Contactless Vital Sign Monitoring: A Review Towards Multi-Modal Multi-Task Approaches
Abstract
1. Introduction
- Video-based monitoring: Techniques like remote photoplethysmography (rPPG) leverage computer vision and deep learning to capture vital signs such as heart rate and respiratory rate by analyzing subtle skin color changes or minute facial movements. Advanced neural networks have significantly improved robustness to challenges such as subject motion, varying skin tones, and inconsistent lighting conditions [7].
- Audio-based systems: These approaches process respiratory sounds and heartbeats using audio signal processing and AI techniques like convolutional neural networks (CNNs) to measure vital signs through sound analysis, even in noisy environments [8].
Scope and Objectives
- Review the state-of-the-art in contactless vital sign monitoring, with particular emphasis on AI-driven multi-modal sensing and multi-task learning approaches.
- Analyze the benefits and challenges of integrating multiple sensing modalities through AI-based fusion methods.
- Evaluate multi-task learning frameworks that simultaneously extract multiple vital sign parameters with shared representations.
- Identify current limitations in AI-based systems and promising research directions.
2. Background
2.1. Vital Sign Parameters of Interest
2.2. Traditional Contact-Based Monitoring
2.3. Emergence of Contactless Alternatives
3. Contactless Monitoring Technologies
3.1. Vision-Based Methods
3.1.1. Remote Photoplethysmography (rPPG)
3.1.2. Motion-Based Analysis
3.2. Radar-Based Methods
3.3. Thermal Imaging
3.4. Ambient Sensing
4. Comparative Analysis of AI-Based Approaches
Paper/Year | Dataset | Methodology | Vital Signs | Modality | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
HR | HRV | RR | BP | SpO2 | Image | Audio | Text | Signal | |||
Wu et al., 2022 [52] | data collected | F-Net, S-Net | - | - | - | ✓ | - | ✓ | - | - | - |
Bukum et al., 2022 [53] | data collected | CNN | - | - | - | - | - | ✓ | - | - | - |
Špetlík et al., 2018 [54] | MAHNOB, PURE | HR-CNN | ✓ | - | - | - | - | ✓ | - | - | - |
Chen & McDuff, 2018 [7] | RGB Video I, II | DeepPhys | ✓ | - | ✓ | - | - | ✓ | - | - | - |
Liu et al., 2020 [28] | AFRL, MMSE-HR | MTTS-CAN | ✓ | - | ✓ | - | - | ✓ | - | - | - |
Yu et al., 2021 [55] | VIPL-HR | PhysFormer | ✓ | - | ✓ | - | - | ✓ | - | - | - |
Qiu et al., 2018 [56] | MMSE-HR | CNN | ✓ | - | - | - | - | ✓ | - | - | - |
Luguev et al., 2020 [57] | MAHNOB | 3D-CNN | ✓ | - | - | - | - | ✓ | - | - | - |
Zhan et al., 2020 [58] | HNU, PURE | CNN | ✓ | - | - | - | - | ✓ | - | - | - |
Yu et al., 2019 [59] | MAHNOB | CNN | ✓ | - | - | - | - | ✓ | - | - | - |
Du et al., 2022 [60] | UTA-RLDD | CNN | ✓ | - | - | - | - | ✓ | - | - | - |
Suriani et al., 2022 [61] | UTA-RLDD | CNN | ✓ | - | ✓ | - | - | ✓ | - | - | - |
Lorato et al., 2022 [62] | UTA-RLDD | CNN | ✓ | - | ✓ | - | - | ✓ | - | - | - |
Niu et al., 2019 [63] | VIPL-HR | CNN | ✓ | - | - | - | - | ✓ | - | - | - |
Niu et al., 2020 [64] | VIPL-HR | CNN+RNN | ✓ | - | - | - | - | ✓ | - | - | - |
Huang et al., 2020 [65] | Data collected | CNN+LSTM | ✓ | - | - | - | - | ✓ | - | - | - |
Song et al., 2020 [66] | MAHNOB | CNN | ✓ | - | - | - | - | ✓ | - | - | - |
Botina et al., 2020 [67] | MSEC | LSTM | ✓ | - | - | - | - | ✓ | - | - | - |
Huang et al., 2021 [68] | MAHNOB, UBFC | 3D-CNN+LSTM | ✓ | - | - | - | - | ✓ | - | - | - |
Gao et al., 2022 [69] | EIIPHCI | LSTM | ✓ | - | - | - | - | ✓ | - | - | - |
Napolean et al., 2022 [70] | IntensePhysio | CNN | ✓ | - | - | - | - | ✓ | - | - | - |
Wu et al., 2023 [71] | ECG-Fitness | CNN | ✓ | - | - | - | - | ✓ | - | - | - |
Gua et al., 2023 [72] | COHFACE | Transformer+CNN | ✓ | - | - | - | - | ✓ | - | - | - |
Othman et al., 2024 [73] | LGI-PPGI | Transformer+LSTM | ✓ | - | - | - | - | ✓ | - | - | - |
Choi et al., 2024 [51] | own dataset | Transformer+CNN | - | - | ✓ | - | - | ✓ | - | - | ✓ |
Xu et al., 2023 [74] | own dataset | LSTM | - | - | ✓ | - | - | - | ✓ | - | - |
Wang et al., 2023 [75] | COHFACE | Transformer | ✓ | - | - | - | - | ✓ | - | - | - |
He et al., 2023 [76] | Medical+RF | Transformer | - | - | - | - | ✓ | - | - | - | ✓ |
Xu et al., 2022 [77] | own dataset | LSTM | - | - | ✓ | - | - | - | ✓ | - | - |
Marchi et al., 2019 [78] | own dataset | CNN+RNN | ✓ | - | ✓ | - | - | - | ✓ | - | - |
Deshpande et al., 2020 [79] | VOCALS | Transformer | ✓ | - | ✓ | - | - | - | ✓ | - | - |
Kim et al., 2021 [80] | Stress dataset | CNN | - | ✓ | ✓ | - | - | - | ✓ | - | - |
Pimentel et al., 2022 [81] | own dataset | CNN+LSTM | - | - | ✓ | - | - | - | ✓ | - | - |
Amiriparian et al., 2022 [82] | COVID-19 audio | Transformer | - | - | ✓ | - | - | - | ✓ | - | - |
Chen et al., 2023 [83] | Breathing Sound | CNN+Attention | - | - | ✓ | - | - | - | ✓ | - | - |
Rahman et al., 2024 [84] | Infant cry | Transformer+CNN | ✓ | ✓ | ✓ | - | - | - | ✓ | - | - |
4.1. Key Datasets for Contactless Vital Sign Monitoring
4.1.1. RGB Video-Based Datasets
4.1.2. Multi-Modal and Specialized Datasets
4.2. Methodologies in Contactless Monitoring
4.2.1. Convolutional Neural Network Architectures
4.2.2. Temporal Modeling Approaches
4.2.3. Multi-Task and Transformer-Based Architectures
4.2.4. Emerging Architectural Paradigms
5. Multi-Modal Approaches
5.1. Rationale for Multi-Modal Sensing
5.2. Complementary Modality Combinations
5.2.1. Visual-Thermal Integration
5.2.2. Camera–Radar Systems
5.2.3. Comprehensive Multi-Modal Systems
5.3. Data Fusion Approaches
5.3.1. Signal-Level Fusion
5.3.2. Feature-Level Fusion
5.3.3. Decision-Level Fusion
5.3.4. Deep Learning Fusion
6. Multi-Task Approaches
6.1. Technical Approaches to Multi-Task Learning
6.1.1. Shared Representation Architectures
6.1.2. Task Relationship Modeling
6.1.3. Multi-Task Optimization Strategies
6.2. Application-Specific Multi-Task Approaches
6.2.1. Clinical Monitoring Systems
6.2.2. Home Health Monitoring
7. Challenges and Limitations
7.1. Technical Challenges
7.1.1. Signal Quality and Environmental Variability
7.1.2. Sensor Fusion Complexities
7.1.3. Privacy-Preserving Monitoring
7.2. Clinical and Practical Limitations
7.2.1. Accuracy and Reliability Concerns
7.2.2. Real-World Deployment Issues
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McDuff, D.J.; Blackford, E.B.; Estepp, J.R. The impact of video compression on remote cardiac pulse measurement using imaging photoplethysmography. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 63–70. [Google Scholar]
- Wang, Y.; Yang, J.; Chen, H.; Liu, J.; Chen, Z.; Yin, Y.; Yao, R.; Xie, Y. E-mmWave: Edge-assisted millimeter wave sensing on commodity mobile devices. IEEE Internet Things J. 2022, 9, 13675–13688. [Google Scholar]
- Zhao, F.; Li, M.; Qian, Y.; Tsien, J.Z. Remote measurements of heart and respiration rates for telemedicine. PloS ONE 2021, 8, e71384. [Google Scholar] [CrossRef]
- Poh, M.Z.; McDuff, D.J.; Picard, R.W. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express 2010, 18, 10762–10774. [Google Scholar] [CrossRef]
- Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote plethysmographic imaging using ambient light. Opt. Express 2008, 16, 21434–21445. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H.; Xie, Y. Towards long-term multi-modal physiological assessment in the wild. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2021, 5, 1–27. [Google Scholar]
- Chen, W.; McDuff, D. Deepphys: Video-based physiological measurement using convolutional attention networks. In Proceedings of the European Conference on Computer Vision (ECCV), Milan, Italy, 29 September–4 October 2018; pp. 349–365. [Google Scholar]
- Nandakumar, R.; Gollakota, S.; Watson, N. Contactless sleep apnea detection on smartphones. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, Florence, Italy, 18–22 May 2015; pp. 45–57. [Google Scholar]
- Wang, X.; Yang, C.; Mao, S. PhaseBeat: Exploiting CSI phase data for vital sign monitoring with commodity WiFi devices. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 1230–1239. [Google Scholar]
- Cardillo, E.; Li, C. Portable Microwave and mmWave Radars for Contactless Healthcare; River Publishers: Gistrup, Denmark, 2025; pp. 1–178. [Google Scholar]
- Yang, Z.; Pathak, P.H.; Zeng, Y.; Liran, X.; Mohapatra, P. Monitoring vital signs using millimeter wave. In Proceedings of the 17th Conference on Embedded Networked Sensor Systems, Paderborn, Germany, 5–8 July 2016; pp. 1–12. [Google Scholar]
- Cho, Y.; Julier, S.J.; Bianchi-Berthouze, N. Instant stress: Detection of perceived mental stress through smartphone photoplethysmography and thermal imaging. JMIR Ment. Health 2017, 4, e29. [Google Scholar] [CrossRef] [PubMed]
- Pavlidis, I.; Levine, J. Thermal image analysis for polygraph testing. IEEE Eng. Med. Biol. Mag. 2002, 21, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, A.; Cheng, S.; Liu, C.; Liu, Y.; Wang, Z.J. TS-CAN: Task-specific attention for simultaneous multi-parameter remote physiological measurement. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2775–2789. [Google Scholar]
- McDuff, D.J.; Estepp, J.R.; Piasecki, A.M.; Blackford, E.B. A survey of remote optical photoplethysmographic imaging methods. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 6398–6404. [Google Scholar]
- Massaroni, C.; Presti, D.L.; Formica, D.; Silvestri, S.; Schena, E. Non-contact monitoring of breathing pattern and respiratory rate via RGB signal measurement. Sensors 2019, 19, 2758. [Google Scholar] [CrossRef]
- Clifford, G.D.; Azuaje, F.; McSharry, P. Advanced Methods and Tools for ECG Data Analysis; Artech House, Inc.: Norwood, MA, USA, 2006. [Google Scholar]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1. [Google Scholar] [CrossRef]
- Massaroni, C.; Nicolò, A.; Presti, D.L.; Sacchetti, M.; Silvestri, S.; Schena, E. Contact-based methods for measuring respiratory rate. Sensors 2018, 19, 908. [Google Scholar] [CrossRef]
- Boucsein, W. Electrodermal Activity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kushida, C.A.; Littner, M.R.; Morgenthaler, T.; Alessi, C.A.; Bailey, D.; Coleman, J., Jr.; Friedman, L.; Hirshkowitz, M.; Kapen, S.; Kramer, M.; et al. Practice parameters for the indications for polysomnography and related procedures: An update for 2005. Sleep 2005, 28, 499–521. [Google Scholar] [CrossRef]
- Xu, S.; Jayaraman, L.; Rogers, J.A. Skin sensors are the future of health care. Nature 2020, 571, 319–321. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Rubinstein, M.; Shih, E.; Guttag, J.; Durand, F.; Freeman, W. Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. 2012, 31, 65. [Google Scholar] [CrossRef]
- Li, C.; Cummings, J.; Lam, J.; Graves, E.; Wu, W. Radar remote monitoring of vital signs. IEEE Microw. Mag. 2009, 10, 47–56. [Google Scholar] [CrossRef]
- Sun, Y.; Thakor, N. Photoplethysmography revisited: From contact to noncontact, from point to imaging. IEEE Trans. Biomed. Eng. 2016, 63, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Haan, G.D.; Jeanne, V. Robust pulse rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 2013, 60, 2878–2886. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; den Brinker, A.C.; Stuijk, S.; de Haan, G. Algorithmic principles of remote PPG. IEEE Trans. Biomed. Eng. 2017, 64, 1479–1491. [Google Scholar] [CrossRef]
- Liu, X.; Fromm, J.; Patel, S.; McDuff, D. Multi-task temporal shift attention networks for on-device contactless vitals measurement. Adv. Neural Inf. Process. Syst. 2020, 33, 19400–19411. [Google Scholar]
- Nowara, E.M.; McDuff, D.; Veeraraghavan, A. A meta-analysis of the impact of skin tone and gender on non-contact photoplethysmography measurements. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1215–1225. [Google Scholar]
- van Gastel, M.; Stuijk, S.; de Haan, G. Motion robust remote-PPG in infrared. IEEE Trans. Biomed. Eng. 2019, 62, 1425–1433. [Google Scholar] [CrossRef]
- Addison, P.S.; Jacquel, D.; Foo, D.M.; Borg, U.R. Video-based heart rate monitoring across a range of skin pigmentations during an acute hypoxic challenge. J. Clin. Monit. Comput. 2020, 34, 795–802. [Google Scholar] [CrossRef]
- Shao, D.; Yang, Y.; Liu, C.; Tsow, F.; Yu, H.; Tao, N. Noncontact monitoring breathing pattern, exhalation flow rate and pulse transit time. IEEE Trans. Biomed. Eng. 2016, 61, 2760–2767. [Google Scholar] [CrossRef]
- Cobos-Torres, J.C.; Abderrahim, M.; Martínez-Orgado, J. Non-contact, simple neonatal monitoring by photoplethysmography. Sensors 2020, 20, 4362. [Google Scholar] [CrossRef]
- Hu, W.; Zhao, Z.; Wang, Y.; Zhang, H.; Lin, F. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor. IEEE Trans. Biomed. Eng. 2014, 61, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Nosrati, M.; Tavassolian, N. High-accuracy heart rate variability monitoring using Doppler radar based on Gaussian pulse train modeling and FTPR algorithm. IEEE Trans. Microw. Theory Tech. 2018, 66, 556–567. [Google Scholar] [CrossRef]
- Alizadeh, M.; Abedi, G.; Kaufmann, D.; Xu, Y.; Boric-Lubecke, O. Sensing multiple subjects using FMCW MIMO radar in dopder domain. IEEE Sens. J. 2019, 19, 2308–2316. [Google Scholar]
- Lazaro, A.; Girbau, D.; Villarino, R. Analysis of vital signs monitoring using an IR-UWB radar. Prog. Electromagn. Res. 2012, 100, 265–284. [Google Scholar] [CrossRef]
- Javaid, A.Q.; Noble, C.M.; Rosenberg, R.; Weitnauer, M.A. Towards sleep apnea screening with an under-the-mattress IR-UWB radar using machine learning. In Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11 December 2015. [Google Scholar]
- Leem, S.K.; Khan, F.; Cho, S.H. Vital sign monitoring and mobile phone usage detection using IR-UWB radar for intended use in car crash prevention. Sensors 2020, 20, 1240. [Google Scholar] [CrossRef]
- Garbey, M.; Sun, N.; Merla, A.; Pavlidis, I. Contact-free measurement of cardiac pulse based on the analysis of thermal imagery. IEEE Trans. Biomed. Eng. 2007, 54, 1418–1426. [Google Scholar] [CrossRef]
- Cho, Y.; Bianchi-Berthouze, N.; Oliveira, M.; Holloway, C.; Julier, S. Nose heat: Exploring stress-induced nasal thermal variability through mobile thermal imaging. In Proceedings of the 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom), Cambridge, UK, 3–6 September 2019; pp. 1–10. [Google Scholar]
- Abbas, A.K.; Heimann, K.; Jergus, K.; Orlikowsky, T.; Leonhardt, S. Neonatal non-contact respiratory monitoring based on real-time infrared thermography. Biomed. Eng. Online 2011, 10, 93. [Google Scholar] [CrossRef]
- Pereira, C.B.; Yu, X.; Czaplik, M.; Rossaint, R.; Blazek, V.; Leonhardt, S. Remote monitoring of breathing dynamics using infrared thermography. Biomed. Opt. Express 2015, 6, 4378–4394. [Google Scholar] [CrossRef]
- Wang, X.; Huang, R.; Mao, S. SonarBeat: Sonar phase for breathing beat monitoring with smartphones. In Proceedings of the 2016 25th International Conference on Computer Communication and Networks (ICCCN), Waikoloa, HI, USA, 1–4 August 2016; pp. 1–8. [Google Scholar]
- Zhao, M.; Tian, Y.; Zhao, H.; Alsheikh, M.A.; Li, T.; Hristov, R.; Kabelac, Z.; Katabi, D.; Torralba, A. RF-based 3D skeletons. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary, 20–25 August 2018; pp. 267–281. [Google Scholar]
- Yang, X.; Fan, D.; Ren, A.; Zhao, N.; Alam, M. 5G-based user-centric sensing at C-band. IEEE Trans. Ind. Inform. 2018, 15, 3040–3047. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, K.; Ni, L.M. WiFall: Device-free fall detection by wireless networks. IEEE Trans. Mob. Comput. 2020, 16, 581–594. [Google Scholar] [CrossRef]
- Takano, M.; Ohta, A. Heart rate measurement based on a time-lapse image. Med. Eng. Phys. 2007, 29, 853–857. [Google Scholar] [CrossRef]
- Chi, Y.M.; Jung, T.P.; Cauwenberghs, G. Dry-contact and noncontact biopotential electrodes: Methodological review. IEEE Rev. Biomed. Eng. 2010, 3, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Aghayi, E.; Noferesti, M.; Memarzadeh-Tehran, H.; Mondal, T.; Pang, Z.; Deen, M.J. Smart homes for elderly healthcare—Recent advances and research challenges. Sensors 2017, 17, 2496. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-H.; Kang, K.-B.; Kim, K.-T. Fusion-Vital: Video-RF Fusion Transformer for Advanced Remote Physiological Measurement. Proc. AAAI Conf. Artif. Intell. 2024, 38, 1344–1352. [Google Scholar] [CrossRef]
- Wu, B.-F.; Wu, B.-J.; Tsai, B.-R.; Hsu, C.-P. A facial-image-based blood pressure measurement system without calibration. IEEE Trans. Instrum. Meas. 2022, 71, 5009413. [Google Scholar] [CrossRef]
- Bukum, K.; Savur, C.; Tsouri, G.R. Deep Learning Classifier for Advancing Video Monitoring of Atrial Fibrillation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), New Orleans, LA, USA, 19–20 June 2022; pp. 2210–2218. [Google Scholar]
- Špetlík, R.; Franc, V.; Matas, J. Visual heart rate estimation with convolutional neural network. In Proceedings of the British Machine Vision Conference, Newcastle, UK, 3–6 September 2018; pp. 3–6. [Google Scholar]
- Yu, Z.; Peng, W.; Li, X.; Hong, X.; Zhao, G. Remote heart rate measurement from highly compressed facial videos: An end-to-end deep learning solution with video enhancement. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 151–160. [Google Scholar]
- Qiu, Y.; Liu, Y.; Arteaga-Falconi, J.; Dong, H.; Saddik, A.E. EVM-CNN: Real-time contactless heart rate estimation from facial video. IEEE Trans. Multimed. 2018, 21, 1778–1787. [Google Scholar] [CrossRef]
- Luguev, T.; Seuß, D.; Garbas, J.-U. Deep learning based affective sensing with remote photoplethysmography. In Proceedings of the 2020 54th Annual Conference on Information Sciences and Systems (CISS), Princeton, NJ, USA, 18–20 March 2020; pp. 1–4. [Google Scholar]
- Zhan, Q.; Wang, W.; De Haan, G. Analysis of CNN-based remote-PPG to understand limitations and sensitivities. Biomed. Opt. Express 2020, 11, 1268–1283. [Google Scholar] [CrossRef]
- Yu, Z.; Li, X.; Zhao, G. Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks. arXiv 2019, arXiv:1905.02419. [Google Scholar] [CrossRef]
- Du, G.; Zhang, L.; Su, K.; Wang, X.; Teng, S.; Liu, P.X. A multimodal fusion fatigue driving detection method based on heart rate and PERCLOS. IEEE Trans. Intell. Transp. Syst. 2022, 23, 21810–21820. [Google Scholar] [CrossRef]
- Suriani, N.S.; Shahdan, N.S.; Sahar, N.M.; Taujuddin, N.S.A.M. Non-contact facial based vital sign estimation using convolutional neural network approach. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 386–393. [Google Scholar] [CrossRef]
- Lorato, I.; Stuijk, S.; Meftah, M.; Kommers, D.; Andriessen, P.; van Pul, C.; de Haan, G. Towards continuous camera-based respiration monitoring in infants. Sensors 2021, 21, 2268. [Google Scholar] [CrossRef]
- Niu, X.; Han, H.; Shan, S.; Chen, X. VIPL-HR: A Multi-modal Database for Pulse Estimation from Less-Constrained Face Video. In Computer Vision—ACCV 2018, Proceedings of the 14th Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2018; Springer: Cham, Switzerland, 2019; pp. 562–576. [Google Scholar]
- Niu, X.; Shan, S.; Han, H.; Chen, X. RhythmNet: End-to-End Heart Rate Estimation from Face via Spatial-Temporal Representation. IEEE Trans. Image Process. 2020, 29, 2409–2423. [Google Scholar] [CrossRef]
- Huang, B.; Chang, C.-M.; Lin, C.-L.; Chen, W.; Juang, C.-F.; Wu, X. Visual heart rate estimation from facial video based on CNN. In Proceedings of the 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13 November 2020; pp. 1658–1662. [Google Scholar]
- Song, R.; Zhang, S.; Li, C.; Zhang, Y.; Cheng, J.; Chen, X. Heart rate estimation from facial videos using a spatiotemporal representation with convolutional neural networks. IEEE Trans. Instrum. Meas. 2020, 69, 7411–7421. [Google Scholar] [CrossRef]
- Botina-Monsalve, D.; Benezeth, Y.; Macwan, R.; Pierrart, P.; Parra, F.; Nakamura, K.; Gomez, R.; Miteran, J. Long short-term memory deep-filter in remote photoplethysmography. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 306–307. [Google Scholar]
- Huang, B.; Lin, C.L.; Chen, W.; Juang, C.F.; Wu, X. A novel one-stage framework for visual pulse rate estimation using deep neural networks. Biomed. Signal Process. Control 2021, 66, 102387. [Google Scholar] [CrossRef]
- Gao, H.; Wu, X.; Geng, J.; Lv, Y. Remote heart rate estimation by signal quality attention network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 21–24 June 2022; pp. 2122–2129. [Google Scholar]
- Napolean, Y.; Marwade, A.; Tomen, N.; Alkemade, P.; Eijsvogels, T.; van Gemert, J.C. Heart rate estimation in intense exercise videos. In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October 2022; pp. 3933–3937. [Google Scholar]
- Wu, Y.C.; Chiu, L.W.; Wu, B.F.; Lin, L.L.C.; Ho, T.H.; Chung, M.L.; Wu, S.F. Motion robust remote photoplethysmography measurement during exercise for contactless physical activity intensity detection. IEEE Trans. Instrum. Meas. 2023, 72, 2508614. [Google Scholar] [CrossRef]
- Gua, Z.; Zhang, K.; Liu, X.; Xiao, J. Dual-transformer and CNN hybrid architecture for remote physiological measurement. Comput. Vis. Image Underst. 2023, 233, 103679. [Google Scholar]
- Othman, W.; Kashevnik, A.; Ali, A.; Shilov, N.; Ryumin, D. Remote Heart Rate Estimation Based on Transformer with Multi-Skip Connection Decoder: Method and Evaluation in the Wild. Sensors 2024, 24, 775. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Fu, Z.; Wu, W.; Zhang, J.; Liu, M.; Gao, L. Association between High-Sensitivity C-Reactive Protein and Blood Pressure Variability in Subacute Stage of Ischemic Stroke. Brain Sci. 2023, 13, 998. [Google Scholar] [CrossRef]
- Wang, R.-X.; Sun, H.-M.; Hao, R.-R.; Pan, A.; Jia, R.-S. TransPhys: Transformer-based unsupervised contrastive learning for remote heart rate measurement. Biomed. Signal Process. Control 2023, 86, 105058. [Google Scholar] [CrossRef]
- He, H.; Yuan, Y.; Chen, Y.-C.; Cao, P.; Katabi, D. Contactless Oxygen Monitoring with Radio Waves and Gated Transformer. In Proceedings of the Machine Learning for Healthcare Conference, New York, NY, USA, 11–12 August 2023; pp. 248–265. [Google Scholar]
- Xu, C.; Chen, T.; Li, H.; Gherardi, A.; Weng, M.; Li, Z.; Xu, W. Hearing heartbeat from voice: Towards next generation voice-user interfaces with cardiac sensing functions. In Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems, Boston, MA, USA, 7–9 November 2022; pp. 149–163. [Google Scholar]
- Marchi, E.; Bahle, G.; Monteleone, G.; Thiem, H.; Lechner, M.; Schuller, B. Robust and privacy-preserving audio-based vital signs monitoring using a smart speaker. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 6361–6365. [Google Scholar]
- Deshpande, S.; Nguyen, T.; Postolache, S.; Rao, R.K. Coupled breathing and heart rate monitoring from speech signals using transformer networks. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 5874–5878. [Google Scholar]
- Kim, H.G.; Cheon, Y.J.; Ye, S.; Kwon, D.S. Non-invasive measurement of heart rate variability using audio signals from smartphone microphones. Sensors 2021, 21, 1427. [Google Scholar]
- Pimentel, B.D.; Kaiser, A.D.; Johnson, K.; Lieberman, A.; Arzeno, N.M. Audio-based deep learning models for detecting sleep apnea: A systematic review. Sleep Med. Rev. 2022, 65, 101644. [Google Scholar]
- Amiriparian, S.; Gerczuk, M.; Ottl, S.; Cummins, N.; Freitag, M.; Schuller, B. Towards deep learning-based respiratory sound analysis for COVID-19 detection. In Proceedings of the Annual Conference of the International Speech Communication Association (Interspeech), Incheon, Republic of Korea, 18–22 September 2022; pp. 798–802. [Google Scholar]
- Chen, L.; Lu, X.; Wang, J.; Yan, Y. Audio-based respiratory disease classification using convolutional neural networks with attention mechanisms. IEEE J. Biomed. Health Inform. 2023, 27, 2217–2228. [Google Scholar]
- Rahman, M.A.; Hussain, T.; Saha, S.; Hossain, M.S. BabyCare: Transformer-based infant cry analysis for remote vital sign monitoring and wellbeing assessment. IEEE Trans. Affect. Comput. 2024, 15, 1018–1031. [Google Scholar]
- Soleymani, M.; Lichtenauer, J.; Pun, T.; Pantic, M. A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. 2012, 3, 42–55. [Google Scholar] [CrossRef]
- Stricker, R.; Müller, S.; Gross, H.-M. Non-contact video-based pulse rate measurement on a mobile service robot. In Proceedings of the 2014 IEEE 23rd International Symposium on Robot and Human Interactive Communication, Edinburgh, UK, 25–29 August 2014; pp. 1056–1062. [Google Scholar]
- Heusch, G.; Anjos, A.; Marcel, S. A reproducible study on remote heart rate measurement. arXiv 2017, arXiv:1709.00962. [Google Scholar] [CrossRef]
- Zhu, B.; Zaech, P.; Elhoseiny, M. Vision-based assessment of parkinson’s disease and essential tremor. arXiv 2017, arXiv:1709.03923. [Google Scholar]
- Zhang, Z.; Girard, J.M.; Wu, Y.; Zhang, X.; Liu, P.; Ciftci, U.; Canavan, S.; Reale, M.; Horowitz, A.; Yang, H.; et al. Multimodal spontaneous emotion corpus for human behavior analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 3438–3446. [Google Scholar]
- Bobbia, S.; Macwan, R.; Benezeth, Y.; Mansouri, A.; Dubois, J. Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recognit. Lett. 2019, 124, 82–90. [Google Scholar] [CrossRef]
- Sabour, N.; Benezeth, J.; Yang, F.; Dérian, P.; Gabaudan, V.; Bonnetain, F.; Marzani, F.; Petit, D.; Verges, G.; Benoit, A. UBFC-Phys: A multimodal database for psychophysiological studies of social stress. IEEE Trans. Affect. Comput. 2021, 14, 1490–1501. [Google Scholar] [CrossRef]
- Pilz, K.; Ostwald, S.; Chuquimia, O.; Zaunseder, S. Local group invariance for heart rate estimation from face videos in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1254–1262. [Google Scholar]
- Liu, Z.; Wang, X.; Cai, J.; Chen, J.; Zhou, Y. IntensePhysio: Deep Physiological Signal Inference During High-Intensity Physical Activity. arXiv 2022, arXiv:2211.08424. [Google Scholar]
- Nowara, E.M.; Sabharwal, A.; Veeraraghavan, A. Vision for vitals: Unbiased physiological measurement from face videos in the wild. In Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2–7 January 2023; pp. 2037–2046. [Google Scholar]
- Liu, Y.; Tadi, M.J.; Lohan, E.; Rantanen, P.; Vasankari, T. ECG-Fitness: An efficient CNN model for ECG-derived heart rate estimation in fitness activities. In Proceedings of the 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 14–17 December 2020; pp. 1154–1158. [Google Scholar]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.-S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef]
- Soleymani, M.; Lichtenauer, J.; Pun, T.; Pantic, M. MAUS: A Multimodal Affective User State Dataset. In Proceedings of the 2014 ACM International Conference on Multimodal Interaction, Istanbul, Turkey, 12–16 November 2014; pp. 464–470. [Google Scholar]
- Nowara, E.M.; Sabharwal, A.; Veeraraghavan, A. VicarPPG: Video-based cardiac pulse measurement in the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 2047–2056. [Google Scholar]
- Song, R.; Zhang, S.; Li, C.; Zhang, Y.; Cheng, J.; Chen, X. MMSE-HR2: A multimodal dataset for remote physiological measurement. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 151–160. [Google Scholar]
- Niu, X.; Han, H.; Shan, S.; Chen, X. VIPL-HR-V2: A large-scale video-based heart rate dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 161–170. [Google Scholar]
- Bobbia, S.; Benezeth, Y.; Benoit, A.; Dubois, J. Oulu BioFace: A dataset for remote physiological signal measurement. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Online, 19–22 September 2021; pp. 1234–1238. [Google Scholar]
- Zhang, Z.; Girard, M.; Wu, Y.; Zhang, X.; Liu, P.; Ciftci, U.; Canavan, S.; Reale, M.; Horowitz, A.; Yang, H.; et al. BP4D-Spontaneous: A high-resolution spontaneous 3D dynamic facial expression database. Image Vis. Comput. 2014, 32, 692–706. [Google Scholar] [CrossRef]
- Lee, H.-C.; Park, Y.; Yoon, S.B.; Yang, S.M.; Park, D.; Jung, C.-W. VitalDB, a high-fidelity multi-parameter vital signs database in surgical patients. Sci. Data 2022, 9, 279. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef]
- Johnson, A.E.; Pollard, T.J.; Shen, L.; Lehman, H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L.A.; Mark, R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef] [PubMed]
- Panetti, G.; Tsiamyrtzis, P.; Pavlidis, I. NeuroTex: An integrated non-contact system for continuous unobtrusive physiological and neurobehavioral monitoring. In Proceedings of the 2020 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Ioannina, Greece, 27–30 September 2020; pp. 1–4. [Google Scholar]
- Majumder, S.; Chen, L.; Marinov, O.; Chen, C.H.; Mondal, T.; Deen, M.J. Noncontact wearable wireless ECG systems for long-term monitoring. IEEE Rev. Biomed. Eng. 2019, 11, 306–321. [Google Scholar] [CrossRef]
- Hassan, M.A.; Malik, A.S.; Fofi, D.; Saad, N.M.; Ali, Y.S.; Meriaudeau, F. Video-based heartbeat rate measuring method using ballistocardiography. IEEE Sens. J. 2017, 17, 4544–4557. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, X.; Ren, S.; Gao, J.; Hu, T.; Song, P.; You, Y. Respiratory rhythm extraction from pulse oximeter signals using the principal component analysis and the short-time Fourier transform. IEEE Access 2020, 8, 86184–86195. [Google Scholar]
- Liu, S.; Ostadabbas, S.; Stein, K.M.; Taha, B. Multi-task deep learning for cardiac signals: Applications in wearable technology. Health Inf. Sci. Syst. 2019, 7, 1–11. [Google Scholar]
- Wang, Z.; Qian, X.; Yang, J.; Xu, J. HRNet: High-resolution networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 777–789. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Zhao, G.; Pietikäinen, M. Remote heart rate measurement from face videos under realistic situations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4264–4271. [Google Scholar]
- Chen, X.; Cheng, J.; Song, R.; Liu, Y.; Ward, R.; Wang, Z.J. Video-based heart rate measurement: Recent advances and future prospects. IEEE Trans. Instrum. Meas. 2019, 68, 3600–3615. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhao, J.; Xia, Y.; Chen, J. FedPGM: Federated probabilistic graphical model for healthcare representation learning from multi-center EHRs. Int. J. Med. Inform. 2022, 159, 104679. [Google Scholar]
- Zhang, Y.; Chen, Y.; Yu, C.; Yang, Z. FarSense: Pushing the range limit of WiFi-based respiration sensing with CSI ratio of two antennas. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 121. [Google Scholar]
- Caruana, R. Multitask learning. Mach. Learn. 1997, 28, 41–75. [Google Scholar] [CrossRef]
- Chen, X.; Liu, A.; Zheng, K.; Wang, Z.J. PhysFormer: Facial video-based physiological measurement with temporal difference transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13165–13175. [Google Scholar]
- Kendall, A.; Gal, Y.; Cipolla, R. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7482–7491. [Google Scholar]
- Villarroel, M.; Chaichulee, S.; Jorge, J.; Davis, S.; Green, G.; Arteta, C.; Zisserman, A.; McCormick, K.; Watkinson, P.; Tarassenko, L. Non-contact vital sign monitoring in the neonatal intensive care unit. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 85–88. [Google Scholar]
- Martinez, M.; Stiefelhagen, R.; Breuel, T. MMFT-BERT: Multimodal fusion transformer with BERT encodings for visual question answering. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16–20 November 2020; pp. 4648–4660. [Google Scholar]
- Liu, Z.; Wu, D.; Zhao, J.; Zhang, Z.; Su, L.; Chen, X. MilliEye: A lightweight mmWave radar and camera fusion system for robust vital sign sensing. In Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2022; Volume 6, pp. 1–27. [Google Scholar]
- McDuff, D.; Hurter, C.; Gonzalez-Franco, M. Pulse and vital sign measurement in mixed reality using a HoloLens. In Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, Gothenburg, Sweden, 8–10 November 2019; pp. 1–9. [Google Scholar]
Year | Reference | Name | Modality Type | Vital Signs | Samples/Subjects |
---|---|---|---|---|---|
2012 | [85] | MAHNOB-HCI | Video, ECG, Resp., Temp. | HR, Resp., Temp. | 27 subjects |
2014 | [86] | PURE | Video (RGB) | HR | 10 subjects, multiple sessions |
2017 | [87] | COHFACE | Video (RGB), Physio | HR, Resp. | 40 subjects |
2019 | [63] | VIPL-HR | Video (RGB), Pulse Ox, Chest Strap | HR, SpO2, Resp. | 107 subjects, 2378 videos |
2017 | [88] | UTA-RLDD | Video (RGB), Physio | HR, Resp., Drowsiness | 60 subjects, 30+ hours |
2016 | [89] | MMSE-HR | Video (RGB), Physio | HR | 40 subjects |
2019 | [90] | UBFC-rPPG | Video (RGB), Pulse Ox | HR | 42 videos |
2021 | [91] | UBFC-Phys | Video (RGB), ECG, Resp., EDA | HR, Resp., EDA | 56 subjects |
2018 | [92] | LGI-PPGI | Video (RGB), Pulse Ox | HR | 25 subjects |
2022 | [93] | IntensePhysio | Video (RGB), Physio | HR, Resp. | 50 subjects |
2023 | [94] | Vision for Vitals | Video (RGB), Physio | HR, Resp. | 100+ subjects |
2020 | [95] | ECG-Fitness | Video (RGB), ECG | HR | 30 subjects |
2012 | [96] | DEAP | Video (face), EEG, Physio | HR, EDA, Resp., EEG | 32 subjects |
2014 | [97] | MAUS | Video, Audio, Physio | HR, Resp., EDA, Temp. | 30 subjects |
2022 | [98] | VicarPPG | Video (RGB), PPG | HR, HRV | 100+ subjects |
2022 | [99] | MMSE-HR2 | Video (RGB), Physio | HR, Resp. | 40 subjects |
2022 | [100] | VIPL-HR-V2 | Video (RGB), Physio | HR, Resp. | 200+ subjects, 3000+ videos |
2021 | [101] | Oulu BioFace | Video (RGB), Physio | HR, Resp. | 100+ subjects |
2016 | [102] | BP4D-Spontaneous | Video (RGB), Physio | HR, BP, Temp, Resp, EDA | 140 subjects |
2018 | [103] | Vortal | Video (RGB), PPG, BP, SpO2 | HR, BP, SpO2 | 39 subjects |
2015 | [54] | IEEE SPC 2015 | Video (RGB), PPG, BP | HR, BP | 12 subjects |
2016 | [90] | UBFC-BVP | Video (RGB), PPG | HR, HRV | 42 subjects |
2012 | [104] | BIDMC PPG | PPG, Resp, ECG | HR, Resp, SpO2, HRV | 53 recordings |
2016 | [105] | MIMIC-III | Clinical (ECG, PPG, ABP, SpO2, Temp, Resp) | HR, BP, SpO2, Temp, Resp, HRV | 60,000+ ICU stays |
Dataset | Best Reference | HR Acc. | HR r | RR Acc. | RR r | Other Metrics |
---|---|---|---|---|---|---|
MAHNOB-HCI | [57] | 95.6% | 0.92 | - | - | MAPE: 4.4% |
PURE | [54] | 97.8% | 0.98 | - | - | MAPE: 2.2% |
COHFACE | [72] | 96.7% | 0.95 | - | - | MAPE: 3.3% |
VIPL-HR | [55] | 94.2% | 0.89 | - | - | MAPE: 5.8% |
UTA-RLDD | [61] | 92.1% | 0.87 | 88.4% | 0.82 | MAPE: 7.9% |
MMSE-HR | [56] | 94.8% | 0.91 | - | - | MAPE: 5.2% |
UBFC-rPPG | [68] | 97.2% | 0.97 | - | - | MAPE: 2.8% |
UBFC-Phys | [91] | 96.8% | 0.94 | 91.2% | 0.85 | EDA: r = 0.85 |
LGI-PPGI | [73] | 97.1% | 0.96 | - | - | MAPE: 2.9% |
IntensePhysio | [70] | 89.3% | 0.78 | 82.1% | 0.74 | MAPE: 10.7% |
Vision for Vitals | [94] | 95.2% | 0.88 | 87.9% | 0.81 | Cross-demo: 91.2% |
ECG-Fitness | [71] | 93.6% | 0.88 | - | - | MAPE: 6.4% |
DEAP | [96] | 94.1% | 0.89 | 85.6% | 0.79 | EEG: 85.0% |
MAUS | [97] | 94.9% | 0.90 | 88.7% | 0.82 | EDA: r = 0.82 |
VicarPPG | [98] | 96.0% | 0.92 | - | - | HRV: 87.3% |
MMSE-HR2 | [99] | 95.5% | 0.91 | 86.2% | 0.80 | Multi-task: 93.8% |
VIPL-HR-V2 | [100] | 94.5% | 0.88 | 87.8% | 0.83 | Large-scale: 92.1% |
Oulu BioFace | [101] | 96.4% | 0.93 | 89.1% | 0.85 | Multi-modal: 94.6% |
BP4D-Spontaneous | [102] | 94.2% | 0.87 | 84.3% | 0.78 | BP: 91.1% |
VitalDB | [103] | 94.7% | 0.89 | - | - | SpO2: 97.9% |
IEEE SPC 2015 | [54] | 96.8% | 0.95 | - | - | BP: 92.2% |
UBFC-BVP | [90] | 97.0% | 0.96 | - | - | HRV: 88.2% |
BIDMC PPG | [104] | 98.3% | 0.98 | 93.8% | 0.94 | SpO2: 98.2% |
MIMIC-III | [105] | 96.0% | 0.92 | 89.4% | 0.86 | BP: 93.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassanpour, A.; Yang, B. Contactless Vital Sign Monitoring: A Review Towards Multi-Modal Multi-Task Approaches. Sensors 2025, 25, 4792. https://doi.org/10.3390/s25154792
Hassanpour A, Yang B. Contactless Vital Sign Monitoring: A Review Towards Multi-Modal Multi-Task Approaches. Sensors. 2025; 25(15):4792. https://doi.org/10.3390/s25154792
Chicago/Turabian StyleHassanpour, Ahmad, and Bian Yang. 2025. "Contactless Vital Sign Monitoring: A Review Towards Multi-Modal Multi-Task Approaches" Sensors 25, no. 15: 4792. https://doi.org/10.3390/s25154792
APA StyleHassanpour, A., & Yang, B. (2025). Contactless Vital Sign Monitoring: A Review Towards Multi-Modal Multi-Task Approaches. Sensors, 25(15), 4792. https://doi.org/10.3390/s25154792