Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,269)

Search Parameters:
Keywords = environmental sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 806 KiB  
Proceeding Paper
Enterococcus faecalis Biofilm: A Clinical and Environmental Hazard
by Bindu Sadanandan and Kavyasree Marabanahalli Yogendraiah
Med. Sci. Forum 2025, 35(1), 5; https://doi.org/10.3390/msf2025035005 - 5 Aug 2025
Abstract
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange [...] Read more.
This review explores the biofilm architecture and drug resistance of Enterococcus faecalis in clinical and environmental settings. The biofilm in E. faecalis is a heterogeneous, three-dimensional, mushroom-like or multilayered structure, characteristically forming diplococci or short chains interspersed with water channels for nutrient exchange and waste removal. Exopolysaccharides, proteins, lipids, and extracellular DNA create a protective matrix. Persister cells within the biofilm contribute to antibiotic resistance and survival. The heterogeneous architecture of the E. faecalis biofilm contains both dense clusters and loosely packed regions that vary in thickness, ranging from 10 to 100 µm, depending on the environmental conditions. The pathogenicity of the E. faecalis biofilm is mediated through complex interactions between genes and virulence factors such as DNA release, cytolysin, pili, secreted antigen A, and microbial surface components that recognize adhesive matrix molecules, often involving a key protein called enterococcal surface protein (Esp). Clinically, it is implicated in a range of nosocomial infections, including urinary tract infections, endocarditis, and surgical wound infections. The biofilm serves as a nidus for bacterial dissemination and as a reservoir for antimicrobial resistance. The effectiveness of first-line antibiotics (ampicillin, vancomycin, and aminoglycosides) is diminished due to reduced penetration, altered metabolism, increased tolerance, and intrinsic and acquired resistance. Alternative strategies for biofilm disruption, such as combination therapy (ampicillin with aminoglycosides), as well as newer approaches, including antimicrobial peptides, quorum-sensing inhibitors, and biofilm-disrupting agents (DNase or dispersin B), are also being explored to improve treatment outcomes. Environmentally, E. faecalis biofilms contribute to contamination in water systems, food production facilities, and healthcare environments. They persist in harsh conditions, facilitating the spread of multidrug-resistant strains and increasing the risk of transmission to humans and animals. Therefore, understanding the biofilm architecture and drug resistance is essential for developing effective strategies to mitigate their clinical and environmental impact. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Antibiotics)
Show Figures

Figure 1

17 pages, 2283 KiB  
Article
A Remote Strawberry Health Monitoring System Performed with Multiple Sensors Approach
by Xiao Du, Jun Steed Huang, Qian Shi, Tongge Li, Yanfei Wang, Haodong Liu, Zhaoyuan Zhang, Ni Yu and Ning Yang
Agriculture 2025, 15(15), 1690; https://doi.org/10.3390/agriculture15151690 - 5 Aug 2025
Abstract
Temperature is a key physiological indicator of plant health, influenced by factors including water status, disease and developmental stage. Monitoring changes in multiple factors is helpful for early diagnosis of plant growth. However, there are a variety of complex light interference phenomena in [...] Read more.
Temperature is a key physiological indicator of plant health, influenced by factors including water status, disease and developmental stage. Monitoring changes in multiple factors is helpful for early diagnosis of plant growth. However, there are a variety of complex light interference phenomena in the greenhouse, so traditional detection methods cannot meet effective online monitoring of strawberry health status without manual intervention. Therefore, this paper proposes a leaf soft-sensing method based on a thermal infrared imaging sensor and adaptive image screening Internet of Things system, with additional sensors to realize indirect and rapid monitoring of the health status of a large range of strawberries. Firstly, a fuzzy comprehensive evaluation model is established by analyzing the environmental interference terms from the other sensors. Secondly, through the relationship between plant physiological metabolism and canopy temperature, a growth model is established to predict the growth period of strawberries based on canopy temperature. Finally, by deploying environmental sensors and solar height sensors, the image acquisition node is activated when the environmental interference is less than the specified value and the acquisition is completed. The results showed that the accuracy of this multiple sensors system was 86.9%, which is 30% higher than the traditional model and 4.28% higher than the latest advanced model. It makes it possible to quickly and accurately assess the health status of plants by a single factor without in-person manual intervention, and provides an important indication of the early, undetectable state of strawberry disease, based on remote operation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

25 pages, 15953 KiB  
Article
Land Use Change and Its Climatic and Vegetation Impacts in the Brazilian Amazon
by Sérvio Túlio Pereira Justino, Richardson Barbosa Gomes da Silva, Rafael Barroca Silva and Danilo Simões
Sustainability 2025, 17(15), 7099; https://doi.org/10.3390/su17157099 (registering DOI) - 5 Aug 2025
Abstract
The Brazilian Amazon is recognized worldwide for its biodiversity and it plays a key role in maintaining the regional and global climate balance. However, it has recently been greatly impacted by changes in land use, such as replacing native forests with agricultural activities. [...] Read more.
The Brazilian Amazon is recognized worldwide for its biodiversity and it plays a key role in maintaining the regional and global climate balance. However, it has recently been greatly impacted by changes in land use, such as replacing native forests with agricultural activities. These changes have resulted in serious environmental consequences, including significant alterations to climate and hydrological cycles. This study aims to analyze changes in land use and land covered in the Brazilian Amazon between 2001 and 2023, as well as the resulting effects on precipitation variability, land surface temperature, and evapotranspiration. Data obtained via remote sensing and processed on the Google Earth Engine platform were used, including MODIS, CHIRPS, Hansen products. The results revealed significant changes: forest formation decreased by 8.55%, while agricultural land increased by 575%. Between 2016 and 2023, accumulated deforestation reached 242,689 km2. Precipitation decreased, reaching minimums of 772.7 mm in 2015 and 726.4 mm in 2020. Evapotranspiration was concentrated between 941 and 1360 mm in 2020, and surface temperatures ranged between 30 °C and 34 °C in 2015, 2020, and 2023. We conclude that anthropogenic transformations in the Brazilian Amazon directly impact vegetation cover and the regional climate. Therefore, conservation and monitoring measures are essential for mitigating these effects. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

14 pages, 1563 KiB  
Article
A Portable and Thermally Degradable Hydrogel Sensor Based on Eu-Doped Carbon Dots for Visual and Ultrasensitive Detection of Ferric Ion
by Hongyuan Zhang, Qian Zhang, Juan Tang, Huanxin Yang, Xiaona Ji, Jieqiong Wang and Ce Han
Molecules 2025, 30(15), 3280; https://doi.org/10.3390/molecules30153280 - 5 Aug 2025
Abstract
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require [...] Read more.
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require effective monitoring. In this study, we developed a thermally degradable fluorescent hydrogel sensor (Eu-CDs@DPPG) based on europium-doped carbon dots (Eu-CDs). The Eu-CDs, synthesized via a hydrothermal method, exhibited selective fluorescence quenching by Fe3+ through the inner filter effect (IFE). Embedding Eu-CDs into the hydrogel significantly enhanced their stability and dispersibility in aqueous environments, effectively resolving issues related to aggregation and matrix interference in traditional sensing methods. The developed sensor demonstrated a broad linear detection range (0–2.5 µM), an extremely low detection limit (1.25 nM), and rapid response (<40 s). Furthermore, a smartphone-assisted LAB color analysis allowed portable, visual quantification of Fe3+ with a practical LOD of 6.588 nM. Importantly, the hydrogel was thermally degradable at 80 °C, thus minimizing environmental impact. The sensor’s practical applicability was validated by accurately detecting Fe3+ in spinach and human urine samples, achieving recoveries of 98.7–108.0% with low relative standard deviations. This work provides an efficient, portable, and sustainable sensing platform that overcomes the limitations inherent in conventional analytical methods. Full article
(This article belongs to the Section Photochemistry)
23 pages, 12693 KiB  
Article
Upscaling Soil Salinization in Keriya Oasis Using Bayesian Belief Networks
by Hong Chen, Jumeniyaz Seydehmet and Xiangyu Li
Sustainability 2025, 17(15), 7082; https://doi.org/10.3390/su17157082 (registering DOI) - 5 Aug 2025
Abstract
Soil salinization in oasis areas of arid regions is recognized as a dynamic and multifaceted environmental threat influenced by both natural processes and human activities. In this study, 13 spatiotemporal predictors derived from field surveys and remote sensing are utilized to construct a [...] Read more.
Soil salinization in oasis areas of arid regions is recognized as a dynamic and multifaceted environmental threat influenced by both natural processes and human activities. In this study, 13 spatiotemporal predictors derived from field surveys and remote sensing are utilized to construct a spatial probabilistic model of salinization. A Bayesian Belief Network is integrated with spline interpolation in ArcGIS to map the likelihood of salinization, while Partial Least Squares Structural Equation Modeling (PLS-SEM) is applied to analyze the interactions among multiple drivers. The test results of this model indicate that its average sensitivity exceeds 80%, confirming its robustness. Salinization risk is categorized into degradation (35–79% probability), stability (0–58%), and improvement (0–48%) classes. Notably, 58.27% of the 1836.28 km2 Keriya Oasis is found to have a 50–79% chance of degradation, whereas only 1.41% (25.91 km2) exceeds a 50% probability of remaining stable, and improvement probabilities are never observed to surpass 50%. Slope gradient and soil organic matter are identified by PLS-SEM as the strongest positive drivers of degradation, while higher population density and coarser soil textures are found to counteract this process. Spatially explicit probability maps are generated to provide critical spatiotemporal insights for sustainable oasis management, revealing the complex controls and limited recovery potential of soil salinization. Full article
Show Figures

Figure 1

24 pages, 4519 KiB  
Article
Aerial Autonomy Under Adversity: Advances in Obstacle and Aircraft Detection Techniques for Unmanned Aerial Vehicles
by Cristian Randieri, Sai Venkata Ganesh, Rayappa David Amar Raj, Rama Muni Reddy Yanamala, Archana Pallakonda and Christian Napoli
Drones 2025, 9(8), 549; https://doi.org/10.3390/drones9080549 - 4 Aug 2025
Abstract
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This [...] Read more.
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This study comprehensively analyzes the recent landscape of obstacle and aircraft detection techniques tailored for UAVs acting in difficult scenarios such as fog, rain, smoke, low light, motion blur, and disorderly environments. It starts with a detailed discussion of key detection challenges and continues with an evaluation of different sensor types, from RGB and infrared cameras to LiDAR, radar, sonar, and event-based vision sensors. Both classical computer vision methods and deep learning-based detection techniques are examined in particular, highlighting their performance strengths and limitations under degraded sensing conditions. The paper additionally offers an overview of suitable UAV-specific datasets and the evaluation metrics generally used to evaluate detection systems. Finally, the paper examines open problems and coming research directions, emphasising the demand for lightweight, adaptive, and weather-resilient detection systems appropriate for real-time onboard processing. This study aims to guide students and engineers towards developing stronger and intelligent detection systems for next-generation UAV operations. Full article
Show Figures

Figure 1

22 pages, 4189 KiB  
Article
A Hierarchical Path Planning Framework of Plant Protection UAV Based on the Improved D3QN Algorithm and Remote Sensing Image
by Haitao Fu, Zheng Li, Jian Lu, Weijian Zhang, Yuxuan Feng, Li Zhu, He Liu and Jian Li
Remote Sens. 2025, 17(15), 2704; https://doi.org/10.3390/rs17152704 - 4 Aug 2025
Abstract
Traditional path planning algorithms often fail to simultaneously ensure operational efficiency, energy constraint compliance, and environmental adaptability in agricultural scenarios, thereby hindering the advancement of precision agriculture. To address these challenges, this study proposes a deep reinforcement learning algorithm, MoE-D3QN, which integrates a [...] Read more.
Traditional path planning algorithms often fail to simultaneously ensure operational efficiency, energy constraint compliance, and environmental adaptability in agricultural scenarios, thereby hindering the advancement of precision agriculture. To address these challenges, this study proposes a deep reinforcement learning algorithm, MoE-D3QN, which integrates a Mixture-of-Experts mechanism with a Bi-directional Long Short-Term Memory model. This design enhances the efficiency and robustness of UAV path planning in agricultural environments. Building upon this algorithm, a hierarchical coverage path planning framework is developed. Multi-level task maps are constructed using crop information extracted from Sentinel-2 remote sensing imagery. Additionally, a dynamic energy consumption model and a progressive composite reward function are incorporated to further optimize UAV path planning in complex farmland conditions. Simulation experiments reveal that in the two-level scenario, the MoE-D3QN algorithm achieves a coverage efficiency of 0.8378, representing an improvement of 37.84–63.38% over traditional algorithms and 19.19–63.38% over conventional reinforcement learning methods. The redundancy rate is reduced to 3.23%, which is 38.71–41.94% lower than traditional methods and 4.46–42.77% lower than reinforcement learning counterparts. In the three-level scenario, MoE-D3QN achieves a coverage efficiency of 0.8261, exceeding traditional algorithms by 52.13–71.45% and reinforcement learning approaches by 10.15–50.2%. The redundancy rate is further reduced to 5.26%, which is significantly lower than the 57.89–92.11% observed with traditional methods and the 15.57–18.98% reported for reinforcement learning algorithms. These findings demonstrate that the MoE-D3QN algorithm exhibits high-quality planning performance in complex farmland environments, indicating its strong potential for widespread application in precision agriculture. Full article
Show Figures

Figure 1

14 pages, 5995 KiB  
Article
Integrated Remote Sensing Evaluation of Grassland Degradation Using Multi-Criteria GDCI in Ili Prefecture, Xinjiang, China
by Liwei Xing, Dongyan Jin, Chen Shen, Mengshuai Zhu and Jianzhai Wu
Land 2025, 14(8), 1592; https://doi.org/10.3390/land14081592 - 4 Aug 2025
Abstract
As an important ecological barrier and animal husbandry resource base in arid and semi-arid areas, grassland degradation directly affects regional ecological security and sustainable development. Ili Prefecture is located in the western part of Xinjiang, China, and is a typical grassland resource-rich area. [...] Read more.
As an important ecological barrier and animal husbandry resource base in arid and semi-arid areas, grassland degradation directly affects regional ecological security and sustainable development. Ili Prefecture is located in the western part of Xinjiang, China, and is a typical grassland resource-rich area. However, in recent years, driven by climate change and human activities, grassland degradation has become increasingly serious. In view of the lack of comprehensive evaluation indicators and the inconsistency of grassland evaluation grade standards in remote sensing monitoring of grassland resource degradation, this study takes the current situation of grassland degradation in Ili Prefecture in the past 20 years as the research object and constructs a comprehensive evaluation index system covering three criteria layers of vegetation characteristics, environmental characteristics, and utilization characteristics. Net primary productivity (NPP), vegetation coverage, temperature, precipitation, soil erosion modulus, and grazing intensity were selected as multi-source indicators. Combined with data sources such as remote sensing inversion, sample survey, meteorological data, and farmer survey, the factor weight coefficient was determined by analytic hierarchy process. The Grassland Degeneration Comprehensive Index (GDCI) model was constructed to carry out remote sensing monitoring and evaluation of grassland degradation in Yili Prefecture. With reference to the classification threshold of the national standard for grassland degradation, the GDCI grassland degradation evaluation grade threshold (GDCI reduction rate) was determined by the method of weighted average of coefficients: non-degradation (0–10%), mild degradation (10–20%), moderate degradation (20–37.66%) and severe degradation (more than 37.66%). According to the results, between 2000 and 2022, non-degraded grasslands in Ili Prefecture covered an area of 27,200 km2, representing 90.19% of the total grassland area. Slight, moderate, and severe degradation accounted for 4.34%, 3.33%, and 2.15%, respectively. Moderately and severely degraded areas are primarily distributed in agro-pastoral transition zones and economically developed urban regions, respectively. The results revealed the spatial and temporal distribution characteristics of grassland degradation in Yili Prefecture and provided data basis and technical support for regional grassland resource management, degradation prevention and control and ecological restoration. Full article
Show Figures

Figure 1

25 pages, 2418 KiB  
Review
Contactless Vital Sign Monitoring: A Review Towards Multi-Modal Multi-Task Approaches
by Ahmad Hassanpour and Bian Yang
Sensors 2025, 25(15), 4792; https://doi.org/10.3390/s25154792 - 4 Aug 2025
Abstract
Contactless vital sign monitoring has emerged as a transformative healthcare technology, enabling the assessment of vital signs without physical contact with the human body. This review comprehensively reviews the rapidly evolving landscape of this field, with particular emphasis on multi-modal sensing approaches and [...] Read more.
Contactless vital sign monitoring has emerged as a transformative healthcare technology, enabling the assessment of vital signs without physical contact with the human body. This review comprehensively reviews the rapidly evolving landscape of this field, with particular emphasis on multi-modal sensing approaches and multi-task learning paradigms. We systematically categorize and analyze existing technologies based on sensing modalities (vision-based, radar-based, thermal imaging, and ambient sensing), integration strategies, and application domains. The paper examines how artificial intelligence has revolutionized this domain, transitioning from early single-modality, single-parameter approaches to sophisticated systems that combine complementary sensing technologies and simultaneously extract multiple vital sign parameters. We discuss the theoretical foundations and practical implementations of multi-modal fusion, analyzing signal-level, feature-level, decision-level, and deep learning approaches to sensor integration. Similarly, we explore multi-task learning frameworks that leverage the inherent relationships between vital sign parameters to enhance measurement accuracy and efficiency. The review also critically addresses persisting technical challenges, clinical limitations, and ethical considerations, including environmental robustness, cross-subject variability, sensor fusion complexities, and privacy concerns. Finally, we outline promising future directions, from emerging sensing technologies and advanced fusion architectures to novel application domains and privacy-preserving methodologies. This review provides a holistic perspective on contactless vital sign monitoring, serving as a reference for researchers and practitioners in this rapidly advancing field. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

17 pages, 3360 KiB  
Article
Efficient and Selective Multiple Ion Chemosensor by Novel Near-Infrared Sensitive Symmetrical Squaraine Dye Probe
by Sushma Thapa, Kshitij RB Singh and Shyam S. Pandey
Chemosensors 2025, 13(8), 288; https://doi.org/10.3390/chemosensors13080288 - 4 Aug 2025
Abstract
A novel near-infrared (NIR) squaraine-based chemosensor, SQ-68, has been designed and synthesized for the sensitive and selective detection of Cu2+ and Ag+ ions, offering a compact solution for multi-analyte sensing. SQ-68 demonstrates high selectivity, with its performance influenced by the [...] Read more.
A novel near-infrared (NIR) squaraine-based chemosensor, SQ-68, has been designed and synthesized for the sensitive and selective detection of Cu2+ and Ag+ ions, offering a compact solution for multi-analyte sensing. SQ-68 demonstrates high selectivity, with its performance influenced by the solvent environment: It selectively detects Cu2+ in acetonitrile and Ag+ in an ethanol–water mixture. Upon binding with either ion, SQ-68 undergoes significant absorption changes in the NIR region, accompanied by visible color changes, enabling naked-eye detection. Spectroscopic studies confirm a 1:1 binding stoichiometry with both Cu2+ and Ag+, accompanied by hypochromism. The detection limits are 0.09 μM for Cu2+ and 0.38 μM for Ag+, supporting highly sensitive quantification. The sensor’s practical applicability was validated in real water samples (sea, lake, and tap water), with recovery rates ranging from 73–95% for Cu2+ to 59–99% for Ag+. These results establish SQ-68 as a reliable and efficient chemosensor for environmental monitoring and water quality assessment. Its dual-analyte capability, solvent-tunable selectivity, and visual detection features make it a promising tool for rapid and accurate detection of heavy metal ions in diverse aqueous environments. Full article
Show Figures

Figure 1

23 pages, 1302 KiB  
Article
Deep Learning-Enhanced Ocean Acoustic Tomography: A Latent Feature Fusion Framework for Hydrographic Inversion with Source Characteristic Embedding
by Jiawen Zhou, Zikang Chen, Yongxin Zhu and Xiaoying Zheng
Information 2025, 16(8), 665; https://doi.org/10.3390/info16080665 - 4 Aug 2025
Abstract
Ocean Acoustic Tomography (OAT) is an important marine remote sensing technique used for inverting large-scale ocean environmental parameters, but traditional methods face challenges in computational complexity and environmental interference. This paper proposes a causal analysis-driven AI FOR SCIENCE method for high-precision and rapid [...] Read more.
Ocean Acoustic Tomography (OAT) is an important marine remote sensing technique used for inverting large-scale ocean environmental parameters, but traditional methods face challenges in computational complexity and environmental interference. This paper proposes a causal analysis-driven AI FOR SCIENCE method for high-precision and rapid inversion of oceanic hydrological parameters in complex underwater environments. Based on the open-source VTUAD (Vessel Type Underwater Acoustic Data) dataset, the method first utilizes a fine-tuned Paraformer (a fast and accurate parallel transformer) model for precise classification of sound source targets. Then, using structural causal models (SCM) and potential outcome frameworks, causal embedding vectors with physical significance are constructed. Finally, a cross-modal Transformer network is employed to fuse acoustic features, sound source priors, and environmental variables, enabling inversion of temperature and salinity in the Georgia Strait of Canada. Experimental results show that the method achieves accuracies of 97.77% and 95.52% for temperature and salinity inversion tasks, respectively, significantly outperforming traditional methods. Additionally, with GPU acceleration, the inference speed is improved by over sixfold, aimed at enabling real-time Ocean Acoustic Tomography (OAT) on edge computing platforms as smart hardware, thereby validating the method’s practicality. By incorporating causal inference and cross-modal data fusion, this study not only enhances inversion accuracy and model interpretability but also provides new insights for real-time applications of OAT. Full article
(This article belongs to the Special Issue Advances in Intelligent Hardware, Systems and Applications)
Show Figures

Figure 1

12 pages, 3181 KiB  
Article
Development of a Three-Dimensional Nanostructure SnO2-Based Gas Sensor for Room-Temperature Hydrogen Detection
by Zhilong Song, Yi Tian, Yue Kang and Jia Yan
Sensors 2025, 25(15), 4784; https://doi.org/10.3390/s25154784 - 3 Aug 2025
Viewed by 68
Abstract
The development of gas sensors with high sensitivity and low operating temperatures is essential for practical applications in environmental monitoring and industrial safety. SnO2-based gas sensors, despite their widespread use, often suffer from high working temperatures and limited sensitivity to H [...] Read more.
The development of gas sensors with high sensitivity and low operating temperatures is essential for practical applications in environmental monitoring and industrial safety. SnO2-based gas sensors, despite their widespread use, often suffer from high working temperatures and limited sensitivity to H2 gas, which presents significant challenges for their performance and application. This study addresses these issues by introducing a novel SnO2-based sensor featuring a three-dimensional (3D) nanostructure, designed to enhance sensitivity and allow for room-temperature operation. This work lies in the use of a 3D anodic aluminum oxide (AAO) template to deposit SnO2 nanoparticles through ultrasonic spray pyrolysis, followed by modification with platinum (Pt) nanoparticles to further enhance the sensor’s response. The as-prepared sensors were extensively characterized, and their H2 sensing performance was evaluated. The results show that the 3D nanostructure provides a uniform and dense distribution of SnO2 nanoparticles, which significantly improves the sensor’s sensitivity and repeatability, especially in H2 detection at room temperature. This work demonstrates the potential of utilizing 3D nanostructures to overcome the traditional limitations of SnO2-based sensors. Full article
Show Figures

Figure 1

20 pages, 6543 KiB  
Article
Study of Antarctic Sea Ice Based on Shipborne Camera Images and Deep Learning Method
by Xiaodong Chen, Shaoping Guo, Qiguang Chen, Xiaodong Chen and Shunying Ji
Remote Sens. 2025, 17(15), 2685; https://doi.org/10.3390/rs17152685 - 3 Aug 2025
Viewed by 64
Abstract
Sea ice parameters are crucial for polar ship design. During China’s 39th Antarctic Scientific Expedition, ice condition from the entire navigation process of the research vessel Xuelong 2 was recorded using shipborne cameras. To obtain sea ice parameters, two deep learning models, Ice-Deeplab [...] Read more.
Sea ice parameters are crucial for polar ship design. During China’s 39th Antarctic Scientific Expedition, ice condition from the entire navigation process of the research vessel Xuelong 2 was recorded using shipborne cameras. To obtain sea ice parameters, two deep learning models, Ice-Deeplab and U-Net, were employed to automatically obtain sea ice concentration (SIC) and sea ice thickness (SIT), providing high-frequency data at 5-min intervals. During the observation period, ice navigation accounted for 32 days, constituting less than 20% of the total 163 voyage days. Notably, 63% of the navigation was in ice fields with less than 10% concentration, while only 18.9% occurred in packed ice (concentration > 90%) or level ice regions. SIT ranges from 100 cm to 234 cm and follows a normal distribution. The results demonstrate that, to achieve enhanced navigation efficiency and fulfill expedition objectives, the research vessel substantially reduced duration in high-concentration ice areas. Additionally, the results of SIC extracted from shipborne camera images were compared with the data from the Copernicus Marine Environment Monitoring Service (CMEMS) satellite remote sensing. In summary, the sea ice parameter data obtained from shipborne camera images offer high spatial and temporal resolution, making them more suitable for engineering applications in establishing sea ice environmental parameters. Full article
Show Figures

Figure 1

25 pages, 6934 KiB  
Article
Feature Constraints Map Generation Models Integrating Generative Adversarial and Diffusion Denoising
by Chenxing Sun, Xixi Fan, Xiechun Lu, Laner Zhou, Junli Zhao, Yuxuan Dong and Zhanlong Chen
Remote Sens. 2025, 17(15), 2683; https://doi.org/10.3390/rs17152683 - 3 Aug 2025
Viewed by 67
Abstract
The accelerated evolution of remote sensing technology has intensified the demand for real-time tile map generation, highlighting the limitations of conventional mapping approaches that rely on manual cartography and field surveys. To address the critical need for rapid cartographic updates, this study presents [...] Read more.
The accelerated evolution of remote sensing technology has intensified the demand for real-time tile map generation, highlighting the limitations of conventional mapping approaches that rely on manual cartography and field surveys. To address the critical need for rapid cartographic updates, this study presents a novel multi-stage generative framework that synergistically integrates Generative Adversarial Networks (GANs) with Diffusion Denoising Models (DMs) for high-fidelity map generation from remote sensing imagery. Specifically, our proposed architecture first employs GANs for rapid preliminary map generation, followed by a cascaded diffusion process that progressively refines topological details and spatial accuracy through iterative denoising. Furthermore, we propose a hybrid attention mechanism that strategically combines channel-wise feature recalibration with coordinate-aware spatial modulation, enabling the enhanced discrimination of geographic features under challenging conditions involving edge ambiguity and environmental noise. Quantitative evaluations demonstrate that our method significantly surpasses established baselines in both structural consistency and geometric fidelity. This framework establishes an operational paradigm for automated, rapid-response cartography, demonstrating a particular utility in time-sensitive applications including disaster impact assessment, unmapped terrain documentation, and dynamic environmental surveillance. Full article
Show Figures

Figure 1

21 pages, 1147 KiB  
Review
Recent Advances in Developing Cell-Free Protein Synthesis Biosensors for Medical Diagnostics and Environmental Monitoring
by Tyler P. Green, Joseph P. Talley and Bradley C. Bundy
Biosensors 2025, 15(8), 499; https://doi.org/10.3390/bios15080499 - 3 Aug 2025
Viewed by 64
Abstract
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, [...] Read more.
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, pathogens, and clinical biomarkers with high sensitivity and specificity. We analyze technological innovations in cell-free protein synthesis optimization, preservation strategies, and field deployment methods that have enhanced sensitivity, and practical applicability. The integration of synthetic biology approaches has enabled complex signal processing, multiplexed detection, and novel sensor designs including riboswitches, split reporter systems, and metabolic sensing modules. Emerging materials such as supported lipid bilayers, hydrogels, and artificial cells are expanding biosensor capabilities through microcompartmentalization and electronic integration. Despite significant progress, challenges remain in standardization, sample interference mitigation, and cost reduction. Future opportunities include smartphone integration, enhanced preservation methods, and hybrid sensing platforms. Cell-free biosensors hold particular promise for point-of-care diagnostics in resource-limited settings, environmental monitoring applications, and food safety testing, representing essential tools for addressing global challenges in healthcare, environmental protection, and biosecurity. Full article
Show Figures

Figure 1

Back to TopTop