Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,335)

Search Parameters:
Keywords = environment of cooperation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7537 KiB  
Article
Variable Step-Size FxLMS Algorithm Based on Cooperative Coupling of Double Nonlinear Functions
by Jialong Wang, Jian Liao, Lin He, Xiaopeng Tan and Zongbin Chen
Symmetry 2025, 17(8), 1222; https://doi.org/10.3390/sym17081222 (registering DOI) - 2 Aug 2025
Abstract
Based on the principle of symmetry, we propose a variable step-size FxLMS algorithm with double nonlinear functions cooperative coupling (DNVSS-FxLMS), aiming to optimize the contradiction between convergence rate and steady-state error in the active pressure pulsation control system of hydraulic systems. The algorithm [...] Read more.
Based on the principle of symmetry, we propose a variable step-size FxLMS algorithm with double nonlinear functions cooperative coupling (DNVSS-FxLMS), aiming to optimize the contradiction between convergence rate and steady-state error in the active pressure pulsation control system of hydraulic systems. The algorithm innovatively couples two types of nonlinear mechanisms (rational-fractional and exponential-function-based), constructing a refined error-step mapping relationship to achieve a balance between rapid convergence and low steady-state error. Simulation experiments were conducted considering the complex time-varying operating environment of a simulation-based hydraulic system. The results demonstrate that, when the system undergoes unstable random changes, the DNVSS-FxLMS algorithm converges at least twice as fast as traditional and existing variable step size algorithms, while reducing steady-state error by 2–5 dB. The proposed DNVSS-FxLMS algorithm exhibits significant advantages in convergence rate, steady-state error reduction, and tracking capability, providing a highly efficient and robust solution for real-time active control of hydraulic system pressure pulsation under complex operating conditions. Full article
Show Figures

Figure 1

14 pages, 1714 KiB  
Article
A Kalman Filter-Based Localization Calibration Method Optimized by Reinforcement Learning and Information Matrix Fusion
by Zijia Huang, Qiushi Xu, Menghao Sun and Xuzhen Zhu
Entropy 2025, 27(8), 821; https://doi.org/10.3390/e27080821 (registering DOI) - 1 Aug 2025
Abstract
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement [...] Read more.
To address the degradation in localization accuracy caused by insufficient robustness of filter parameters and inefficient multi-trajectory data fusion in dynamic environments, this paper proposes a Kalman filter-based localization calibration method optimized by reinforcement learning and information matrix fusion (RL-IMKF). An actor–critic reinforcement learning network is designed to adaptively adjust the state covariance matrix, enhancing the Kalman filter’s adaptability to environmental changes. Meanwhile, a multi-trajectory information matrix fusion strategy is introduced, which aggregates multiple trajectories in the information domain via weighted inverse covariance matrices to suppress error propagation and improve system consistency. Experiments using both simulated and real-world sensor data demonstrate that the proposed method outperforms traditional extended Kalman filter approaches in terms of localization accuracy and stability, providing a novel solution for cooperative localization calibration of unmanned aerial vehicle (UAV) swarms in dynamic environments. Full article
(This article belongs to the Special Issue Complexity, Entropy and the Physics of Information II)
Show Figures

Figure 1

26 pages, 2036 KiB  
Article
Mission Planning for UAV Swarm with Aircraft Carrier Delivery: A Decoupled Framework
by Hongyun Zhang, Bin Li, Lei Wang, Yujie Cheng, Yu Ding, Chen Lu, Haijun Peng and Xinwei Wang
Aerospace 2025, 12(8), 691; https://doi.org/10.3390/aerospace12080691 (registering DOI) - 31 Jul 2025
Abstract
Due to the limited endurance of UAVs, especially in scenarios involving large areas and dense target nodes, it is challenging for multiple UAVs to complete diverse tasks while ensuring timely execution. Toward this, we propose a cross-platform system consisting of an aircraft carrier [...] Read more.
Due to the limited endurance of UAVs, especially in scenarios involving large areas and dense target nodes, it is challenging for multiple UAVs to complete diverse tasks while ensuring timely execution. Toward this, we propose a cross-platform system consisting of an aircraft carrier (AC) and multiple UAVs, which makes unified task planning for included heterogeneous platforms to maximize the efficiency of the entire combat system. The carrier-based UAV swarm mission planning problem is formulated to minimize completion time and resource utilization, taking into account large-scale targets, multi-type tasks, and multi-obstacle environments. Since the problem is complex, we design a decoupled framework to simplify the solution by decomposing it into two levels: upper-level AC path planning and bottom-level multi-UAV cooperative mission planning. At the upper level, a drop point determination method and a discrete genetic algorithm incorporating improved A* (DGAIIA) are proposed to plan the AC’s path in the presence of no-fly zones and radar threats. At the bottom level, an improved differential evolution algorithm with a market mechanism (IDEMM) is proposed to minimize task completion time and maximize UAV utilization. Specifically, a dual-switching search strategy and a neighborhood-first buying-and-selling mechanism are developed to improve the search efficiency of the IDEMM. Simulation results validate the effectiveness of both the DGAIIA and IDEMM. An animation of the simulation results is available at simulation section. Full article
Show Figures

Figure 1

18 pages, 3506 KiB  
Review
A Review of Spatial Positioning Methods Applied to Magnetic Climbing Robots
by Haolei Ru, Meiping Sheng, Jiahui Qi, Zhanghao Li, Lei Cheng, Jiahao Zhang, Jiangjian Xiao, Fei Gao, Baolei Wang and Qingwei Jia
Electronics 2025, 14(15), 3069; https://doi.org/10.3390/electronics14153069 (registering DOI) - 31 Jul 2025
Abstract
Magnetic climbing robots hold significant value for operations in complex industrial environments, particularly for the inspection and maintenance of large-scale metal structures. High-precision spatial positioning is the foundation for enabling autonomous and intelligent operations in such environments. However, the existing literature lacks a [...] Read more.
Magnetic climbing robots hold significant value for operations in complex industrial environments, particularly for the inspection and maintenance of large-scale metal structures. High-precision spatial positioning is the foundation for enabling autonomous and intelligent operations in such environments. However, the existing literature lacks a systematic and comprehensive review of spatial positioning techniques tailored to magnetic climbing robots. This paper addresses this gap by categorizing and evaluating current spatial positioning approaches. Initially, single-sensor-based methods are analyzed with a focus on external sensor approaches. Then, multi-sensor fusion methods are explored to overcome the shortcomings of single-sensor-based approaches. Multi-sensor fusion methods include simultaneous localization and mapping (SLAM), integrated positioning systems, and multi-robot cooperative positioning. To address non-uniform noise and environmental interference, both analytical and learning-based reinforcement approaches are reviewed. Common analytical methods include Kalman-type filtering, particle filtering, and correlation filtering, while typical learning-based approaches involve deep reinforcement learning (DRL) and neural networks (NNs). Finally, challenges and future development trends are discussed. Multi-sensor fusion and lightweight design are the future trends in the advancement of spatial positioning technologies for magnetic climbing robots. Full article
(This article belongs to the Special Issue Advancements in Robotics: Perception, Manipulation, and Interaction)
Show Figures

Figure 1

20 pages, 1449 KiB  
Article
Deep Reinforcement Learning-Based Resource Allocation for UAV-GAP Downlink Cooperative NOMA in IIoT Systems
by Yuanyan Huang, Jingjing Su, Xuan Lu, Shoulin Huang, Hongyan Zhu and Haiyong Zeng
Entropy 2025, 27(8), 811; https://doi.org/10.3390/e27080811 - 29 Jul 2025
Viewed by 206
Abstract
This paper studies deep reinforcement learning (DRL)-based joint resource allocation and three-dimensional (3D) trajectory optimization for unmanned aerial vehicle (UAV)–ground access point (GAP) cooperative non-orthogonal multiple access (NOMA) communication in Industrial Internet of Things (IIoT) systems. Cooperative and non-cooperative users adopt different signal [...] Read more.
This paper studies deep reinforcement learning (DRL)-based joint resource allocation and three-dimensional (3D) trajectory optimization for unmanned aerial vehicle (UAV)–ground access point (GAP) cooperative non-orthogonal multiple access (NOMA) communication in Industrial Internet of Things (IIoT) systems. Cooperative and non-cooperative users adopt different signal transmission strategies to meet diverse, task-oriented, quality-of-service requirements. Specifically, the DRL framework based on the Soft Actor–Critic algorithm is proposed to jointly optimize user scheduling, power allocation, and UAV trajectory in continuous action spaces. Closed-form power allocation and maximum weight bipartite matching are integrated to enable efficient user pairing and resource management. Simulation results show that the proposed scheme significantly enhances system performance in terms of throughput, spectral efficiency, and interference management, while enabling robustness against channel uncertainties in dynamic IIoT environments. The findings indicate that combining model-free reinforcement learning with conventional optimization provides a viable solution for adaptive resource management in dynamic UAV-GAP cooperative communication scenarios. Full article
Show Figures

Figure 1

27 pages, 405 KiB  
Article
Comparative Analysis of Centralized and Distributed Multi-UAV Task Allocation Algorithms: A Unified Evaluation Framework
by Yunze Song, Zhexuan Ma, Nuo Chen, Shenghao Zhou and Sutthiphong Srigrarom
Drones 2025, 9(8), 530; https://doi.org/10.3390/drones9080530 - 28 Jul 2025
Viewed by 210
Abstract
Unmanned aerial vehicles (UAVs), commonly known as drones, offer unprecedented flexibility for complex missions such as area surveillance, search and rescue, and cooperative inspection. This paper presents a unified evaluation framework for the comparison of centralized and distributed task allocation algorithms specifically tailored [...] Read more.
Unmanned aerial vehicles (UAVs), commonly known as drones, offer unprecedented flexibility for complex missions such as area surveillance, search and rescue, and cooperative inspection. This paper presents a unified evaluation framework for the comparison of centralized and distributed task allocation algorithms specifically tailored to multi-UAV operations. We first contextualize the classical assignment problem (AP) under UAV mission constraints, including the flight time, propulsion energy capacity, and communication range, and evaluate optimal one-to-one solvers including the Hungarian algorithm, the Bertsekas ϵ-auction algorithm, and a minimum cost maximum flow formulation. To reflect the dynamic, uncertain environments that UAV fleets encounter, we extend our analysis to distributed multi-UAV task allocation (MUTA) methods. In particular, we examine the consensus-based bundle algorithm (CBBA) and a distributed auction 2-opt refinement strategy, both of which iteratively negotiate task bundles across UAVs to accommodate real-time task arrivals and intermittent connectivity. Finally, we outline how reinforcement learning (RL) can be incorporated to learn adaptive policies that balance energy efficiency and mission success under varying wind conditions and obstacle fields. Through simulations incorporating UAV-specific cost models and communication topologies, we assess each algorithm’s mission completion time, total energy expenditure, communication overhead, and resilience to UAV failures. Our results highlight the trade-off between strict optimality, which is suitable for small fleets in static scenarios, and scalable, robust coordination, necessary for large, dynamic multi-UAV deployments. Full article
Show Figures

Figure 1

33 pages, 1129 KiB  
Article
Toward a ‘Green Intelligence’? The Intelligence Practices of Non-Governmental Organisations Which Combat Environmental Crime
by Charlotte M. Davies
Laws 2025, 14(4), 52; https://doi.org/10.3390/laws14040052 - 28 Jul 2025
Viewed by 408
Abstract
Environmental crime has been increasingly recognised as transnational organised crime, but efforts to build a coherent and effective international response are still in development and under threat from shifts in the funding landscape. This mixed methods study addresses the role of one significant [...] Read more.
Environmental crime has been increasingly recognised as transnational organised crime, but efforts to build a coherent and effective international response are still in development and under threat from shifts in the funding landscape. This mixed methods study addresses the role of one significant group of actors in environmental crime enforcement, which are non-governmental organisations (NGOs) who gather intelligence that can be shared with law enforcement and regulatory agencies. The study compares their intelligence practices to findings from traditional intelligence sectors, with a focus upon criminal justice and policing. The research generated quantitative and qualitative data from NGO practitioners, which is integrated to discern three overarching themes inherent in these NGOs’ intelligence practices: the implementation of formal intelligence practices is still underway in the sector; there remains a need to improve cooperation to break down silos between agencies and NGOs, which requires an improvement in trust between these entities; the operating environment provides both opportunities and challenges to the abilities of the NGOs to deliver impact. The study concludes by positing that the characteristics of NGOs mean that this situation constitutes ‘green intelligence’, contextualising intelligence theory and highlighting areas in which agencies can further combat environmental crime. Full article
(This article belongs to the Special Issue Global Threats in the Illegal Wildlife Trade and Advances in Response)
Show Figures

Figure 1

15 pages, 239 KiB  
Article
Examining Puppetry’s Contribution to the Learning, Social and Therapeutic Support of Students with Complex Educational and Psychosocial Needs in Special School Settings: A Phenomenological Study
by Konstantinos Mastrothanasis, Angelos Gkontelos, Maria Kladaki and Eleni Papouli
Disabilities 2025, 5(3), 67; https://doi.org/10.3390/disabilities5030067 - 28 Jul 2025
Viewed by 774
Abstract
The present study focuses on investigating the contribution of puppetry as a pedagogical and psychosocial tool in special education, addressing the literature gap in the systematic documentation of the experiences of special education teachers, concerning its use in daily teaching practice. The main [...] Read more.
The present study focuses on investigating the contribution of puppetry as a pedagogical and psychosocial tool in special education, addressing the literature gap in the systematic documentation of the experiences of special education teachers, concerning its use in daily teaching practice. The main objective is to capture the way in which puppetry enhances the learning, social and therapeutic support of students with complex educational and psychosocial needs. The study employs a qualitative phenomenological approach, conducting semi-structured interviews with eleven special education teachers who integrate puppetry into their teaching. Qualitative data were analyzed using thematic analysis. The findings highlight that puppetry significantly enhances cognitive function, concentration, memory and language development, while promoting the active participation, cooperation, social inclusion and self-expression of students. In addition, the use of the puppet acts as a means of psycho-emotional empowerment, supporting positive behavior and helping students cope with stress and behavioral difficulties. Participants identified peer support, material adequacy and training as key factors for effective implementation, while conversely, a lack of resources and time is cited as a key obstacle. The integration of puppetry in everyday school life seems to ameliorate a more personalized, supportive and experiential learning environment, responding to the diverse and complex profiles of students attending special schools. Continuous training for teachers, along with strengthening the collaboration between the arts and special education, is essential for the effective use of puppetry in the classroom. Full article
32 pages, 3956 KiB  
Article
Privacy-Preserving Federated Unlearning with Ontology-Guided Relevance Modeling for Secure Distributed Systems
by Naglaa E. Ghannam and Esraa A. Mahareek
Future Internet 2025, 17(8), 335; https://doi.org/10.3390/fi17080335 - 27 Jul 2025
Viewed by 159
Abstract
Federated Learning (FL) is a privacy-focused technique for training models; however, most existing unlearning techniques in FL fall significantly short of the efficiency and situational awareness required by the GDPR. The paper introduces two new unlearning methods: EG-FedUnlearn, a gradient-based technique that eliminates [...] Read more.
Federated Learning (FL) is a privacy-focused technique for training models; however, most existing unlearning techniques in FL fall significantly short of the efficiency and situational awareness required by the GDPR. The paper introduces two new unlearning methods: EG-FedUnlearn, a gradient-based technique that eliminates the effect of specific target clients without retraining, and OFU-Ontology, an ontology-based approach that ranks data importance to facilitate forgetting contextually. EG-FedUnlearn directly eliminates the contributions of specific target data by reversing the gradient, whereas OFU-Ontology utilizes semantic relevance to prioritize forgetting data of the least importance, thereby minimizing the unlearning-induced degradation of models. The results of experiments on seven benchmark datasets demonstrate the good performance of both algorithms. OFU-Ontology yields 98% accuracy of unlearning while maintaining high model utility with very limited accuracy loss under class-based deletion on MNIST (e.g., 95%), surpassing FedEraser and VeriFi on the multiple metrics of residual influence, communication overhead, and computational cost. These results indicate that the cooperation of efficient unlearning algorithms with semantic reasoning, minimized unlearning costs, and operational performance in a distributed environment. This paper becomes the first to incorporate ontological knowledge into federated unlearning, thereby opening new avenues for scalable and intelligent private machine learning systems. Full article
(This article belongs to the Special Issue Privacy and Security Issues in IoT Systems)
Show Figures

Figure 1

23 pages, 3210 KiB  
Article
Design and Optimization of Intelligent High-Altitude Operation Safety System Based on Sensor Fusion
by Bohan Liu, Tao Gong, Tianhua Lei, Yuxin Zhu, Yijun Huang, Kai Tang and Qingsong Zhou
Sensors 2025, 25(15), 4626; https://doi.org/10.3390/s25154626 - 25 Jul 2025
Viewed by 203
Abstract
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time [...] Read more.
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time monitoring of the safety status of the operators and is prone to serious consequences due to human negligence. This paper designs a new type of high-altitude operation safety device based on the STM32F103 microcontroller. This device integrates ultra-wideband (UWB) ranging technology, thin-film piezoresistive stress sensors, Beidou positioning, intelligent voice alarm, and intelligent safety lock. By fusing five modes, it realizes the functions of safety status detection and precise positioning. It can provide precise geographical coordinate positioning and vertical ground distance for the workers, ensuring the safety and standardization of the operation process. This safety device adopts multi-modal fusion high-altitude operation safety monitoring technology. The UWB module adopts a bidirectional ranging algorithm to achieve centimeter-level ranging accuracy. It can accurately determine dangerous heights of 2 m or more even in non-line-of-sight environments. The vertical ranging upper limit can reach 50 m, which can meet the maintenance height requirements of most transmission and distribution line towers. It uses a silicon carbide MEMS piezoresistive sensor innovatively, which is sensitive to stress detection and resistant to high temperatures and radiation. It builds a Beidou and Bluetooth cooperative positioning system, which can achieve centimeter-level positioning accuracy and an identification accuracy rate of over 99%. It can maintain meter-level positioning accuracy of geographical coordinates in complex environments. The development of this safety device can build a comprehensive and intelligent safety protection barrier for workers engaged in high-altitude operations. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 639 KiB  
Article
Psychoeducational Classroom Interventions Promoting Inclusion of Special Educational Needs Students in Mainstream Classes: The Case of the BATTIE Program
by Diamanto Filippatou, Anna Gerakini and Georgios Androulakis
Educ. Sci. 2025, 15(8), 958; https://doi.org/10.3390/educsci15080958 - 25 Jul 2025
Viewed by 294
Abstract
Inclusive education emphasizes the right of all students, including those with special educational needs and disabilities (SEND), to access equitable learning opportunities in mainstream classrooms. This study presents the implementation and evaluation of a school-based intervention within the BATTIE (Bottleneck Analysis and Teacher [...] Read more.
Inclusive education emphasizes the right of all students, including those with special educational needs and disabilities (SEND), to access equitable learning opportunities in mainstream classrooms. This study presents the implementation and evaluation of a school-based intervention within the BATTIE (Bottleneck Analysis and Teacher Trainings for Inclusive Education) project in Greece, aiming to enhance inclusion through differentiated instruction (DI) and a whole school approach. The intervention was conducted across 26 schools and involved 116 educators and 130 students with SEND. A qualitative methodology was employed, utilizing structured classroom observations, field notes, and semi-structured interviews with teachers. The data were thematically analyzed using NVivo 11. Findings indicated notable improvements in student engagement, academic participation, and classroom collaboration, especially among students with SEND. Teachers reported enhanced professional confidence, better understanding of inclusive strategies, and improved collaboration with special education staff. However, limitations in interdisciplinary cooperation—particularly with school psychologists—were identified. This study concludes that sustained professional development, school-wide collaboration, and differentiated instruction are essential for fostering inclusive practices. It underscores the potential of structured, whole school interventions to improve learning environments for diverse student populations and provides insights for educational policy and practice reform. Full article
Show Figures

Figure 1

26 pages, 750 KiB  
Article
Institutional Quality, Energy Efficiency, and Natural Gas: Explaining CO2 Emissions in the GCC, 2000–2023
by Nagwa Amin Abdelkawy and Luluh Alzuwaidi
Sustainability 2025, 17(15), 6746; https://doi.org/10.3390/su17156746 - 24 Jul 2025
Viewed by 236
Abstract
This study investigates whether institutional quality amplifies the emissions-reducing effect of energy efficiency in hydrocarbon-dependent economies. Addressing a gap in the energy–environment literature, it tests how governance conditions shape the effectiveness of technical mitigation strategies. Using panel data from six Gulf Cooperation Council [...] Read more.
This study investigates whether institutional quality amplifies the emissions-reducing effect of energy efficiency in hydrocarbon-dependent economies. Addressing a gap in the energy–environment literature, it tests how governance conditions shape the effectiveness of technical mitigation strategies. Using panel data from six Gulf Cooperation Council (GCC) countries between 2000 and 2023, we estimate a fixed-effects model with interaction terms between energy intensity (as a proxy for efficiency) and institutional quality (proxied by Control of Corruption). The results show that energy efficiency is associated with lower CO2 emissions, and this relationship is significantly moderated by institutional quality. We also analyze the emissions impact of natural gas consumption and identify a structural shift following the 2014 energy reforms: while gas use was positively associated with emissions before 2014, the post-reform period shows a weaker or reversed effect. Robustness checks using alternative governance indicators—Regulatory Quality and Government Effectiveness—confirm the moderating role of institutions. The study offers new empirical evidence on the energy–institution–environment nexus and introduces a novel interaction-based methodology suited to resource-rich economies undergoing institutional transition. Full article
Show Figures

Figure 1

30 pages, 15434 KiB  
Article
A DSP–FPGA Heterogeneous Accelerator for On-Board Pose Estimation of Non-Cooperative Targets
by Qiuyu Song, Kai Liu, Shangrong Li, Mengyuan Wang and Junyi Wang
Aerospace 2025, 12(7), 641; https://doi.org/10.3390/aerospace12070641 - 19 Jul 2025
Viewed by 311
Abstract
The increasing presence of non-cooperative targets poses significant challenges to the space environment and threatens the sustainability of aerospace operations. Accurate on-orbit perception of such targets, particularly those without cooperative markers, requires advanced algorithms and efficient system architectures. This study presents a hardware–software [...] Read more.
The increasing presence of non-cooperative targets poses significant challenges to the space environment and threatens the sustainability of aerospace operations. Accurate on-orbit perception of such targets, particularly those without cooperative markers, requires advanced algorithms and efficient system architectures. This study presents a hardware–software co-design framework for the pose estimation of non-cooperative targets. Firstly, a two-stage architecture is proposed, comprising object detection and pose estimation. YOLOv5s is modified with a Focus module to enhance feature extraction, and URSONet adopts global average pooling to reduce the computational burden. Optimization techniques, including batch normalization fusion, ReLU integration, and linear quantization, are applied to improve inference efficiency. Secondly, a customized FPGA-based accelerator is developed with an instruction scheduler, memory slicing mechanism, and computation array. Instruction-level control supports model generalization, while a weight concatenation strategy improves resource utilization during convolution. Finally, a heterogeneous DSP–FPGA system is implemented, where the DSP manages data pre-processing and result integration, and the FPGA performs core inference. The system is deployed on a Xilinx X7K325T FPGA operating at 200 MHz. Experimental results show that the optimized model achieves a peak throughput of 399.16 GOP/s with less than 1% accuracy loss. The proposed design reaches 0.461 and 0.447 GOP/s/DSP48E1 for two model variants, achieving a 2× to 3× improvement over comparable designs. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

31 pages, 4220 KiB  
Article
A Novel Multi-Server Federated Learning Framework in Vehicular Edge Computing
by Fateme Mazloomi, Shahram Shah Heydari and Khalil El-Khatib
Future Internet 2025, 17(7), 315; https://doi.org/10.3390/fi17070315 - 19 Jul 2025
Viewed by 256
Abstract
Federated learning (FL) has emerged as a powerful approach for privacy-preserving model training in autonomous vehicle networks, where real-world deployments rely on multiple roadside units (RSUs) serving heterogeneous clients with intermittent connectivity. While most research focuses on single-server or hierarchical cloud-based FL, multi-server [...] Read more.
Federated learning (FL) has emerged as a powerful approach for privacy-preserving model training in autonomous vehicle networks, where real-world deployments rely on multiple roadside units (RSUs) serving heterogeneous clients with intermittent connectivity. While most research focuses on single-server or hierarchical cloud-based FL, multi-server FL can alleviate the communication bottlenecks of traditional setups. To this end, we propose an edge-based, multi-server FL (MS-FL) framework that combines performance-driven aggregation at each server—including statistical weighting of peer updates and outlier mitigation—with an application layer handover protocol that preserves model updates when vehicles move between RSU coverage areas. We evaluate MS-FL on both MNIST and GTSRB benchmarks under shard- and Dirichlet-based non-IID splits, comparing it against single-server FL and a two-layer edge-plus-cloud baseline. Over multiple communication rounds, MS-FL with the Statistical Performance-Aware Aggregation method and Dynamic Weighted Averaging Aggregation achieved up to a 20-percentage-point improvement in accuracy and consistent gains in precision, recall, and F1-score (95% confidence), while matching the low latency of edge-only schemes and avoiding the extra model transfer delays of cloud-based aggregation. These results demonstrate that coordinated cooperation among servers based on model quality and seamless handovers can accelerate convergence, mitigate data heterogeneity, and deliver robust, privacy-aware learning in connected vehicle environments. Full article
Show Figures

Figure 1

23 pages, 5173 KiB  
Article
Improvement of Cooperative Localization for Heterogeneous Mobile Robots
by Efe Oğuzhan Karcı, Ahmet Mustafa Kangal and Sinan Öncü
Drones 2025, 9(7), 507; https://doi.org/10.3390/drones9070507 - 19 Jul 2025
Viewed by 334
Abstract
This research focuses on enhancing cooperative localization for heterogeneous mobile robots composed of a quadcopter and an unmanned ground vehicle. The study employs sensor fusion techniques, particularly the Extended Kalman Filter, to fuse data from various sensors, including GPSs, IMUs, and cameras. By [...] Read more.
This research focuses on enhancing cooperative localization for heterogeneous mobile robots composed of a quadcopter and an unmanned ground vehicle. The study employs sensor fusion techniques, particularly the Extended Kalman Filter, to fuse data from various sensors, including GPSs, IMUs, and cameras. By integrating these sensors and optimizing fusion strategies, the research aims to improve the precision and reliability of cooperative localization in complex and dynamic environments. The primary objective is to develop a practical framework for cooperative localization that addresses the challenges posed by the differences in mobility and sensing capabilities among heterogeneous robots. Sensor fusion is used to compensate for the limitations of individual sensors, providing more accurate and robust localization results. Moreover, a comparative analysis of different sensor combinations and fusion strategies helps to identify the optimal configuration for each robot. This research focuses on the improvement of cooperative localization, path planning, and collaborative tasks for heterogeneous robots. The findings have broad applications in fields such as autonomous transportation, agricultural operation, and disaster response, where the cooperation of diverse robotic platforms is crucial for mission success. Full article
Show Figures

Figure 1

Back to TopTop