Assessment of Different Methods to Determine NH3 Emissions from Small Field Plots After Fertilization
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. NH3 Sampling for Atmospheric Concentrations
2.2.1. Alpha Sampler
2.2.2. Leuning Sampler
2.2.3. Dräger Tubes
2.3. Flux Calculations for NH3 Losses
2.3.1. Integrated Horizontal Flux
2.3.2. ZINST Method
2.3.3. Inverse Dispersion Modelling (IDM) with the Backward Lagrangian Stochastic Dispersion Model
2.3.4. Dräger Tube Method
2.4. Statistics
3. Results
3.1. Cumulative NH3 Emissions Estimated by Different Methods
3.2. Comparison of Cumulative NH3 Emissions
3.3. Correlating Deviation of Cumulative NH3 Emissions of Alpha IDM from Reference Alpha IHF Method with Environmental Factors
4. Discussion
4.1. Alpha IDM in Small Plots
4.2. Dräger Tube Method in Small Plots
4.3. Leuning IHF/ZINST
4.4. Challenges During Concentration Measurements
4.5. Combination of Quantitative Methods with Qualitative Passive Flux Sampler
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NH3 | Ammonia |
DTM | Dynamic chamber Dräger tube method |
IHF | Integrated horizontal flux |
ZINST | Height z, independent of stability |
rRMSE | Relative root mean squared error |
MBE | Mean bias error |
References
- Griffith, S.M.; Huang, X.H.; Louie, P.; Yu, J.Z. Characterizing the thermodynamic and chemical composition factors controlling PM 2.5 nitrate: Insights gained from two years of online measurements in Hong Kong. Atmos. Environ. 2015, 122, 864–875. [Google Scholar] [CrossRef]
- Bergström, A.-K.; Janson, M. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob. Chang. Biol. 2006, 12, 635–643. [Google Scholar] [CrossRef]
- Clark, C.M.; Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 2008, 451, 712–715. [Google Scholar] [CrossRef]
- Hu, Y.; Flessa, H.; Vos, C.; Fuß, R.; Schmidhalter, U. Successful NH3 abatement policies and regulations in German agriculture. Sci. Total Environ. 2024, 956, 177362. [Google Scholar] [CrossRef]
- Ni, K.; Pacholski, A.; Kage, H. Ammonia volatilization after application of urea to winter wheat over 3 years affected by novel urease and nitrification inhibitors. Agric. Ecosyst. Environ. 2014, 197, 184–194. [Google Scholar] [CrossRef]
- Sintermann, J.; Neftel, A.; Ammann, C.; Häni, C.; Hensen, A.; Loubet, B.; Flechard, C.R. Are ammonia emissions from field-applied slurry substantially over-estimated in European emission inventories? Biogeosciences 2012, 9, 1611–1632. [Google Scholar] [CrossRef]
- NIFLUM–Nitrogen. Flux Method Evaluation–Outcomes and Recommendations of an International Expert Workshop; Umweltbundesamt, Ed.; Umweltbundesamt: Dessau-Roßlau, Germany, 2018; Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2018-06-01_texte_44-2018_niflum_0.pdf (accessed on 21 July 2025).
- Braschkat, J.; Mannheim, T.; Horlacher, D.; Marschner, H. Measurement of ammonia emissions after liquid manure application: I. Construction of a windtunnel system for measurements under field conditions. J. Plant Nutr. Soil 1993, 156, 393–396. [Google Scholar] [CrossRef]
- Sommer, S.G.; Misselbrook, T.H. A review of ammonia emission measured using wind tunnels compared with micrometeorological techniques. Soil Use Manag. 2016, 32, 101–108. [Google Scholar] [CrossRef]
- Insausti, M.; Timmis, R.; Kinnersley, R.; Rufino, M.C. Advances in sensing ammonia from agricultural sources. Sci. Total Environ. 2020, 706, 135124. [Google Scholar] [CrossRef]
- Zhou, M.; Li, T.; Liu, P.; Zhang, S.; Liu, Y.; An, T.; Zhao, H. Real-time on-site monitoring of soil ammonia emissions using membrane permeation-based sensing probe. Environ. Pollut. 2021, 289, 117850. [Google Scholar] [CrossRef]
- Denmead, O. A mass balance method for non-intrusive measurements of surface-air trace gas exchange. Atmos. Environ. 1998, 32, 3679–3688. [Google Scholar] [CrossRef]
- Flesch, T.K.; Wilson, J.D.; Harper, L.A.; Crenna, B.P.; Sharpe, R.R. Deducing Ground-to-Air Emissions from Observed Trace Gas Concentrations: A Field Trial. J. Appl. Meteor. 2004, 43, 487–502. [Google Scholar] [CrossRef]
- Flesch, T.K.; Wilson, J.D.; Yee, E. Backward-Time Lagrangian Stochastic Dispersion Models and Their Application to Estimate Gaseous Emissions. J. Appl. Meteor. 1995, 34, 1320–1332. [Google Scholar] [CrossRef]
- Sommer, S.G.; McGinn, S.M.; Flesch, T.K. Simple use of the backwards Lagrangian stochastic dispersion technique for measuring ammonia emission from small field-plots. Eur. J. Agron. 2005, 23, 1–7. [Google Scholar] [CrossRef]
- Herrmann, B.; Jones, S.K.; Fuhrer, J.; Feller, U.; Neftel, A. N budget and NH3 exchange of a grass/clover crop at two levels of N application. Plant Soil 2001, 235, 243–252. [Google Scholar] [CrossRef]
- Wilson, J.D.; Thurtell, G.W.; Kidd, G.E.; Beauchamp, E.G. Estimation of the rate of gaseous mass transfer from a surface source plot to the atmosphere. Atmos. Environ. (1967) 1982, 16, 1861–1867. [Google Scholar] [CrossRef]
- Famulari, D.; Fowler, D.; Hargreaves, K.; Milford, C.; Nemitz, E.; Sutton, M.A.; Weston, K. Measuring eddy covariance fluxes of ammonia using tunable diode laser absorption spectroscopy. Water Air Soil Pollut. Focus 2005, 4, 151–158. [Google Scholar] [CrossRef]
- Ferrara, R.M.; Loubet, B.; Di Tommasi, P.; Bertolini, T.; Magliulo, V.; Cellier, P.; Eugster, W.; Rana, G. Eddy covariance measurement of ammonia fluxes: Comparison of high frequency correction methodologies. Agric. For. Meteorol. 2012, 158–159, 30–42. [Google Scholar] [CrossRef]
- Misselbrook, T.H.; Nicholson, F.A.; Chambers, B.J.; Johnson, R.A. Measuring ammonia emissions from land applied manure: An intercomparison of commonly used samplers and techniques. Environ. Pollut. 2005, 135, 389–397. [Google Scholar] [CrossRef]
- Ni, K.; Köster, J.R.; Seidel, A.; Pacholski, A. Field measurement of ammonia emissions after nitrogen fertilization—A comparison between micrometeorological and chamber methods. Eur. J. Agron. 2015, 71, 115–122. [Google Scholar] [CrossRef]
- Kemmann, B.; Brokötter, J.; Götze, H.; Kelsch, A.; Frößl, J.; Riesch, S.; Heinemann, P.; Kukowski, S.; Pacholski, A.; Flessa, H. Ammonia emissions from urea fertilization—Multi-annual micrometeorological measurements across Germany. Agric. Ecosyst. Environ. 2025, 381, 109416. [Google Scholar] [CrossRef]
- Engel, R.; Jones, C.; Wallander, R. Ammonia Volatilization from Urea and Mitigation by NBPT following Surface Application to Cold Soils. Soil Sci. Soc. Am. J. 2011, 75, 2348–2357. [Google Scholar] [CrossRef]
- White, R.E.; Cai, G.; Chen, D.; Fan, X.H.; Pacholski, A.; Zhu, Z.L.; Ding, H. Gaseous nitrogen losses from urea applied to maize on a calcareous fluvo-aquic soil in the North China Plain. Soil Res. 2002, 40, 737. [Google Scholar] [CrossRef]
- Roelcke, M.; Li, S.X.; Tian, X.H.; Gao, Y.J.; Richter, J. In situ comparisons of ammonia volatilization from N fertilizers in Chinese loess soils. Nutr. Cycl. Agroecosyst. 2002, 62, 73–88. [Google Scholar] [CrossRef]
- Pacholski, A.; Cai, G.; Nieder, R.; Richter, J.; Fan, X.; Zhu, Z.; Roelcke, M. Calibration of a simple method for determining ammonia volatilization in the field—Comparative measurements in Henan Province, China. Nutr. Cycl. Agroecosyst. 2006, 74, 259–273. [Google Scholar] [CrossRef]
- Gericke, D.; Pacholski, A.; Kage, H. Measurement of ammonia emissions in multi-plot field experiments. Biosyst. Eng. 2011, 108, 164–173. [Google Scholar] [CrossRef]
- Kamp, J.N.; Hafner, S.D.; Huijsmans, J.; van Boheemen, K.; Götze, H.; Pacholski, A.; Pedersen, J. Comparison of two micrometeorological and three enclosure methods for measuring ammonia emission after slurry application in two field experiments. Agric. For. Meteorol. 2024, 354, 110077. [Google Scholar] [CrossRef]
- Kelsch, A.; Claß, M.; Brüggemann, N. Accuracy and sensitivity of NH3 measurements using the Dräger Tube Method. Atmos. Meas. Tech. 2025, 18, 1519–1535. [Google Scholar] [CrossRef]
- Huf, M.T.; Olfs, H.-W. Evaluation of the Dynamic Tube Method for Measuring Ammonia Emissions after Liquid Manure Application. Agriculture 2023, 13, 1217. [Google Scholar] [CrossRef]
- Huf, M.T.; Reinsch, T.; Kluß, C.; Essich, C.; Ruser, R.; Buchen-Tschiskale, C.; Pacholski, A.; Flessa, H.; Olfs, H.-W. Evaluation of calibrated passive sampling for quantifying ammonia emissions in multi-plot field trials with slurry application. J. Plant Nutr. Soil Sci. 2023, 186, 451–463. [Google Scholar] [CrossRef]
- Tang, Y.S.; Cape, J.N.; Sutton, M.A. Development and Types of Passive Samplers for Monitoring Atmospheric NO2 and NH3 Concentrations. Sci. World J. 2001, 1, 513–529. [Google Scholar] [CrossRef]
- Loubet, B.; Carozzi, M.; Voylokov, P.; Cohan, J.-P.; Trochard, R.; Génermont, S. Evaluation of a new inference method for estimating ammonia volatilisation from multiple agronomic plots. Biogeosciences 2018, 15, 3439–3460. [Google Scholar] [CrossRef]
- Nikolajsen, M.T.; Pacholski, A.S.; Sommer, S.G. Urea Ammonium Nitrate Solution Treated with Inhibitor Technology: Effects on Ammonia Emission Reduction, Wheat Yield, and Inorganic N in Soil. Agronomy 2020, 10, 161. [Google Scholar] [CrossRef]
- Martin, N.A.; Ferracci, V.; Cassidy, N.; Hook, J.; Battersby, R.M.; di Meane, E.A.; Tang, Y.S.; Stephens, A.C.; Leeson, S.R.; Jones, M.R.; et al. Validation of ammonia diffusive and pumped samplers in a controlled atmosphere test facility using traceable Primary Standard Gas Mixtures. Atmos. Environ. 2019, 199, 453–462. [Google Scholar] [CrossRef]
- Carozzi, M.; Ferrara, R.M.; Fumagalli, M.; Sanna, M. Field-scale ammonia emissions from surface spreading of dairy slurry in Po Valley. Ital. J. Agrometeorol. 2012, 17, 25–34. [Google Scholar]
- Carozzi, M.; Loubet, B.; Acutis, M.; Rana, G.; Ferrara, R.M. Inverse dispersion modelling highlights the efficiency of slurry injection to reduce ammonia losses by agriculture in the Po Valley (Italy). Agric. For. Meteorol. 2013, 171–172, 306–318. [Google Scholar] [CrossRef]
- Kure, J.L.; Krabben, J.; Pedersen, S.V.; Carozzi, M.; Sommer, S.G. An Assessment of Low-Cost Techniques to Measure Ammonia Emission from Multi-Plots: A Case Study with Urea Fertilization. Agronomy 2018, 8, 245. [Google Scholar] [CrossRef]
- Denmead, O.T.; Simpson, J.R.; Freney, J.R. A Direct Field Measurement of Ammonia Emission After Injection of Anhydrous Ammonia. Soil Sci. Soc. Am. J. 1977, 41, 1001–1004. [Google Scholar] [CrossRef]
- Leuning, R.; Freney, J.R.; Denmead, O.T.; Simpson, J.R. A sampler for measuring atmospheric ammonia flux. Atmos. Environ. (1967) 1985, 19, 1117–1124. [Google Scholar] [CrossRef]
- Twigg, M.M.; Berkhout, A.J.C.; Cowan, N.; Crunaire, S.; Dammers, E.; Ebert, V.; Gaudion, V.; Haaima, M.; Häni, C.; John, L.; et al. Intercomparison of in situ measurements of ambient NH3: Instrument performance and application under field conditions. Atmos. Meas. Tech. 2022, 15, 6755–6787. [Google Scholar] [CrossRef]
- Loubet, B.; Génermont, S.; Ferrara, R.; Bedos, C.; Decuq, C.; Personne, E.; Fanucci, O.; Durand, B.; Rana, G.; Cellier, P. An inverse model to estimate ammonia emissions from fields. Eur. J. Soil Sci. 2010, 61, 793–805. [Google Scholar] [CrossRef]
- Goedhart, P.W.; Mosquera, J.; Huijsmans, J.F.M. Estimating ammonia emission after field application of manure by the integrated horizontal flux method: A comparison of concentration and wind speed profiles. Soil Use Manag. 2020, 36, 338–350. [Google Scholar] [CrossRef]
- Flesch, T.K.; Wilson, J.D.; Harper, L.A.; Todd, R.W.; Cole, N.A. Determining ammonia emissions from a cattle feedlot with an inverse dispersion technique. Agric. For. Meteorol. 2007, 144, 139–155. [Google Scholar] [CrossRef]
- Foken, T. Micrometeorology; Springer: Berlin/Heidelberg, Germany, 2008; ISBN 978-3-540-74666-9. [Google Scholar]
- Slade, D.H. Meteorology and Atomic Energy; National Technical Information Service: Springfield, VA, USA, 1968. [Google Scholar]
- Yamartino, R.J. A Comparison of Several “Single-Pass” Estimators of the Standard Deviation of Wind Direction. J. Clim. Appl. Meteor. 1984, 23, 1362–1366. [Google Scholar] [CrossRef]
- Häni, C.; Flechard, C.; Neftel, A.; Sintermann, J.; Kupper, T. Accounting for Field-Scale Dry Deposition in Backward Lagrangian Stochastic Dispersion Modelling of NH3 Emissions. Atmosphere 2018, 9, 146. [Google Scholar] [CrossRef]
- Flesch, T.K.; McGinn, S.M.; Chen, D.; Wilson, J.D.; Desjardins, R.L. Data filtering for inverse dispersion emission calculations. Agric. For. Meteorol. 2014, 198–199, 1–6. [Google Scholar] [CrossRef]
- Bai, M.; Suter, H.; Macdonald, B.; Schwenke, G. Ammonia, methane and nitrous oxide emissions from furrow irrigated cotton crops from two nitrogen fertilisers and application methods. Agric. For. Meteorol. 2021, 303, 108375. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, Y. A Comparison of Three Gap Filling Techniques for Eddy Covariance Net Carbon Fluxes in Short Vegetation Ecosystems. Adv. Meteorol. 2015, 2015, 1–12. [Google Scholar] [CrossRef]
- Pacholski, A. Calibrated Passive Sampling--Multi-plot Field Measurements of NH3 Emissions with a Combination of Dynamic Tube Method and Passive Samplers. J. Vis. Exp. 2016, 53273. [Google Scholar] [CrossRef]
- Quakernack, R.; Pacholski, A.; Techow, A.; Herrmann, A.; Taube, F.; Kage, H. Ammonia volatilization and yield response of energy crops after fertilization with biogas residues in a coastal marsh of Northern Germany. Agric. Ecosyst. Environ. 2012, 160, 66–74. [Google Scholar] [CrossRef]
- Pedersen, S.V.; di Perta, E.S.; Hafner, S.D.; Pacholski, A.S.; Sommer, S.G. Evaluation of a Simple, Small-Plot Meteorological Technique for Measurement of Ammonia Emission: Feasibility, Costs, and Recommendations. Trans. ASABE 2018, 61, 103–115. [Google Scholar] [CrossRef]
- Flesch, T.K.; Wilson, J.D.; Harper, L.A.; Crenna, B.P. Estimating gas emissions from a farm with an inverse-dispersion technique. Atmos. Environ. 2005, 39, 4863–4874. [Google Scholar] [CrossRef]
- Hafner, S.D.; Kamp, J.N.; Pedersen, J. Experimental and model-based comparison of wind tunnel and inverse dispersion model measurement of ammonia emission from field-applied animal slurry. Agric. For. Meteorol. 2024, 344, 109790. [Google Scholar] [CrossRef]
- Di Perta, E.S.; Fiorentino, N.; Carozzi, M.; Cervelli, E.; Pindozzi, S. A Review of Chamber and Micrometeorological Methods to Quantify NH3 Emissions from Fertilisers Field Application. Int. J. Agron. 2020, 2020, 1–16. [Google Scholar] [CrossRef]
- Vandré, R.; Kaupenjohann, M. In Situ Measurement of Ammonia Emissions from Organic Fertilizers in Plot Experiments. Soil Sci. Soc. Am. J. 1998, 62, 467–473. [Google Scholar] [CrossRef]
- Wulf, S.; Maeting, M.; Clemens, J. Application Technique and Slurry Co-Fermentation Effects on Ammonia, Nitrous Oxide, and Methane Emissions after Spreading. J. Environ. Qual. 2002, 31, 1789–1794. [Google Scholar] [CrossRef]
Central | North | South-West | ||||
---|---|---|---|---|---|---|
Location | Hachum | Sickte | Meine | Hohenschulen | Hohenheim | Eckartsweier |
Experiments | Central 1 I-SI, II-SI, III-SI | Central 1 I-SI, II-SI, III-SI | Central 2 I-ME, II-ME, III-ME | North I-HS, II-HS, III-HS | South-West1 I-HO, II-HO, III-HO | South-West 2 I-EW, II-EW, III-EW |
Year | 2021 | 2022 | ||||
Application date | 23 March 27 April and 25 May | 15 March, 20 April and 19 May | 17 March, 21 April and 17 May | 15 March, 27 April and 8 June | 28 March, 9 May and 10 June | 08 March, 22 April and 24 May |
Duration of experiment [d] | 16, 8, 13 | 16, 14,11 | 14, 14, 14 | 18, 13, 13 | 7, 11, 17 | 19, 7, 15 |
Measurement methods | Leuning IHF, Alpha IHF, Alpha IDM, DTM, passive sampler | Alpha IHF, Alpha IDM, DTM | Leuning ZINST, Alpha IHF, Alpha IDM, DTM | Leuning ZINST, Alpha IHF, Alpha IDM, DTM | Leuning ZINST, Alpha IHF, Alpha IDM, DTM | Leuning ZINST, Alpha IHF, Alpha IDM, DTM |
Application rate [kg N ha−1] | 40, 70, 60 | 60, 60, 50 | 50, 50, 45 | 60, 70, 60 | 50, 50, 50 | 68.5, 68.5, 68.5 |
BBCH | 22, 30, 39 | 24, 30, 37 | 23, 32, 38 | 23, 31, 51 | 23, 32, 65 | 22, 32, 55 |
Crop height [m] | 0.05, 0.25, 0.65 | 0.05, 0.2, 0.55 | 0.05, 0.2, 0.65 | 0.05, 0.25, 0.70 | 0.05, 0.45, 0.9 | 0.05, 0.3, 0.9 |
Coordinates North/East | 52.111943/10.411358 | 52.20258681/10.63550590 | 52.38728164/10.56251223 | 54.314768/9.998371 | 48.716286/9.18853 | 48.518299/7.869955 |
Sand [mass-%] | 36.78 | 48.6 | 68.61 | 52.54 | 7.87 | 33.73 |
Silt [mass-%] | 37.3 | 37.3 | 24.24 | 31.98 | 69.3 | 49.97 |
Clay [mass-%] | 10.7 | 14.1 | 7.15 | 15.49 | 22.83 | 16.3 |
TOC [mass-%] | 1.64 | 1.57 | 1.35 | 1.22 | 1.36 | 1.02 |
TC [mass-%] | 1.66 | 1.62 | 1.39 | 1.24 | 1.42 | 1.02 |
CEC [cmol kg−1] | 12.51 | 13.05 | 7.52 | 12.29 | 14.42 | 9.08 |
pH (CaCl2) [mol L−1] | 6.02 | 6.36 | 6.59 | 6.84 | 6.78 | 5.97 |
Scale | Plot Size | Sampler/Sampling Height | Flux Calculation | References |
---|---|---|---|---|
Small multi-plot | 9 × 9 m = 81 m2 | Dräger tubes (Exhaust air from dynamic chamber) | DTM | [25,26] |
Alpha sampler 0.25 m above canopy | IDM | [13,14,15,32] | ||
Large circular plots | r = 20 m/1257 m2 location Central 1: r = 70 m/15,394 m2 | Alpha sampler 0.25, 0.55, 0.95, 1.7 and 2.7 m above canopy | IHF | [22] |
Leuning sampler 0.25, 0.55, 0.95, 1.7 and 2.7 m above canopy | IHF ZINST | [12,17,39,40] |
Method | rRMSE [%] | MBE [kg N ha−1] | With Posterior Correction |
---|---|---|---|
Alpha IHF ~ DTM | 10.68 | −0.43 | No |
Alpha IHF ~ Alpha IDM | 39.78 | +8.53 | No |
Alpha IHF ~ Alpha IDM corr. correction factor of 0.27: WS (2 m) <2.1 m s−1 ᴧ temp (2 m) >10 °C no correction: WS (2 m) >2.1 m s−1 ᴠ temp (2 m) <10 °C | 19.63 | +2.24 | Yes |
Alpha IHF ~ Leuning IHF/ZINST | 20.95 | +3.19 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Götze, H.; Brokötter, J.; Frößl, J.; Kelsch, A.; Kukowski, S.; Pacholski, A.S. Assessment of Different Methods to Determine NH3 Emissions from Small Field Plots After Fertilization. Environments 2025, 12, 255. https://doi.org/10.3390/environments12080255
Götze H, Brokötter J, Frößl J, Kelsch A, Kukowski S, Pacholski AS. Assessment of Different Methods to Determine NH3 Emissions from Small Field Plots After Fertilization. Environments. 2025; 12(8):255. https://doi.org/10.3390/environments12080255
Chicago/Turabian StyleGötze, Hannah, Julian Brokötter, Jonas Frößl, Alexander Kelsch, Sina Kukowski, and Andreas Siegfried Pacholski. 2025. "Assessment of Different Methods to Determine NH3 Emissions from Small Field Plots After Fertilization" Environments 12, no. 8: 255. https://doi.org/10.3390/environments12080255
APA StyleGötze, H., Brokötter, J., Frößl, J., Kelsch, A., Kukowski, S., & Pacholski, A. S. (2025). Assessment of Different Methods to Determine NH3 Emissions from Small Field Plots After Fertilization. Environments, 12(8), 255. https://doi.org/10.3390/environments12080255