Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (28,542)

Search Parameters:
Keywords = energy approach

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 10748 KiB  
Article
Rolling Bearing Fault Diagnosis Based on Fractional Constant Q Non-Stationary Gabor Transform and VMamba-Conv
by Fengyun Xie, Chengjie Song, Yang Wang, Minghua Song, Shengtong Zhou and Yuanwei Xie
Fractal Fract. 2025, 9(8), 515; https://doi.org/10.3390/fractalfract9080515 (registering DOI) - 6 Aug 2025
Abstract
Rolling bearings are prone to failure, meaning that research on intelligent fault diagnosis is crucial in relation to this key transmission component in rotating machinery. The application of deep learning (DL) has significantly advanced the development of intelligent fault diagnosis. This paper proposes [...] Read more.
Rolling bearings are prone to failure, meaning that research on intelligent fault diagnosis is crucial in relation to this key transmission component in rotating machinery. The application of deep learning (DL) has significantly advanced the development of intelligent fault diagnosis. This paper proposes a novel method for rolling bearing fault diagnosis based on the fractional constant Q non-stationary Gabor transform (FCO-NSGT) and VMamba-Conv. Firstly, a rolling bearing fault experimental platform is established and the vibration signals of rolling bearings under various working conditions are collected using an acceleration sensor. Secondly, a kurtosis-to-entropy ratio (KER) method and the rotational kernel function of the fractional Fourier transform (FRFT) are proposed and applied to the original CO-NSGT to overcome the limitations of the original CO-NSGT, such as the unsatisfactory time–frequency representation due to manual parameter setting and the energy dispersion problem of frequency-modulated signals that vary with time. A lightweight fault diagnosis model, VMamba-Conv, is proposed, which is a restructured version of VMamba. It integrates an efficient selective scanning mechanism, a state space model, and a convolutional network based on SimAX into a dual-branch architecture and uses inverted residual blocks to achieve a lightweight design while maintaining strong feature extraction capabilities. Finally, the time–frequency graph is inputted into VMamba-Conv to diagnose rolling bearing faults. This approach reduces the number of parameters, as well as the computational complexity, while ensuring high accuracy and excellent noise resistance. The results show that the proposed method has excellent fault diagnosis capabilities, with an average accuracy of 99.81%. By comparing the Adjusted Rand Index, Normalized Mutual Information, F1 Score, and accuracy, it is concluded that the proposed method outperforms other comparison methods, demonstrating its effectiveness and superiority. Full article
20 pages, 2225 KiB  
Article
Multi-Sensor Heterogeneous Signal Fusion Transformer for Tool Wear Prediction
by Ju Zhou, Xinyu Liu, Qianghua Liao, Tao Wang, Lin Wang and Pin Yang
Sensors 2025, 25(15), 4847; https://doi.org/10.3390/s25154847 - 6 Aug 2025
Abstract
In tool wear monitoring, the efficient fusion of multi-source sensor signals poses significant challenges due to their inherent heterogeneous characteristics. In this paper, we propose a Multi-Sensor Multi-Domain feature fusion Transformer (MSMDT) model that achieves precise tool wear prediction through innovative feature engineering [...] Read more.
In tool wear monitoring, the efficient fusion of multi-source sensor signals poses significant challenges due to their inherent heterogeneous characteristics. In this paper, we propose a Multi-Sensor Multi-Domain feature fusion Transformer (MSMDT) model that achieves precise tool wear prediction through innovative feature engineering and cross-modal self-attention mechanisms. Specifically, we first develop a physics-aware feature extraction framework, where time-domain statistical features, frequency-domain energy features, and wavelet packet time–frequency features are systematically extracted for each sensor type. This approach constructs a unified feature matrix that effectively integrates the complementary characteristics of heterogeneous signals while preserving discriminative tool wear signatures. Then, a position-embedding-free Transformer architecture is constructed, which enables adaptive cross-domain feature fusion through joint global context modeling and local feature interaction analysis to predict tool wear values. Experimental results on the PHM2010 demonstrate the superior performance of MSMDT, outperforming state-of-the-art methods in prediction accuracy. Full article
(This article belongs to the Section Industrial Sensors)
19 pages, 1515 KiB  
Article
An Energy System Modeling Approach for Power Transformer Oil Temperature Prediction Based on CEEMD and Robust Deep Ensemble RVFL
by Yan Xu, Haohao Li, Xianyu Meng, Jialei Chen, Xinyu Zhang and Tian Peng
Processes 2025, 13(8), 2487; https://doi.org/10.3390/pr13082487 - 6 Aug 2025
Abstract
Accurate prediction of transformer oil temperature is crucial for load optimization scheduling and timely early warning of thermal faults in power transformers. This paper proposes a transformer oil temperature prediction method based on Complementary Ensemble Empirical Mode Decomposition (CEEMD), Outlier-Robust Ensemble Deep Random [...] Read more.
Accurate prediction of transformer oil temperature is crucial for load optimization scheduling and timely early warning of thermal faults in power transformers. This paper proposes a transformer oil temperature prediction method based on Complementary Ensemble Empirical Mode Decomposition (CEEMD), Outlier-Robust Ensemble Deep Random Vector Functional Link Network (ORedRVFL), and error correction. CEEMD is used to decompose the oil temperature data into multiple subsequences, enhancing the regularity and predictability of the data. Regularization and norm improvements are introduced to edRVFL to obtain a more robust ORedRVFL model. The Tent initialization-based Differential Evolution algorithm (TDE) is employed to optimize the model parameters and predict each subsequence. Finally, error correction is applied to the prediction results. Taking the main transformer of a hydropower station in Yunnan, China as an example, the experimental results show that the proposed method improves the prediction accuracy by 5.05% and 4.13% in winter and summer oil temperature predictions, respectively. Moreover, the model’s degradation is significantly reduced when random noise is added, which verifies its robustness. This method provides an efficient and accurate solution for transformer oil temperature prediction. Full article
15 pages, 3935 KiB  
Article
Highly Efficient Tribocatalysis of Superhard SiC for Water Purification
by Yuanfang Wang, Zheng Wu, Siqi Hong, Ziqi Zhu, Siqi Wu, Biao Chen and Yanmin Jia
Nanomaterials 2025, 15(15), 1206; https://doi.org/10.3390/nano15151206 - 6 Aug 2025
Abstract
Mechanical friction offers a frequent approach for sustainable energy harvesting, as it can be captured and transformed into electricity by means of the triboelectric phenomenon. Theoretically, this electricity may subsequently be employed to drive electrochemical water purification processes. Herein, the experimental results confirm [...] Read more.
Mechanical friction offers a frequent approach for sustainable energy harvesting, as it can be captured and transformed into electricity by means of the triboelectric phenomenon. Theoretically, this electricity may subsequently be employed to drive electrochemical water purification processes. Herein, the experimental results confirm that the SiC particles effectively trigger the tribocatalytic decomposition of Rhodamine B (RhB). During the tribocatalytic decomposition of dye, mechanical friction is generated at the contact surface between the tribocatalyst and a custom-fabricated polytetrafluoroethylene (PTFE) rotating disk, under varying conditions of stirring speed, temperature, and pH value. Hydroxyl radicals and superoxide radicals are confirmed as the dominant reactive species participating in tribocatalytic dye decomposition, as demonstrated by reactive species inhibition experiments. Furthermore, the SiC particles demonstrate remarkable reusability, even after being subjected to five consecutive recycling processes. The exceptional tribocatalytic performance of SiC particles makes them potentially applicable in water purification by harnessing environmental friction energy. Full article
46 pages, 3093 KiB  
Review
Security and Privacy in the Internet of Everything (IoE): A Review on Blockchain, Edge Computing, AI, and Quantum-Resilient Solutions
by Haluk Eren, Özgür Karaduman and Muharrem Tuncay Gençoğlu
Appl. Sci. 2025, 15(15), 8704; https://doi.org/10.3390/app15158704 (registering DOI) - 6 Aug 2025
Abstract
The IoE forms the foundation of the modern digital ecosystem by enabling seamless connectivity and data exchange among smart devices, sensors, and systems. However, the inherent nature of this structure, characterized by high heterogeneity, distribution, and resource constraints, renders traditional security approaches insufficient [...] Read more.
The IoE forms the foundation of the modern digital ecosystem by enabling seamless connectivity and data exchange among smart devices, sensors, and systems. However, the inherent nature of this structure, characterized by high heterogeneity, distribution, and resource constraints, renders traditional security approaches insufficient in areas such as data privacy, authentication, access control, and scalable protection. Moreover, centralized security systems face increasing fragility due to single points of failure, various AI-based attacks, including adversarial learning, model poisoning, and deepfakes, and the rising threat of quantum computers to encryption protocols. This study systematically examines the individual and integrated solution potentials of technologies such as Blockchain, Edge Computing, Artificial Intelligence, and Quantum-Resilient Cryptography within the scope of IoE security. Comparative analyses are provided based on metrics such as energy consumption, latency, computational load, and security level, while centralized and decentralized models are evaluated through a multi-layered security lens. In addition to the proposed multi-layered architecture, the study also structures solution methods and technology integrations specific to IoE environments. Classifications, architectural proposals, and the balance between performance and security are addressed from both theoretical and practical perspectives. Furthermore, a future vision is presented regarding federated learning-based privacy-preserving AI solutions, post-quantum digital signatures, and lightweight consensus algorithms. In this context, the study reveals existing vulnerabilities through an interdisciplinary approach and proposes a holistic framework for sustainable, scalable, and quantum-compatible IoE security. Full article
Show Figures

Figure 1

30 pages, 3560 KiB  
Article
The Planning of Best Site Selection for Wind Energy in Indonesia: A Synergistic Approach Using Data Envelopment Analysis and Fuzzy Multi-Criteria Decision-Making
by Chia-Nan Wang, Yu-Chi Chung, Fajar Dwi Wibowo, Thanh-Tuan Dang and Ngoc-Ai-Thy Nguyen
Energies 2025, 18(15), 4176; https://doi.org/10.3390/en18154176 - 6 Aug 2025
Abstract
The objective of this study is to create an integrated and sustainability-centered framework to identify optimal locations for wind energy projects in Indonesia. This research employs a novel two-phase multi-criteria decision-making (MCDM) framework that combines the strengths of Data Envelopment Analysis (DEA), Fuzzy [...] Read more.
The objective of this study is to create an integrated and sustainability-centered framework to identify optimal locations for wind energy projects in Indonesia. This research employs a novel two-phase multi-criteria decision-making (MCDM) framework that combines the strengths of Data Envelopment Analysis (DEA), Fuzzy Analytic Hierarchy Process (FAHP), and Fuzzy Combined Compromise Solution (F-CoCoSo). Initially, DEA is utilized to pinpoint the most promising sites based on a variety of quantitative factors. Subsequently, these sites are evaluated against qualitative criteria such as technical, economic, environmental, and socio-political considerations using FAHP for criteria weighting and F-CoCoSo for ranking the sites. Comprehensive sensitivity analysis of the criteria weights and a comparative assessment of methodologies substantiate the robustness of the proposed framework. The results converge on consistent rankings across methods, highlighting the effectiveness of the integrated approach. Notably, the results consistently identify Lampung, Aceh, and Riau as the top-ranked provinces, showcasing their strategic suitability for wind plant development. This framework provides a systematic approach for enhancing resource efficiency and strategic planning in Indonesia’s renewable energy sector. Full article
(This article belongs to the Special Issue Progress and Challenges in Wind Farm Optimization)
Show Figures

Figure 1

34 pages, 3002 KiB  
Article
A Refined Fuzzy MARCOS Approach with Quasi-D-Overlap Functions for Intuitive, Consistent, and Flexible Sensor Selection in IoT-Based Healthcare Systems
by Mahmut Baydaş, Safiye Turgay, Mert Kadem Ömeroğlu, Abdulkadir Aydin, Gıyasettin Baydaş, Željko Stević, Enes Emre Başar, Murat İnci and Mehmet Selçuk
Mathematics 2025, 13(15), 2530; https://doi.org/10.3390/math13152530 - 6 Aug 2025
Abstract
Sensor selection in IoT-based smart healthcare systems is a complex fuzzy decision-making problem due to the presence of numerous uncertain and interdependent evaluation criteria. Traditional fuzzy multi-criteria decision-making (MCDM) approaches often assume independence among criteria and rely on aggregation operators that impose sharp [...] Read more.
Sensor selection in IoT-based smart healthcare systems is a complex fuzzy decision-making problem due to the presence of numerous uncertain and interdependent evaluation criteria. Traditional fuzzy multi-criteria decision-making (MCDM) approaches often assume independence among criteria and rely on aggregation operators that impose sharp transitions between preference levels. These assumptions can lead to decision outcomes with insufficient differentiation, limited discriminatory capacity, and potential issues in consistency and sensitivity. To overcome these limitations, this study proposes a novel fuzzy decision-making framework by integrating Quasi-D-Overlap functions into the fuzzy MARCOS (Measurement of Alternatives and Ranking According to Compromise Solution) method. Quasi-D-Overlap functions represent a generalized extension of classical overlap operators, capable of capturing partial overlaps and interdependencies among criteria while preserving essential mathematical properties such as associativity and boundedness. This integration enables a more intuitive, flexible, and semantically rich modeling of real-world fuzzy decision problems. In the context of real-time health monitoring, a case study is conducted using a hybrid edge–cloud architecture, involving sensor tasks such as heartrate monitoring and glucose level estimation. The results demonstrate that the proposed method provides greater stability, enhanced discrimination, and improved responsiveness to weight variations compared to traditional fuzzy MCDM techniques. Furthermore, it effectively supports decision-makers in identifying optimal sensor alternatives by balancing critical factors such as accuracy, energy consumption, latency, and error tolerance. Overall, the study fills a significant methodological gap in fuzzy MCDM literature and introduces a robust fuzzy aggregation strategy that facilitates interpretable, consistent, and reliable decision making in dynamic and uncertain healthcare environments. Full article
Show Figures

Figure 1

23 pages, 3031 KiB  
Article
Integrated Capuchin Search Algorithm-Optimized Multilayer Perceptron for Robust and Precise Prediction of Blast-Induced Airblast in a Blasting Mining Operation
by Kesalopa Gaopale, Takashi Sasaoka, Akihiro Hamanaka and Hideki Shimada
Geosciences 2025, 15(8), 306; https://doi.org/10.3390/geosciences15080306 - 6 Aug 2025
Abstract
Blast-induced airblast poses a significant environmental and operational issue for surface mining, affecting safety, regulatory adherence, and the well-being of surrounding communities. Despite advancements in machine learning methods for predicting airblast, present studies neglect essential geomechanical characteristics, specifically rock mass strength (RMS), which [...] Read more.
Blast-induced airblast poses a significant environmental and operational issue for surface mining, affecting safety, regulatory adherence, and the well-being of surrounding communities. Despite advancements in machine learning methods for predicting airblast, present studies neglect essential geomechanical characteristics, specifically rock mass strength (RMS), which is vital for energy transmission and pressure-wave attenuation. This paper presents a capuchin search algorithm-optimized multilayer perceptron (CapSA-MLP) that incorporates RMS, hole depth (HD), maximum charge per delay (MCPD), monitoring distance (D), total explosive mass (TEM), and number of holes (NH). Blast datasets from a granite quarry were utilized to train and test the model in comparison to benchmark approaches, such as particle swarm optimized artificial neural network (PSO-ANN), multivariate regression analysis (MVRA), and the United States Bureau of Mines (USBM) equation. CapSA-MLP outperformed PSO-ANN (RMSE = 1.120, R2 = 0.904 compared to RMSE = 1.284, R2 = 0.846), whereas MVRA and USBM exhibited lower accuracy. Sensitivity analysis indicated RMS as the main input factor. This study is the first to use CapSA-MLP with RMS for airblast prediction. The findings illustrate the significance of metaheuristic optimization in developing adaptable, generalizable models for various rock types, thereby improving blast design and environmental management in mining activities. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

21 pages, 826 KiB  
Article
Socio-Economic and Environmental Trade-Offs of Sustainable Energy Transition in Kentucky
by Sydney Oluoch, Nirmal Pandit and Cecelia Harner
Sustainability 2025, 17(15), 7133; https://doi.org/10.3390/su17157133 - 6 Aug 2025
Abstract
A just and sustainable energy transition in historically coal-dependent regions like Kentucky requires more than the adoption of new technologies and market-based solutions. This study uses a stated preferences approach to evaluate public support for various attributes of energy transition programs, revealing broad [...] Read more.
A just and sustainable energy transition in historically coal-dependent regions like Kentucky requires more than the adoption of new technologies and market-based solutions. This study uses a stated preferences approach to evaluate public support for various attributes of energy transition programs, revealing broad backing for moving away from coal, as indicated by a negative willingness to pay (WTP) for the status quo (–USD 4.63). Key findings show strong bipartisan support for solar energy, with Democrats showing the highest WTP at USD 8.29, followed closely by Independents/Others at USD 8.22, and Republicans at USD 8.08. Wind energy also garnered support, particularly among Republicans (USD 4.04), who may view it as more industry-compatible and less ideologically polarizing. Job creation was a dominant priority across political affiliations, especially for Independents (USD 9.07), indicating a preference for tangible, near-term economic benefits. Similarly, preserving cultural values tied to coal received support among Independents/Others (USD 4.98), emphasizing the importance of place-based identity in shaping preferences. In contrast, social support programs (e.g., job retraining) and certain post-mining land uses (e.g., recreation and conservation) were less favored, possibly due to their abstract nature, delayed benefits, and political framing. Findings from Kentucky offer insights for other coal-reliant states like Wyoming, West Virginia, Pennsylvania, Indiana, and Illinois. Ultimately, equitable transitions must integrate local voices, address cultural and economic realities, and ensure community-driven planning and investment. Full article
(This article belongs to the Special Issue Energy, Environmental Policy and Sustainable Development)
30 pages, 16226 KiB  
Article
A Dual-Stage and Dual-Population Algorithm Based on Chemical Reaction Optimization for Constrained Multi-Objective Optimization
by Tianyu Zhang, Xin Guo, Yan Li, Na Li, Ruochen Zheng, Wenbo Dong and Weichao Ding
Processes 2025, 13(8), 2484; https://doi.org/10.3390/pr13082484 - 6 Aug 2025
Abstract
Constrained multi-objective optimization problems (CMOPs) require optimizing multiple conflicting objectives while satisfying complex constraints. These constraints generate infeasible regions that challenge traditional algorithms in balancing feasibility and Pareto frontier diversity. chemical reaction optimization (CRO) effectively balances global exploration and local exploitation through molecular [...] Read more.
Constrained multi-objective optimization problems (CMOPs) require optimizing multiple conflicting objectives while satisfying complex constraints. These constraints generate infeasible regions that challenge traditional algorithms in balancing feasibility and Pareto frontier diversity. chemical reaction optimization (CRO) effectively balances global exploration and local exploitation through molecular collision reactions and energy management, thereby enhancing search efficiency. However, standard CRO variants often struggle with CMOPs due to the absence of specialized constraint-handling mechanisms. To address these challenges, this paper integrates the CRO collision reaction mechanism with an existing evolutionary computational framework to design a dual-stage and dual-population chemical reaction optimization (DDCRO) algorithm. This approach employs a staged optimization strategy, which divides population evolution into two phases. The first phase focuses on objective optimization to enhance population diversity, and the second prioritizes constraint satisfaction to accelerate convergence toward the constrained Pareto front. Furthermore, to leverage the infeasible solutions’ guiding potential during the search, DDCRO adopts a two-population strategy. At each stage, the main population tackles the original constrained problem, while the auxiliary population addresses the corresponding unconstrained version. A weak complementary mechanism facilitates information sharing between populations, which enhances search efficiency and algorithmic robustness. Comparative tests on multiple test suites reveal that DDCRO achieves optimal IGD/HV values in 53% of test problems. The proposed algorithm outperforms other state-of-the-art algorithms in both convergence and population diversity. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

22 pages, 2171 KiB  
Article
Upstream Microplastic Removal in Industrial Wastewater: A Pilot Study on Agglomeration-Fixation-Reaction Based Treatment for Water Reuse and Waste Recovery
by Anika Korzin, Michael Toni Sturm, Erika Myers, Dennis Schober, Pieter Ronsse and Katrin Schuhen
Clean Technol. 2025, 7(3), 67; https://doi.org/10.3390/cleantechnol7030067 - 6 Aug 2025
Abstract
This pilot study investigated an automated pilot plant for removing microplastics (MPs) from industrial wastewater that are generated during packaging production. MP removal is based on organosilane-induced agglomeration-fixation (clump & skim technology) followed by separation. The wastewater had high MP loads (1725 ± [...] Read more.
This pilot study investigated an automated pilot plant for removing microplastics (MPs) from industrial wastewater that are generated during packaging production. MP removal is based on organosilane-induced agglomeration-fixation (clump & skim technology) followed by separation. The wastewater had high MP loads (1725 ± 377 mg/L; 673 ± 183 million particles/L) and an average COD of 7570 ± 1339 mg/L. Over 25 continuous test runs, the system achieved consistent performance, removing an average of 97.4% of MPs by mass and 99.1% by particle count, while reducing the COD by 78.8%. Projected over a year, this equates to preventing 1.7 tons of MPs and 6 tons of COD from entering the sewage system. Turbidity and photometric TSS measurements proved useful for process control. The approach supports water reuse—with water savings up to 80%—and allows recovery of agglomerates for recycling and reuse. Targeting pollutant removal upstream at the source provides multiple financial and environmental benefits, including lower overall energy demands, higher removal efficiencies, and process water reuse. This provides financial and environmental incentives for industries to implement sustainable solutions for pollutants and microplastic removal. Full article
27 pages, 7775 KiB  
Article
Fourier–Bessel Series Expansion and Empirical Wavelet Transform-Based Technique for Discriminating Between PV Array and Line Faults to Enhance Resiliency of Protection in DC Microgrid
by Laxman Solankee, Avinash Rai and Mukesh Kirar
Energies 2025, 18(15), 4171; https://doi.org/10.3390/en18154171 - 6 Aug 2025
Abstract
The growing demand for power and the rising awareness of the need to reduce carbon footprints have led to wider acceptance of photovoltaic (PV)-integrated microgrids. PV-based microgrids have numerous significant advantages over other distributed energy resources; however, creating a dependable protection scheme for [...] Read more.
The growing demand for power and the rising awareness of the need to reduce carbon footprints have led to wider acceptance of photovoltaic (PV)-integrated microgrids. PV-based microgrids have numerous significant advantages over other distributed energy resources; however, creating a dependable protection scheme for the DC microgrid is difficult due to the closely resembling current and voltage profiles of PV array faults and line faults in the DC network. The conventional methods fail to clearly discriminate between them. In this regard, a fault-resilient scheme exploiting the inherent characteristics of Fourier–Bessel Series Expansion and Empirical Wavelet Transform (FBSE-EWT) has been utilized in the present work. In order to enhance the efficacy of the bagging tree-based ensemble classifier, Artificial Gorilla Troop Optimization (AGTO) has been used to tune the hyperparameters. The hybrid protection approach is proposed for accurate fault detection, discrimination between scenarios (source-side fault and line-side fault), and classification of various fault types (pole–pole and pole–ground). The discriminatory attributes derived from voltage and current signals recorded at the DC bus using the hybrid FBSE-EWT have been utilized as an input feature set for the AGTO tuned bagging tree-based ensemble classifier to perform the intended tasks of fault detection and discrimination between source faults (PV array faults) and line faults (DC network). The proposed approach has been found to outperform the decision tree and SVM techniques, demonstrating reliability in terms of discriminating between the PV array faults and the DC line faults and resilience against fluctuations in PV irradiance levels. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

25 pages, 77176 KiB  
Article
Advancing Energy Management Strategies for Hybrid Fuel Cell Vehicles: A Comparative Study of Deterministic and Fuzzy Logic Approaches
by Mohammed Essoufi, Mohammed Benzaouia, Bekkay Hajji, Abdelhamid Rabhi and Michele Calì
World Electr. Veh. J. 2025, 16(8), 444; https://doi.org/10.3390/wevj16080444 - 6 Aug 2025
Abstract
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries, these vehicles offer greater efficiency and zero emissions. However, their energy management remains a challenge requiring [...] Read more.
The increasing depletion of fossil fuels and their environmental impact have led to the development of fuel cell hybrid electric vehicles. By combining fuel cells with batteries, these vehicles offer greater efficiency and zero emissions. However, their energy management remains a challenge requiring advanced strategies. This paper presents a comparative study of two developed energy management strategies: a deterministic rule-based approach and a fuzzy logic approach. The proposed system consists of a proton exchange membrane fuel cell (PEMFC) as the primary energy source and a lithium-ion battery as the secondary source. A comprehensive model of the hybrid powertrain is developed to evaluate energy distribution and system behaviour. The control system includes a model predictive control (MPC) method for fuel cell current regulation and a PI controller to maintain DC bus voltage stability. The proposed strategies are evaluated under standard driving cycles (UDDS and NEDC) using a simulation in MATLAB/Simulink. Key performance indicators such as fuel efficiency, hydrogen consumption, battery state-of-charge, and voltage stability are examined to assess the effectiveness of each approach. Simulation results demonstrate that the deterministic strategy offers a structured and computationally efficient solution, while the fuzzy logic approach provides greater adaptability to dynamic driving conditions, leading to improved overall energy efficiency. These findings highlight the critical role of advanced control strategies in improving FCHEV performance and offer valuable insights for future developments in hybrid-vehicle energy management. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
Show Figures

Figure 1

21 pages, 1827 KiB  
Article
System Dynamics Modeling of Cement Industry Decarbonization Pathways: An Analysis of Carbon Reduction Strategies
by Vikram Mittal and Logan Dosan
Sustainability 2025, 17(15), 7128; https://doi.org/10.3390/su17157128 - 6 Aug 2025
Abstract
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption [...] Read more.
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption of low-carbon fuels, the use of carbon capture and storage (CCS) technologies, and the integration of supplementary cementitious materials (SCMs) to reduce the clinker content. The effectiveness of these measures depends on a complex set of interactions involving technological feasibility, market dynamics, and regulatory frameworks. This study presents a system dynamics model designed to assess how various decarbonization approaches influence long-term emission trends within the cement industry. The model accounts for supply chains, production technologies, market adoption rates, and changes in cement production costs. This study then analyzes a number of scenarios where there is large-scale sustained investment in each of three carbon mitigation strategies. The results show that CCS by itself allows the cement industry to achieve carbon neutrality, but the high capital investment results in a large cost increase for cement. A combined approach using alternative fuels and SCMs was found to achieve a large carbon reduction without a sustained increase in cement prices, highlighting the trade-offs between cost, effectiveness, and system-wide interactions. Full article
Show Figures

Figure 1

24 pages, 2863 KiB  
Article
An Integrated Bond Graph Methodology for Building Performance Simulation
by Abdelatif Merabtine
Energies 2025, 18(15), 4168; https://doi.org/10.3390/en18154168 - 6 Aug 2025
Abstract
Building performance simulation is crucial for the design and optimization of sustainable buildings. However, the increasing complexity of building systems necessitates advanced modeling techniques capable of handling multi-domain interactions. This paper presents a novel application of the bond graph (BG) methodology to simulate [...] Read more.
Building performance simulation is crucial for the design and optimization of sustainable buildings. However, the increasing complexity of building systems necessitates advanced modeling techniques capable of handling multi-domain interactions. This paper presents a novel application of the bond graph (BG) methodology to simulate and analyze the thermal behavior of an integrated trigeneration system within an experimental test cell. Unlike conventional simulation approaches, the BG framework enables unified modeling of thermal and hydraulic subsystems, offering a physically consistent and energy-based representation of system dynamics. The study investigates the system’s performance under both dynamic and steady-state conditions across two distinct climatic periods. Validation against experimental data reveals strong agreement between measured and simulated temperatures in heating and cooling scenarios, with minimal deviations. This confirms the method’s reliability and its capacity to capture transient thermal behaviors. The results also demonstrate the BG model’s effectiveness in supporting predictive control strategies, optimizing energy efficiency, and maintaining thermal comfort. By integrating hydraulic circuits and thermal exchange processes within a single modeling framework, this work highlights the potential of bond graphs as a robust and scalable tool for advanced building performance simulation. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

Back to TopTop