Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,579)

Search Parameters:
Keywords = environmental management accounting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2405 KiB  
Article
Dynamic Comparative Assessment of Long-Term Simulation Strategies for an Off-Grid PV–AEM Electrolyzer System
by Roberta Caponi, Domenico Vizza, Claudia Bassano, Luca Del Zotto and Enrico Bocci
Energies 2025, 18(15), 4209; https://doi.org/10.3390/en18154209 (registering DOI) - 7 Aug 2025
Abstract
Among the various renewable-powered pathways for green hydrogen production, solar photovoltaic (PV) technology represents a particularly promising option due to its environmental sustainability, widespread availability, and declining costs. However, the inherent intermittency of solar irradiance presents operational challenges for electrolyzers, particularly in terms [...] Read more.
Among the various renewable-powered pathways for green hydrogen production, solar photovoltaic (PV) technology represents a particularly promising option due to its environmental sustainability, widespread availability, and declining costs. However, the inherent intermittency of solar irradiance presents operational challenges for electrolyzers, particularly in terms of stability and efficiency. This study presents a MATLAB-based dynamic model of an off-grid, DC-coupled solar PV-Anion Exchange Membrane (AEM) electrolyzer system, with a specific focus on realistically estimating hydrogen output. The model incorporates thermal energy management strategies, including electrolyte pre-heating during startup, and accounts for performance degradation due to load cycling. The model is designed for a comprehensive analysis of hydrogen production by employing a 10-year time series of irradiance and ambient temperature profiles as inputs. The results are compared with two simplified scenarios: one that does not consider the equipment response time to variable supply and another that assumes a fixed start temperature to evaluate their impact on productivity. Furthermore, to limit the effects of degradation, the algorithm has been modified to allow the non-sequential activation of the stacks, resulting in an improvement of the single stack efficiency over the lifetime and a slight increase in overall hydrogen production. Full article
Show Figures

Figure 1

27 pages, 1523 KiB  
Article
Reinforcement Learning-Based Agricultural Fertilization and Irrigation Considering N2O Emissions and Uncertain Climate Variability
by Zhaoan Wang, Shaoping Xiao, Jun Wang, Ashwin Parab and Shivam Patel
AgriEngineering 2025, 7(8), 252; https://doi.org/10.3390/agriengineering7080252 - 7 Aug 2025
Abstract
Nitrous oxide (N2O) emissions from agriculture are rising due to increased fertilizer use and intensive farming, posing a major challenge for climate mitigation. This study introduces a novel reinforcement learning (RL) framework to optimize farm management strategies that balance [...] Read more.
Nitrous oxide (N2O) emissions from agriculture are rising due to increased fertilizer use and intensive farming, posing a major challenge for climate mitigation. This study introduces a novel reinforcement learning (RL) framework to optimize farm management strategies that balance crop productivity with environmental impact, particularly N2O emissions. By modeling agricultural decision-making as a partially observable Markov decision process (POMDP), the framework accounts for uncertainties in environmental conditions and observational data. The approach integrates deep Q-learning with recurrent neural networks (RNNs) to train adaptive agents within a simulated farming environment. A Probabilistic Deep Learning (PDL) model was developed to estimate N2O emissions, achieving a high Prediction Interval Coverage Probability (PICP) of 0.937 within a 95% confidence interval on the available dataset. While the PDL model’s generalizability is currently constrained by the limited observational data, the RL framework itself is designed for broad applicability, capable of extending to diverse agricultural practices and environmental conditions. Results demonstrate that RL agents reduce N2O emissions without compromising yields, even under climatic variability. The framework’s flexibility allows for future integration of expanded datasets or alternative emission models, ensuring scalability as more field data becomes available. This work highlights the potential of artificial intelligence to advance climate-smart agriculture by simultaneously addressing productivity and sustainability goals in dynamic real-world settings. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

27 pages, 7041 KiB  
Article
Multi-Criteria Assessment of the Environmental Sustainability of Agroecosystems in the North Benin Agricultural Basin Using Satellite Data
by Mikhaïl Jean De Dieu Dotou Padonou, Antoine Denis, Yvon-Carmen H. Hountondji, Bernard Tychon and Gérard Nounagnon Gouwakinnou
Environments 2025, 12(8), 271; https://doi.org/10.3390/environments12080271 - 6 Aug 2025
Abstract
The intensification of anthropogenic pressures, particularly those related to agriculture driven by increasing demands for food and cash crops, generates negative environmental externalities. Assessing these externalities is essential to better identify and implement measures that promote the environmental sustainability of rural landscapes. This [...] Read more.
The intensification of anthropogenic pressures, particularly those related to agriculture driven by increasing demands for food and cash crops, generates negative environmental externalities. Assessing these externalities is essential to better identify and implement measures that promote the environmental sustainability of rural landscapes. This study aims to develop a multi-criteria assessment method of the negative environmental externalities of rural landscapes in the northern Benin agricultural basin, based on satellite-derived data. Starting from a 12-class land cover map produced through satellite image classification, the evaluation was conducted in three steps. First, the 12 land cover classes were reclassified into Human Disturbance Coefficients (HDCs) via a weighted sum model multi-criteria analysis based on nine criteria related to the negative environmental externalities of anthropogenic activities. Second, the HDC classes were spatially aggregated using a regular grid of 1 km2 landscape cells to produce the Landscape Environmental Sustainability Index (LESI). Finally, various discretization methods were applied to the LESI for cartographic representation, enhancing spatial interpretation. Results indicate that most areas exhibit moderate environmental externalities (HDC and LESI values between 2.5 and 3.5), covering 63–75% (HDC) and 83–94% (LESI) of the respective sites. Areas of low environmental externalities (values between 1.5 and 2.5) account for 20–24% (HDC) and 5–13% (LESI). The LESI, derived from accessible and cost-effective satellite data, offers a scalable, reproducible, and spatially explicit tool for monitoring landscape sustainability. It holds potential for guiding territorial governance and supporting transitions towards more sustainable land management practices. Future improvements may include, among others, refining the evaluation criteria and introducing variable criteria weighting schemes depending on land cover or region. Full article
Show Figures

Figure 1

14 pages, 5995 KiB  
Article
Integrated Remote Sensing Evaluation of Grassland Degradation Using Multi-Criteria GDCI in Ili Prefecture, Xinjiang, China
by Liwei Xing, Dongyan Jin, Chen Shen, Mengshuai Zhu and Jianzhai Wu
Land 2025, 14(8), 1592; https://doi.org/10.3390/land14081592 - 4 Aug 2025
Viewed by 124
Abstract
As an important ecological barrier and animal husbandry resource base in arid and semi-arid areas, grassland degradation directly affects regional ecological security and sustainable development. Ili Prefecture is located in the western part of Xinjiang, China, and is a typical grassland resource-rich area. [...] Read more.
As an important ecological barrier and animal husbandry resource base in arid and semi-arid areas, grassland degradation directly affects regional ecological security and sustainable development. Ili Prefecture is located in the western part of Xinjiang, China, and is a typical grassland resource-rich area. However, in recent years, driven by climate change and human activities, grassland degradation has become increasingly serious. In view of the lack of comprehensive evaluation indicators and the inconsistency of grassland evaluation grade standards in remote sensing monitoring of grassland resource degradation, this study takes the current situation of grassland degradation in Ili Prefecture in the past 20 years as the research object and constructs a comprehensive evaluation index system covering three criteria layers of vegetation characteristics, environmental characteristics, and utilization characteristics. Net primary productivity (NPP), vegetation coverage, temperature, precipitation, soil erosion modulus, and grazing intensity were selected as multi-source indicators. Combined with data sources such as remote sensing inversion, sample survey, meteorological data, and farmer survey, the factor weight coefficient was determined by analytic hierarchy process. The Grassland Degeneration Comprehensive Index (GDCI) model was constructed to carry out remote sensing monitoring and evaluation of grassland degradation in Yili Prefecture. With reference to the classification threshold of the national standard for grassland degradation, the GDCI grassland degradation evaluation grade threshold (GDCI reduction rate) was determined by the method of weighted average of coefficients: non-degradation (0–10%), mild degradation (10–20%), moderate degradation (20–37.66%) and severe degradation (more than 37.66%). According to the results, between 2000 and 2022, non-degraded grasslands in Ili Prefecture covered an area of 27,200 km2, representing 90.19% of the total grassland area. Slight, moderate, and severe degradation accounted for 4.34%, 3.33%, and 2.15%, respectively. Moderately and severely degraded areas are primarily distributed in agro-pastoral transition zones and economically developed urban regions, respectively. The results revealed the spatial and temporal distribution characteristics of grassland degradation in Yili Prefecture and provided data basis and technical support for regional grassland resource management, degradation prevention and control and ecological restoration. Full article
Show Figures

Figure 1

16 pages, 1207 KiB  
Article
Study of Multi-Stakeholder Mechanism in Inter-Provincial River Basin Eco-Compensation: Case of the Inland Rivers of Eastern China
by Zhijie Cao and Xuelong Chen
Sustainability 2025, 17(15), 7057; https://doi.org/10.3390/su17157057 - 4 Aug 2025
Viewed by 215
Abstract
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research [...] Read more.
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research reveals that the joint participation of multiple stakeholders is crucial to achieving the goals of ecological compensation in river basins. The government plays a significant role in macro-guidance, financial support, policy guarantees, supervision, and management. It promotes the comprehensive implementation of ecological environmental protection by formulating relevant laws and regulations, guiding the public to participate in ecological conservation, and supervising and punishing pollution behaviors. The public, serving as the main force, forms strong awareness and behavioral habits of ecological protection through active participation in environmental protection, monitoring, and feedback. As participants, enterprises contribute to industrial transformation and green development by improving resource utilization efficiency, reducing pollution emissions, promoting green industries, and participating in ecological restoration projects. Scientific research institutions, as technology enablers, have effectively enhanced governance efficiency through technological research and innovation, ecosystem value accounting to provide decision-making support, and public education. Social organizations, as facilitators, have injected vitality and innovation into watershed governance by extensively mobilizing social forces and building multi-party collaboration platforms. Communities, as supporters, have transformed ecological value into economic benefits by developing characteristic industries such as eco-agriculture and eco-tourism. Based on the above findings, further recommendations are proposed to mobilize the enthusiasm of upstream communities and encourage their participation in ecological compensation, promote the market-oriented operation of ecological compensation mechanisms, strengthen cross-regional cooperation to establish joint mechanisms, enhance supervision and evaluation, and establish a sound benefit-sharing mechanism. These recommendations provide theoretical support and practical references for ecological compensation worldwide. Full article
Show Figures

Figure 1

17 pages, 3099 KiB  
Article
Assessment of Fish Community Structure and Invasion Risk in Xinglin Bay, China
by Shilong Feng, Xu Wang, Liangmin Huang, Jiaqiao Wang, Lin Lin, Jun Li, Guangjie Dai, Qianwen Cai, Haoqi Xu, Yapeng Hui and Fenfen Ji
Biology 2025, 14(8), 988; https://doi.org/10.3390/biology14080988 - 4 Aug 2025
Viewed by 218
Abstract
A total of 32 fish species were detected in Xinglin Bay using a combination of environmental DNA metabarcoding (eDNA) and traditional morphological survey methods (TSM), covering eight orders, fifteen families, and twenty-six genera. The dominant order was Perciformes, accounting for 43.75% of the [...] Read more.
A total of 32 fish species were detected in Xinglin Bay using a combination of environmental DNA metabarcoding (eDNA) and traditional morphological survey methods (TSM), covering eight orders, fifteen families, and twenty-six genera. The dominant order was Perciformes, accounting for 43.75% of the total species. Among the identified species, there were ten non-native fish species. Compared with the TSM, the eDNA detected 13 additional fish species, including two additional non-native fish species—Gambusia affinis (Baird and Girard, 1853) and Micropterus salmoides (Lacepède, 1802). In addition, the relative abundance of fish from both methods revealed that tilapia was overwhelmingly dominant, accounting for 80.75% and 75.68%, respectively. Furthermore, the AS-ISK assessment revealed that all non-native fish species were classified as medium or high-risk, with five identified as high-risk species, four of which belong to tilapia. These findings demonstrated that tilapia are the dominant and high-risk invasive species in Xinglin Bay and should be prioritized for management. Population reduction through targeted harvesting of tilapia is recommended as the primary control strategy. Additionally, the study highlights the effectiveness of eDNA in monitoring fish community structure in brackish ecosystems. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Figure 1

27 pages, 2929 KiB  
Article
Comparative Performance Analysis of Gene Expression Programming and Linear Regression Models for IRI-Based Pavement Condition Index Prediction
by Mostafa M. Radwan, Majid Faissal Jassim, Samir A. B. Al-Jassim, Mahmoud M. Elnahla and Yasser A. S. Gamal
Eng 2025, 6(8), 183; https://doi.org/10.3390/eng6080183 - 3 Aug 2025
Viewed by 219
Abstract
Traditional Pavement Condition Index (PCI) assessments are highly resource-intensive, demanding substantial time and labor while generating significant carbon emissions through extensive field operations. To address these sustainability challenges, this research presents an innovative methodology utilizing Gene Expression Programming (GEP) to determine PCI values [...] Read more.
Traditional Pavement Condition Index (PCI) assessments are highly resource-intensive, demanding substantial time and labor while generating significant carbon emissions through extensive field operations. To address these sustainability challenges, this research presents an innovative methodology utilizing Gene Expression Programming (GEP) to determine PCI values based on International Roughness Index (IRI) measurements from Iraqi road networks, offering an environmentally conscious and resource-efficient approach to pavement management. The study incorporated 401 samples of IRI and PCI data through comprehensive visual inspection procedures. The developed GEP model exhibited exceptional predictive performance, with coefficient of determination (R2) values achieving 0.821 for training, 0.858 for validation, and 0.8233 overall, successfully accounting for approximately 82–85% of PCI variance. Prediction accuracy remained robust with Mean Absolute Error (MAE) values of 12–13 units and Root Mean Square Error (RMSE) values of 11.209 and 11.00 for training and validation sets, respectively. The lower validation RMSE suggests effective generalization without overfitting. Strong correlations between predicted and measured values exceeded 0.90, with acceptable relative absolute error values ranging from 0.403 to 0.387, confirming model effectiveness. Comparative analysis reveals GEP outperforms alternative regression methods in generalization capacity, particularly in real-world applications. This sustainable methodology represents a cost-effective alternative to conventional PCI evaluation, significantly reducing environmental impact through decreased field operations, lower fuel consumption, and minimized traffic disruption. By streamlining pavement management while maintaining assessment reliability and accuracy, this approach supports environmentally responsible transportation systems and aligns contemporary sustainability goals in infrastructure management. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 - 2 Aug 2025
Viewed by 223
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

13 pages, 235 KiB  
Article
Motivations of Sports Volunteers at Mass Endurance Events: A Case Study of Poznan
by Milena Michalska, Mateusz Grajek and Mateusz Rozmiarek
Sports 2025, 13(8), 255; https://doi.org/10.3390/sports13080255 - 1 Aug 2025
Viewed by 206
Abstract
Sport volunteering plays an important role in achieving the goals of sustainable development by supporting the social dimension of sustainability, fostering social integration, and promoting a healthy lifestyle. However, there is a lack of systematic research in Poland on the motivations of sport [...] Read more.
Sport volunteering plays an important role in achieving the goals of sustainable development by supporting the social dimension of sustainability, fostering social integration, and promoting a healthy lifestyle. However, there is a lack of systematic research in Poland on the motivations of sport volunteers, particularly in the context of mass endurance events. This study employed a quantitative, cross-sectional design involving 148 sport volunteers engaged in mass endurance events in Poznan, Poland. To measure motivation, the Polish adaptation of the VMS-ISE scale was used. Data analysis was conducted using one-way analysis of variance (ANOVA). The results showed that volunteer motivations were relatively homogeneous regardless of gender and education level, with the exception of passion for sport, which was significantly stronger among men (p = 0.037). Significant differences were found based on place of residence: residents of medium-sized cities demonstrated the highest motivation for personal development (p < 0.001), whereas individuals from rural areas exhibited stronger patriotism, a greater need for interpersonal interaction, and a higher valuation of external rewards (p < 0.05). The motivations of sport volunteers in Poland are complex and sensitive to environmental factors. Understanding these differences allows for better alignment of recruitment and volunteer management strategies, which can enhance both the effectiveness and sustainability of volunteer engagement. It is recommended to develop volunteer programs that take into account the demographic and socio-cultural characteristics of participants. Full article
18 pages, 475 KiB  
Article
How Environmental Turbulence Shapes the Path from Resilience to Sustainability: Useful Insights Gathered from Small and Medium Enterprises (SMEs)
by Ahmet Serdar İbrahimcioğlu and Hakan Kitapçı
Sustainability 2025, 17(15), 6938; https://doi.org/10.3390/su17156938 - 30 Jul 2025
Viewed by 207
Abstract
In the context of small and medium-sized enterprises (SMEs), organizational resilience has emerged as a critical capability for navigating dynamic and turbulent environments. The ability of firms to sustain their performance despite external disruptions, particularly those arising from market and technological change, is [...] Read more.
In the context of small and medium-sized enterprises (SMEs), organizational resilience has emerged as a critical capability for navigating dynamic and turbulent environments. The ability of firms to sustain their performance despite external disruptions, particularly those arising from market and technological change, is paramount for achieving long-term sustainability. This study offers a novel contribution by examining how two key dimensions of environmental turbulence—market turbulence and technological turbulence—moderate the relationship between organizational resilience capacity and sustainability performance. Our empirical findings, based on data from 423 SMEs, demonstrate that while organizational resilience positively correlates with sustainability performance, this relationship is significantly weakened under high levels of market and technological turbulence, indicating a negative moderating effect. These results advance resource-based and dynamic capabilities theory by highlighting the contingent nature of resilience in unstable contexts. Furthermore, this study provides practical guidance. SMEs should strategically invest in resilience-building efforts and continuously adapt their strategies in response to environmental fluctuations. Targeted approaches to managing different forms of turbulence and forming resilience-oriented collaborations can enhance sustainability outcomes. This research makes significant contributions to theory and practice; however, there are limitations that future research should take into account in order to appropriately utilize this study’s findings. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

14 pages, 1014 KiB  
Article
Bioenergy Production from Solid Fuel Conversion of Cattle Manure and Resource Utilization of the Combustion Residues
by Eunsung Lee, Junsoo Ha and Seongwook Oa
Processes 2025, 13(8), 2417; https://doi.org/10.3390/pr13082417 - 30 Jul 2025
Viewed by 270
Abstract
Cattle manure accounts for approximately one-third of the total livestock manure produced in the Republic of Korea and is typically composted. To elucidate its feasibility as a renewable resource, this study evaluated the conversion of cattle manure into a solid biofuel and the [...] Read more.
Cattle manure accounts for approximately one-third of the total livestock manure produced in the Republic of Korea and is typically composted. To elucidate its feasibility as a renewable resource, this study evaluated the conversion of cattle manure into a solid biofuel and the nutrient recovery potential of its combustion residues. Solid fuel was prepared from cattle manure collected in Gyeongsangbuk-do, Korea, and its fuel characteristics and ash composition were analyzed after combustion. Combustion tests conducted using a dedicated solid fuel boiler showed that an average lower heating value of 13.27 MJ/kg was achieved, meeting legal standards. Under optimized combustion, CO and NOx emissions (129.9 and 41.5 ppm) were below regulatory limits (200 and 90 ppm); PM was also within the 25 mg/Sm3 standard. The bottom ash contained high concentrations of P2O5 and K, and its heavy metal content was below the regulatory threshold, suggesting its potential reuse as a fertilizer material. Although the Zn concentration in the fly ash exceeded the standard, its quantity was negligible. Therefore, the solid fuel conversion of cattle manure can become a viable and environmentally sustainable solution for both bioenergy production and nutrient recycling, contributing to improved waste management in livestock operations. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

33 pages, 16026 KiB  
Article
Spatiotemporal Analysis of BTEX and PM Using Me-DOAS and GIS in Busan’s Industrial Complexes
by Min-Kyeong Kim, Jaeseok Heo, Joonsig Jung, Dong Keun Lee, Jonghee Jang and Duckshin Park
Toxics 2025, 13(8), 638; https://doi.org/10.3390/toxics13080638 - 29 Jul 2025
Viewed by 295
Abstract
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for [...] Read more.
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for the rapid dispersion of hazardous air pollutants (HAPs). In this study, we conducted spatiotemporal data collection and analysis for the first time in Korea using real-time measurements obtained through mobile extractive differential optical absorption spectroscopy (Me-DOAS) mounted on a solar occultation flux (SOF) vehicle. The measurements were conducted in the Saha Sinpyeong–Janglim Industrial Complex in Busan, which comprises the Sasang Industrial Complex and the Sinpyeong–Janglim Industrial Complex. BTEX compounds were selected as target volatile organic compounds (VOCs), and real-time measurements of both BTEX and fine particulate matter (PM) were conducted simultaneously. Correlation analysis revealed a strong relationship between PM10 and PM2.5 (r = 0.848–0.894), indicating shared sources. In Sasang, BTEX levels were associated with traffic and localized facilities, while in Saha Sinpyeong–Janglim, the concentrations were more influenced by industrial zoning and wind patterns. Notably, inter-compound correlations such as benzene–m-xylene and p-xylene–toluene suggested possible co-emission sources. This study proposes a GIS-based, three-dimensional air quality management approach that integrates variables such as traffic volume, wind direction, and speed through real-time measurements. The findings are expected to inform effective pollution control strategies and future environmental management plans for industrial complexes. Full article
Show Figures

Graphical abstract

24 pages, 20005 KiB  
Article
Zoning Method for Groundwater Pollution Risk Control in Typical Industrial–Urban Integration Areas in the Middle Reaches of the Yangtze River
by Xiongbiao Qiao, Tianwei Cheng, Liming Zhang, Ning Sun, Zhenyu Ding, Zheming Shi, Guangcai Wang and Zongwen Zhang
Water 2025, 17(15), 2249; https://doi.org/10.3390/w17152249 - 28 Jul 2025
Viewed by 396
Abstract
With increasing urban economic development, some industrial parks and residential areas are being situated adjacent to each other, creating a potential risk of soil and groundwater contamination from the wastewater and solid waste produced by enterprises. This contamination poses a threat to the [...] Read more.
With increasing urban economic development, some industrial parks and residential areas are being situated adjacent to each other, creating a potential risk of soil and groundwater contamination from the wastewater and solid waste produced by enterprises. This contamination poses a threat to the health of nearby residents. Currently, groundwater pollution prevention and control zoning in China primarily targets groundwater environmental pollution risks and does not consider the health risks associated with groundwater exposure in industry–city integration areas. Therefore, a scientific assessment of environmental risks in industry–city integration areas is essential for effectively managing groundwater pollution. This study focuses on the high frequency and rapid pace of human activities in industry–city integration areas. It combines health risk assessment and groundwater pollution simulation results with traditional groundwater pollution control classification outcomes to develop a groundwater pollution risk zoning framework specifically suited to these integrated areas. Using this framework, we systematically assessed groundwater pollution risks in a representative industry–city integration area in the middle reaches of the Yangtze River in China and delineated groundwater pollution risk zones to provide a scientific basis for local groundwater environmental management. The assessment results indicate that the total area of groundwater pollution risk control zones is 30.37 km2, accounting for 19.06% of the total study area. The first-level control zone covers 5.38 km2 (3.38% of the total area), while the secondary control zone spans 24.99 km2 (15.68% of the total area). The first-level control zone is concentrated within industrial clusters, whereas the secondary control zone is widely distributed throughout the region. In comparison to traditional assessment methods, the zoning results derived from this study are more suitable for industry–city integration areas. This study also provides groundwater management recommendations for such areas, offering valuable insights for groundwater control in integrated industrial–residential zones. Full article
(This article belongs to the Topic Advances in Groundwater Science and Engineering)
Show Figures

Figure 1

35 pages, 1131 KiB  
Article
Sustainable Destination Management in Luxury Tourism: Balancing Economic Development and Environmental Responsibility
by Hilmi Birinci, Ismet Esenyel and Hayford Asare Obeng
Sustainability 2025, 17(15), 6815; https://doi.org/10.3390/su17156815 - 27 Jul 2025
Viewed by 373
Abstract
This study applied the Stimulus–Organism–Response Theory to investigate the impact of sustainable destination management on perceived luxury service quality, taking into account the mediating role of perceived environmental responsibility and the moderating effect of tourist environmental awareness. Data were obtained from 541 tourists [...] Read more.
This study applied the Stimulus–Organism–Response Theory to investigate the impact of sustainable destination management on perceived luxury service quality, taking into account the mediating role of perceived environmental responsibility and the moderating effect of tourist environmental awareness. Data were obtained from 541 tourists in Northern Cyprus, and the analysis was conducted using Herman’s single-factor test in SPSS version 23 and partial least squares structural equation modeling in SmartPLS version 4.1.1.2. The study’s results revealed a significant positive influence of sustainable destination management on both perceived luxury service quality and environmental responsibility. Furthermore, the study showed a significant positive relationship between perceived environmental responsibility and perceived luxury service quality. Additionally, tourist environmental consciousness was found to be an important influencing factor in perceived luxury service quality. The mediating role of perceived environmental responsibility was revealed to be a significant partial mediator between sustainable destination management and perceived luxury service quality pathways. Although environmental awareness revealed an insignificant moderating influence on the relationship between sustainable destination management and perceived luxury service quality, it indicated a negative significant moderating influence on the relationship between perceived environmental responsibility and perceived luxury service quality. The study highlights how assessments of luxury services are contingent upon perceived environmental responsibility through sustainable destination activities. Emphasizing both academic and management perspectives, it encourages future research to explore broader psychological and contextual factors. Therefore, it underscores the strategic necessity of sustainability in enhancing the luxury tourism experience. Full article
Show Figures

Figure 1

32 pages, 1770 KiB  
Article
Regional Patterns in Weed Composition of Maize Fields in Eastern Hungary: The Balance of Environmental and Agricultural Factors
by Mihály Zalai, Erzsébet Tóth, János György Nagy and Zita Dorner
Agronomy 2025, 15(8), 1814; https://doi.org/10.3390/agronomy15081814 - 26 Jul 2025
Viewed by 460
Abstract
The primary aim of this study was to explore the influence of abiotic factors on weed development in maize fields, with the goal of informing more effective weed management practices. We focused on identifying key environmental, edaphic, and agricultural variables that contribute to [...] Read more.
The primary aim of this study was to explore the influence of abiotic factors on weed development in maize fields, with the goal of informing more effective weed management practices. We focused on identifying key environmental, edaphic, and agricultural variables that contribute to weed infestations, particularly before the application of spring herbicide treatments. Field investigations were conducted from 2018 to 2021 across selected maize-growing regions in Hungary. Over the four-year period, a total of 51 weed species were recorded, with Echinochloa crus-galli, Chenopodium album, Portulaca oleracea, and Hibiscus trionum emerging as the most prevalent taxa. Collectively, these four species accounted for more than half (52%) of the total weed cover. Altogether, the 20 most dominant species contributed 95% of the overall weed coverage. The analysis revealed that weed cover, species richness, and weed diversity were significantly affected by soil properties, nutrient levels, geographic location, and tillage systems. The results confirm that the composition of weed species was influenced by several environmental and management-related factors, including soil parameters, geographical location, annual precipitation, tillage method, and fertilizer application. Environmental factors collectively explained a slightly higher proportion of the variance (13.37%) than farming factors (12.66%) at a 90% significance level. Seasonal dynamics and crop rotation history also played a notable role in species distribution. Nutrient inputs, particularly nitrogen, phosphorus, and potassium, influenced both species diversity and floristic composition. Deep tillage practices favored the proliferation of perennial species, whereas shallow cultivation tended to promote annual weeds. Overall, the composition of weed vegetation proved to be a valuable indicator of site-specific soil conditions and agricultural practices. These findings underscore the need to tailor weed management strategies to local environmental and soil contexts for sustainable crop production. Full article
(This article belongs to the Special Issue State-of-the-Art Research on Weed Populations and Community Dynamics)
Show Figures

Figure 1

Back to TopTop