scholar] [CrossRef]
- Radulović, N.S.; Randjelović, P.J.; Stojanović, N.M.; Ilić, I.R.; Miltojević, A.B.; Stojković, M.B.; Ilić, M. Effect of two esters of N-methylanthranilic acid from Rutaceae species on impaired kidney morphology and function in rats caused by CCl4. Life Sci. 2015, 135, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, P.M.; Kearns, A.K.; Rouzier, P.; Rubin, R.; Thompson, P.D. Serum creatine kinase levels and renal function measures in exertional muscle damage. Med. Sci. Sports Exerc. 2006, 38, 623–627. [Google Scholar] [CrossRef]
- Ilçe, F.; Gök, G.; Pandir, D. Acute effects of lipopolysaccharide (LPS) in kidney of rats and preventive role of vitamin E and sodium selenite. Hum. Exp. Toxicol. 2019, 38, 547–560. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Yamamoto, H. Interaction of receptor for advanced glycation end products with advanced oxidation protein products induces podocyte injury. Kidney Int. 2012, 82, 733–735. [Google Scholar] [CrossRef]
- Victor, V.M.; Rocha, M.; De la Fuente, M. Immune cells: Free radicals and antioxidants in sepsis. Int. Immunopharmacol. 2004, 4, 327–347. [Google Scholar] [CrossRef] [PubMed]
- Escames, G.; López, L.C.; Ortiz, F.; Ros, E.; Acuña-Castroviejo, D. Age-dependent lipopolysaccharide-induced iNOS expression and multiorgan failure in rats: Effects of melatonin treatment. Exp. Gerontol. 2006, 41, 1165–1173. [Google Scholar] [CrossRef]
- Genčić, M.S.; Aksić, J.M.; Živković Stošić, M.Z.; Randjelović, P.J.; Stojanović, N.M.; Stojanović-Radić, Z.Z.; Radulović, N.S. Linking the antimicrobial and anti-inflammatory effects of immortelle essential oil with its chemical composition—The inter-play between the major and minor constituents. Food Chem. Toxicol. 2021, 158, 112666. [Google Scholar] [CrossRef]
- Oliveira, F.R.M.B.; Assreuy, J.; Sordi, R. The role of nitric oxide in sepsis-associated kidney injury. Biosci. Rep. 2022, 42, BSR20220093. [Google Scholar] [CrossRef]
- Wu, L.; Gokden, N.; Mayeux, P.R. Evidence for the role of reactive nitrogen species in polymicrobial sepsis-induced renal peritubular capillary dysfunction and tubular injury. J. Am. Soc. Nephrol. 2007, 18, 1807–1815. [Google Scholar] [CrossRef] [PubMed]
- Markowska, M.; Niemczyk, S.; Romejko, K. Melatonin Treatment in Kidney Diseases. Cells 2023, 12, 838. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, H.; Han, S.; Fu, Z.; Wang, J.; Chen, Y.; Wang, L. Melatonin pretreatment alleviates renal ischemia-reperfusion injury by promoting autophagic flux via TLR4/MyD88/MEK/ERK/mTORC1 signaling. FASEB J. 2020, 34, 12324–12337. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Chang, A.; Hack, B.K.; Eadon, M.T.; Alper, S.L.; Cunningham, P.N. TNF-mediated damage to glomerular endothelium is an important determinant of acute kidney injury in sepsis. Kidney Int. 2014, 85, 72–81. [Google Scholar] [CrossRef]
- Yuan, N.; Chen, J.; Luo, F.; Fang, Z.; Huang, M.; Liu, J.; Chen, X.; Luo, C. Comparison of sepsis-associated acute kidney injury with different degrees and causes reveals patterns in mitochondrial metabolism and immune infiltration changes. Sci. Rep. 2025, 15, 22738. [Google Scholar] [CrossRef]
- Dai, W.; Huang, H.; Si, L.; Hu, S.; Zhou, L.; Xu, L.; Deng, Y. Melatonin prevents sepsis-induced renal injury via the PINK1/Parkin1 signaling pathway. Int. J. Mol. Med. 2019, 44, 1197–1204. [Google Scholar] [CrossRef]
- Choi, E.Y.; Jin, J.Y.; Lee, J.Y.; Choi, J.I.; Choi, I.S.; Kim, S.J. Melatonin inhibits Prevotella intermedia lipopolysaccharide-induced production of nitric oxide and interleukin-6 in murine macrophages by suppressing NF-kappa B and STAT1 activity. J. Pineal Res. 2011, 50, 197–206. [Google Scholar] [CrossRef]
- Zhao, C.N.; Wang, P.; Mao, Y.M.; Dan, Y.L.; Wu, Q.; Li, X.M.; Wang, D.G.; Davis, C.; Hu, W.; Pan, H.F. Potential role of melatonin in autoimmune diseases. Cytokine Growth Factor Rev. 2019, 48, 1–10. [Google Scholar] [CrossRef]
- Wu, W.; Lan, W.; Jiao, X.; Wang, K.; Deng, Y.; Chen, R.; Zeng, R.; Li, J. Pyroptosis in sepsis-associated acute kidney injury: Mechanisms and therapeutic perspectives. Crit. Care 2025, 29, 168. [Google Scholar] [CrossRef]
- Yao, L.; Lu, P.; Ling, E.A. Melatonin Suppresses Toll Like Receptor 4-Dependent Caspase-3 Signaling Activation Coupled with Reduced Production of Proinflammatory Mediators in Hypoxic Microglia. PLoS ONE 2016, 11, e0166010. [Google Scholar] [CrossRef]
- Li, N.; Liu, X.; Lei, Y.; Wang, B.; Li, Z. Melatonin Ameliorates Cisplatin-Induced Renal Tubular Epithelial Cell Damage through PPARα/FAO Regulation. Chem. Res. Toxicol. 2022, 35, 1503–1511. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Vico, A.; Lardone, P.J.; Naji, L.; Fernández-Santos, J.M.; Martín-Lacave, I.; Guerrero, J.M.; Calvo, J.R. Beneficial pleiotropic actions of melatonin in an experimental model of septic shock in mice: Regulation of pro-/anti-inflammatory cytokine network, protection against oxidative damage and anti-apoptotic effects. J. Pineal Res. 2005, 39, 400–408. [Google Scholar] [CrossRef] [PubMed]



| Parameter | Control | MLT | LPS | LPS + MLT |
|---|---|---|---|---|
| Urealevels (mmol/L) | 5.1 ± 0.9 | 5.8 ± 0.7 | 14.2 ± 2.3 * | 9.8 ± 1.5 **,# |
| Creatinine levels (mg/dL) | 0.42 ± 0.05 | 0.45 ± 0.07 | 1.16 ± 0.2 * | 0.54 ± 0.1 # |
| Sodium (Na+) levels (mmol/L) | 142 ± 5 | 145 ± 4 | 132 ± 3 ** | 139 ± 2 ## |
| Potassium (K+) levels (mmol/L) | 4.4 ± 0.2 | 4.5 ± 0.3 | 6.1 ± 0.4 * | 5.3 ± 0.3 **,## |
| Parameter | Control | MLT | LPS | LPS + MLT |
|---|---|---|---|---|
| TNF-α (pg/mg of proteins) | 20.5 ± 4.7 | 25.1 ± 5.9 | 273 ± 36.4 * | 117 ± 11.8 **,# |
| IL-1β (pg/mg of proteins) | 9.1 ± 3.3 | 12.8 ± 4.2 | 89.9 ± 10.5 * | 25.6 ± 9.8 ***,# |
| IL-6 (pg/mg of proteins) | 1.1 ± 0.13 | 0.49 ± 0.26 | 10.83 ± 1.6 * | 2.94 ± 1.2 # |
| DNase I (mU/mg of proteins) | 0.23 ± 0.08 | 0.16 ± 0.09 | 0.65 ± 0.1 * | 0.32 ± 0.12 # |
| DNase II (mU/mg of proteins) | 0.56 ± 0.1 | 0.48 ± 0.12 | 1.25 ± 0.21 * | 0.71 ± 0.20 # |
| Caspase-3 (ng/mg of proteins) | 0.17 ± 0.02 | 0.07 ± 0.03 | 0.41 ± 0.04 * | 0.15 ± 0.07 # |
| Caspase-9 (ng/mg of proteins) | 0.73 ± 0.19 | 0.68 ± 0.12 | 1.93 ± 0.23 * | 0.98 ± 0.31 # |
| Parameter | Control | MLT | LPS | LPS + MLT |
|---|---|---|---|---|
| Glomerulardegeneration | 0 | 0 | 2.1 | 0.7 |
| Tubular swelling | 0 | 0 | 2.9 | 1.1 |
| Tubular casts | 0 | 0 | 2.2 | 0.9 |
| Inflammation | 0 | 0 | 2.5 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Potić, M.; Ignjatović, I.; Bašić, D.; Dinić, L.; Skakić, A.; Damnjanović, Z.; Jovanović, N.; Mitić, M.; Sokolović, D. Impact of Melatonin on Sepsis-Associated Acute Kidney Injury in Rat Model of Lipopolysaccharide Endotoxemia. Curr. Issues Mol. Biol. 2026, 48, 119. https://doi.org/10.3390/cimb48010119
Potić M, Ignjatović I, Bašić D, Dinić L, Skakić A, Damnjanović Z, Jovanović N, Mitić M, Sokolović D. Impact of Melatonin on Sepsis-Associated Acute Kidney Injury in Rat Model of Lipopolysaccharide Endotoxemia. Current Issues in Molecular Biology. 2026; 48(1):119. https://doi.org/10.3390/cimb48010119
Chicago/Turabian StylePotić, Milan, Ivan Ignjatović, Dragoslav Bašić, Ljubomir Dinić, Aleksandar Skakić, Zoran Damnjanović, Nebojša Jovanović, Milica Mitić, and Dušan Sokolović. 2026. "Impact of Melatonin on Sepsis-Associated Acute Kidney Injury in Rat Model of Lipopolysaccharide Endotoxemia" Current Issues in Molecular Biology 48, no. 1: 119. https://doi.org/10.3390/cimb48010119
APA StylePotić, M., Ignjatović, I., Bašić, D., Dinić, L., Skakić, A., Damnjanović, Z., Jovanović, N., Mitić, M., & Sokolović, D. (2026). Impact of Melatonin on Sepsis-Associated Acute Kidney Injury in Rat Model of Lipopolysaccharide Endotoxemia. Current Issues in Molecular Biology, 48(1), 119. https://doi.org/10.3390/cimb48010119

