Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (314)

Search Parameters:
Keywords = elevated storage temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 15459 KiB  
Article
Effect of Fiber Type on the Thermomechanical Performance of High-Density Polyethylene (HDPE) Composites with Continuous Reinforcement
by José Luis Colón Quintana, Scott Tomlinson and Roberto A. Lopez-Anido
J. Compos. Sci. 2025, 9(8), 450; https://doi.org/10.3390/jcs9080450 - 20 Aug 2025
Viewed by 242
Abstract
The thermal, thermomechanical, and viscoelastic properties of continuous unidirectional (UD) glass fiber/high-density polyethylene (GF/HDPE) and ultra-high-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) tapes are characterized in this paper in order to support their use in extreme environments. Unlike prior studies that focus on short-fiber composites or [...] Read more.
The thermal, thermomechanical, and viscoelastic properties of continuous unidirectional (UD) glass fiber/high-density polyethylene (GF/HDPE) and ultra-high-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) tapes are characterized in this paper in order to support their use in extreme environments. Unlike prior studies that focus on short-fiber composites or limited thermal conditions, this work examines continuous fiber architectures under five operational environments derived from Army Regulation 70-38, reflecting realistic defense-relevant extremes. Differential scanning calorimetry (DSC) was used to identify melting transitions for GF/HDPE and UHMWPE/HDPE, which guided the selection of test conditions for thermomechanical analysis (TMA) and dynamic mechanical analysis (DMA). TMA revealed anisotropic thermal expansion consistent with fiber orientation, while DMA, via strain sweep, temperature ramp, frequency sweep, and stress relaxation, quantified their temperature- and time-dependent viscoelastic behavior. The frequency-dependent storage modulus highlighted multiple resonant modes, and stress relaxation data were fitted with high accuracy (R2 > 0.99) to viscoelastic models, yielding model parameters that can be used for predictive simulations of time-dependent material behavior. A comparative analysis between the two material systems showed that UHMWPE/HDPE offers enhanced unidirectional stiffness and better low-temperature performance. At the same time, GF/HDPE exhibits lower thermal expansion, better transverse stiffness, and greater stability at elevated temperatures. These differences highlight the impact of fiber type on thermal and mechanical responses, informing material selection for applications that require directional load-bearing or dimensional control under thermal cycling. By integrating thermal and viscoelastic characterization across realistic operational profiles, this study provides a foundational dataset for the application of continuous fiber thermoplastic tapes in structural components exposed to harsh thermal and mechanical conditions. Full article
Show Figures

Figure 1

21 pages, 4704 KiB  
Article
Effect of Waste Metal and Chamotte Fillers on the Thermal and Mechanical Properties of Geopolymer Composites for Energy Storage Applications
by Aleš Soukup, Mohammadtaghi Vakili and Pavlína Hájková
Materials 2025, 18(16), 3853; https://doi.org/10.3390/ma18163853 - 17 Aug 2025
Viewed by 278
Abstract
This study investigates the effects of varying filler content on the thermal and mechanical performance of metakaolinite-based geopolymer composites designed for thermal energy storage applications. The composites were formulated using a geopolymer binder, combined with a thermally stable filler (ground chamotte) and a [...] Read more.
This study investigates the effects of varying filler content on the thermal and mechanical performance of metakaolinite-based geopolymer composites designed for thermal energy storage applications. The composites were formulated using a geopolymer binder, combined with a thermally stable filler (ground chamotte) and a thermal energy storage filler (waste steel chips) in different proportions. Chamotte content within the binder matrix (binder + chamotte) ranged from 20 to 40 wt.%, while steel chip content varied from 0 to 40 wt.% of the total composite mass. The thermal properties of the composites were evaluated at room temperature and compared with conventional reference materials, including Ultraboard, chamotte brick, and magnetite brick. Mechanical performance, specifically flexural and compressive strength, was evaluated at room temperature and after exposure to elevated temperatures (800 and 1100 °C), followed by two cooling regimes, slow furnace cooling and rapid water quenching. Microstructural characterization via optical microscopy was used to examine filler dispersion and matrix–filler interactions. The results showed that the thermal effusivity of the optimized composites exceeded that of chamotte brick by more than 50%. The highest flexural (12.68 MPa) and compressive (86.18 MPa) strengths were achieved in the composite containing 20 wt.% steel chips, prior to thermal exposure. Microstructural observations revealed the diverse geometry of the steel chips and arrangement of the chamotte particles. These findings highlight the potential of incorporating metallic waste materials into geopolymer systems to develop multifunctional composites with improved thermal storage capacity and mechanical resilience. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

33 pages, 22477 KiB  
Article
Spatial Synergy Between Carbon Storage and Emissions in Coastal China: Insights from PLUS-InVEST and OPGD Models
by Chunlin Li, Jinhong Huang, Yibo Luo and Junjie Wang
Remote Sens. 2025, 17(16), 2859; https://doi.org/10.3390/rs17162859 - 16 Aug 2025
Viewed by 333
Abstract
Coastal zones face mounting pressures from rapid urban expansion and ecological degradation, posing significant challenges to achieving synergistic carbon storage and emissions reduction under China’s “dual carbon” goals. Yet, the identification of spatially explicit zones of carbon synergy (high storage–low emissions) and conflict [...] Read more.
Coastal zones face mounting pressures from rapid urban expansion and ecological degradation, posing significant challenges to achieving synergistic carbon storage and emissions reduction under China’s “dual carbon” goals. Yet, the identification of spatially explicit zones of carbon synergy (high storage–low emissions) and conflict (high emissions–low storage) in these regions remains limited. This study integrates the PLUS (Patch-generating Land Use Simulation), InVEST (Integrated Valuation of Ecosystem Services and Trade-offs), and OPGD (optimal parameter-based GeoDetector) models to evaluate the impacts of land-use/cover change (LUCC) on coastal carbon dynamics in China from 2000 to 2030. Four contrasting land-use scenarios (natural development, economic development, ecological protection, and farmland protection) were simulated to project carbon trajectories by 2030. From 2000 to 2020, rapid urbanization resulted in a 29,929 km2 loss of farmland and a 43,711 km2 increase in construction land, leading to a net carbon storage loss of 278.39 Tg. Scenario analysis showed that by 2030, ecological and farmland protection strategies could increase carbon storage by 110.77 Tg and 110.02 Tg, respectively, while economic development may further exacerbate carbon loss. Spatial analysis reveals that carbon conflict zones were concentrated in major urban agglomerations, whereas spatial synergy zones were primarily located in forest-rich regions such as the Zhejiang–Fujian and Guangdong–Guangxi corridors. The OPGD results demonstrate that carbon synergy was driven largely by interactions between socioeconomic factors (e.g., population density and nighttime light index) and natural variables (e.g., mean annual temperature, precipitation, and elevation). These findings emphasize the need to harmonize urban development with ecological conservation through farmland protection, reforestation, and low-emission planning. This study, for the first time, based on the PLUS-Invest-OPGD framework, proposes the concepts of “carbon synergy” and “carbon conflict” regions and their operational procedures. Compared with the single analysis of the spatial distribution and driving mechanisms of carbon stocks or carbon emissions, this method integrates both aspects, providing a transferable approach for assessing the carbon dynamic processes in coastal areas and guiding global sustainable planning. Full article
(This article belongs to the Special Issue Carbon Sink Pattern and Land Spatial Optimization in Coastal Areas)
Show Figures

Figure 1

15 pages, 3096 KiB  
Article
Optimization of Swertiamarin and Isogentisin Extraction from Gentiana lutea L. Leaves by Response Surface Methodology
by Katarina Šavikin, Miloš S. Jovanović, Gordana Zdunić, Jelena Živković, Dušanka Kitić, Dubravka Bigović and Teodora Janković
Plants 2025, 14(16), 2538; https://doi.org/10.3390/plants14162538 - 15 Aug 2025
Viewed by 240
Abstract
Leaves of Gentiana lutea L., traditionally used for treating heart disorders, represent a sustainable and underutilized source of bitter secoiridoids and xanthones, also found in Gentianae radix—an official herbal drug derived from the same, protected species. As root harvesting leads to the [...] Read more.
Leaves of Gentiana lutea L., traditionally used for treating heart disorders, represent a sustainable and underutilized source of bitter secoiridoids and xanthones, also found in Gentianae radix—an official herbal drug derived from the same, protected species. As root harvesting leads to the destruction of the plant, using the more readily available leaves could help reduce the pressure on this endangered natural resource. This study aimed to optimize the ultrasound-assisted extraction of the secoiridoid swertiamarin and the xanthone isogentisin from G. lutea leaves using response surface methodology (RSM). Subsequently, the stability of the bioactive compounds (swertiamarin, gentiopicrin, mangiferin, isoorientin, isovitexin, and isogentisin) in the optimized extract was monitored over a 30-day period under different storage conditions. The influence of extraction time (5–65 min), ethanol concentration (10–90% v/v), liquid-to-solid ratio (10–50 mL/g), and temperature (20–80 °C) was analyzed at five levels according to a central composite design. The calculated optimal extraction conditions for the simultaneous maximization of swertiamarin and isogentisin yields were 50 min extraction time, 30% v/v ethanol concentration, 30 mL/g liquid-to-solid ratio, and 62.7 °C extraction temperature. Under these conditions, the experimentally obtained yields were 3.75 mg/g dry weight for swertiamarin and 1.57 mg/g dry weight for isogentisin, closely matching the RSM model predictions. The stability study revealed that low-temperature storage preserved major bioactive compounds, whereas mangiferin stability was compromised by elevated temperature and light exposure. The established models support the production of standardized G. lutea leaf extracts and may facilitate the efficient separation and purification of their bioactive compounds, thereby contributing to the further valorization of this valuable plant material. Full article
(This article belongs to the Special Issue Efficacy, Safety and Phytochemistry of Medicinal Plants)
Show Figures

Figure 1

18 pages, 3189 KiB  
Article
Environmental Monitoring and Quality Dynamics of Wheat During One Year of Natural Storage
by Poetelea Diana Petronela, Mosnegutu Emilian, Tomozei Claudia, Florin Nedeff, Narcis Barsan, Mirela Panainte-Lehadus, Diana Carmen Mirila and Grzegorz Przydatek
Processes 2025, 13(8), 2549; https://doi.org/10.3390/pr13082549 - 13 Aug 2025
Viewed by 286
Abstract
This study investigates the impact of climatic factors on the quality of naturally stored wheat, focusing on the relationship between environmental conditions (temperature and humidity) and key physico-chemical properties (internal moisture, protein, gluten, and test weight). Elevated temperatures (>25 °C) and high relative [...] Read more.
This study investigates the impact of climatic factors on the quality of naturally stored wheat, focusing on the relationship between environmental conditions (temperature and humidity) and key physico-chemical properties (internal moisture, protein, gluten, and test weight). Elevated temperatures (>25 °C) and high relative humidity (>65%) are known to accelerate grain degradation, promoting mold development and reducing baking quality. This research was conducted over 12 months in a temperate-region storage facility in Romania, using RO 1 common wheat (Triticum aestivum L.) harvested in 2023. A total of 48 samples were periodically collected, and environmental and product parameters were continuously monitored using a LoRaWAN-based digital system. The results revealed strong correlations between ambient humidity and grain moisture (r2 = 0.99), and between external and internal temperatures (r2 = 0.99), with observable thermal and hygroscopic lags. Wheat quality degradation was most pronounced during warmer months, with protein content decreasing from 13.1% to 11.6%, gluten from 27.1% to below 26%, and hectoliter weight from 80.1 kg/hl to under 78 kg/hl. Multivariate statistical analyses (PCA and HCA) identified clusters of interdependent variables, while regression-based predictive models achieved high accuracy (r2 > 0.97), confirming the feasibility of forecasting wheat quality under varying climatic scenarios. These findings underscore the critical role of climate control and real-time environmental monitoring in preserving wheat quality during storage. This study supports the integration of advanced technologies and predictive analytics into post-harvest management strategies, contributing to reduced losses and enhanced food safety in the agri-food supply chain. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

38 pages, 2276 KiB  
Review
Drying Technologies for Stevia rebaudiana Bertoni: Advances, Challenges, and Impacts on Bioactivity for Food Applications—A Review
by Shahin Roohinejad, Mohamed Koubaa and Seyed Mohammad Taghi Gharibzahedi
Foods 2025, 14(16), 2801; https://doi.org/10.3390/foods14162801 - 12 Aug 2025
Viewed by 617
Abstract
Stevia rebaudiana leaves and extracts need to be promptly dried after harvest to prevent microbial activity and preserve their bioactive compounds, including glycosides, flavonoids, and essential oils. Effective drying also reduces moisture and volume, which lowers packaging, storage, and transportation costs. Therefore, innovative [...] Read more.
Stevia rebaudiana leaves and extracts need to be promptly dried after harvest to prevent microbial activity and preserve their bioactive compounds, including glycosides, flavonoids, and essential oils. Effective drying also reduces moisture and volume, which lowers packaging, storage, and transportation costs. Therefore, innovative drying methods are necessary to maintain stevia’s physicochemical, sensory, and nutritional properties for functional food formulations. This review evaluates various drying technologies for stevia leaves and extracts, including convective hot air, infrared, vacuum, microwave, freeze, and shade drying, and their impacts on product quality and energy efficiency. It also explores the growing applications of dried and extracted stevia in food products. By comparing different drying methods and highlighting the benefits of stevia in these food formulations, this investigation aims to identify future research directions and optimization strategies for utilizing stevia as a natural sweetener and functional ingredient. Convective hot air drying at higher temperatures was found to be the most energy-efficient, though several studies have reported moderate degradation of key bioactive compounds such as stevioside and rebaudioside A, particularly at elevated temperatures and extended drying times. Infrared drying enhanced antimicrobial activity but resulted in lower levels of polyphenols and antioxidants. Vacuum drying effectively preserved anti-inflammatory compounds like flavonoids. Microwave drying presented strong protection of antioxidant activity and superior particle morphology. Freeze drying, while less energy-efficient, was the most effective at retaining antioxidants, polyphenols, and volatile compounds. Shade drying, though time-consuming, maintained high levels of polyphenols, flavonoids, and essential oils. Advanced techniques like spray drying and electrospraying have been reported to enhance the sensory qualities and stability of stevia extracts, making them ideal for food applications such as dairy and baked products, confectionery, syrups, snacks, jams, preserves, and meat products. Overall, stevia not only serves as a natural, zero-calorie sweetener but also contributes to improved health benefits and product quality in these diverse food formulations. Full article
Show Figures

Figure 1

19 pages, 60167 KiB  
Article
Mapping Ecosystem Carbon Storage in the Nanling Mountains of Guangdong Province Using Machine Learning Based on Multi-Source Remote Sensing
by Wei Wang, Liangbo Tang, Ying Zhang, Junxing Cai, Xiaoyuan Chen and Xiaoyun Mao
Atmosphere 2025, 16(8), 954; https://doi.org/10.3390/atmos16080954 - 10 Aug 2025
Viewed by 464
Abstract
Accurate assessment of terrestrial ecosystem carbon storage is essential for understanding the global carbon cycle and informing climate change mitigation strategies. However, traditional estimation models face significant challenges in complex mountainous regions due to difficulties in data acquisition and high ecosystem heterogeneity. This [...] Read more.
Accurate assessment of terrestrial ecosystem carbon storage is essential for understanding the global carbon cycle and informing climate change mitigation strategies. However, traditional estimation models face significant challenges in complex mountainous regions due to difficulties in data acquisition and high ecosystem heterogeneity. This study focuses on the Nanling Mountains in Guangdong Province, China, utilizing the Google Earth Engine (GEE) platform to integrate multi-source remote sensing data (Sentinel-1/2, ALOS, GEDI, MODIS), topographic/climatic variables, and field-collected samples. We employed machine learning models to achieve high-precision prediction and high-resolution mapping of ecosystem carbon storage while also analyzing spatial differentiation patterns. The results indicate that the Random Forest algorithm outperformed Gradient Boosting Decision Tree and Classification and Regression Tree (CART) algorithms by suppressing overfitting through dual randomization. The integration of multi-source data significantly enhanced model performance, achieving a coefficient of determination (R2) of 0.87 for aboveground biomass (AGB) and 0.65 for soil organic carbon (SOC). Integrating precipitation, temperature, and topographic variables improved SOC prediction accuracy by 96.77% compared to using optical data alone. The total carbon storage reached 404 million tons, with forest ecosystems contributing 96.7% of the total and soil carbon pools accounting for 60%. High carbon density zones (>160 Mg C/ha) were mainly concentrated in mid-elevation gentle slopes (300–700 m). The proposed integrated “optical-radar-topography-climate” framework offers a scalable and transferable solution for monitoring carbon storage in complex terrains and provides robust scientific support for carbon sequestration planning in subtropical mountain ecosystems. Full article
Show Figures

Figure 1

7 pages, 1019 KiB  
Proceeding Paper
Melting Boundaries: How Heat Transforms Recycled Bottles into Chemical Time Bombs
by Marwa Al-Ani and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 8; https://doi.org/10.3390/materproc2025022008 - 31 Jul 2025
Viewed by 141
Abstract
Plastic recycling, especially of polyethylene terephthalate (PET), is essential for reducing plastic waste and promoting sustainability. This study examines the migration of phthalic acid esters (PAEs) from locally sourced recycled PET (rPET) bottles under high-temperature conditions (24 °C, 50 °C, and cyclic 70 [...] Read more.
Plastic recycling, especially of polyethylene terephthalate (PET), is essential for reducing plastic waste and promoting sustainability. This study examines the migration of phthalic acid esters (PAEs) from locally sourced recycled PET (rPET) bottles under high-temperature conditions (24 °C, 50 °C, and cyclic 70 °C) over a period of three weeks. High-Performance Liquid Chromatography (HPLC) analysis revealed increased PAE leaching at elevated temperatures, though levels remained below international safety limits. Thermo-Gravimetric Analyzer (TGA) confirmed that plastic caps exhibit higher thermal stability and decompose more completely than plastic bottles under various thermal conditions, highlighting the influence of material composition and thermal aging on degradation behavior. Findings highlight the importance of proper storage and ongoing monitoring to ensure consumer safety. Future research should investigate alternative plasticizers to improve the safety of PET recycling. Full article
Show Figures

Figure 1

24 pages, 1087 KiB  
Review
After-Treatment Technologies for Emissions of Low-Carbon Fuel Internal Combustion Engines: Current Status and Prospects
by Najunzhe Jin, Wuqiang Long, Chunyang Xie and Hua Tian
Energies 2025, 18(15), 4063; https://doi.org/10.3390/en18154063 - 31 Jul 2025
Viewed by 483
Abstract
In response to increasingly stringent emission regulations, low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels, methane, methanol, hydrogen, and ammonia, by systematically summarizing their combustion characteristics and emission profiles, along [...] Read more.
In response to increasingly stringent emission regulations, low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels, methane, methanol, hydrogen, and ammonia, by systematically summarizing their combustion characteristics and emission profiles, along with a review of existing after-treatment technologies tailored to each fuel type. For methane engines, unburned hydrocarbon (UHC) produced during low-temperature combustion exhibits poor oxidation reactivity, necessitating integration of oxidation strategies such as diesel oxidation catalyst (DOC), particulate oxidation catalyst (POC), ozone-assisted oxidation, and zoned catalyst coatings to improve purification efficiency. Methanol combustion under low-temperature conditions tends to produce formaldehyde and other UHCs. Due to the lack of dedicated after-treatment systems, pollutant control currently relies on general-purpose catalysts such as three-way catalyst (TWC), DOC, and POC. Although hydrogen combustion is carbon-free, its high combustion temperature often leads to elevated nitrogen oxide (NOx) emissions, requiring a combination of optimized hydrogen supply strategies and selective catalytic reduction (SCR)-based denitrification systems. Similarly, while ammonia offers carbon-free combustion and benefits from easier storage and transportation, its practical application is hindered by several challenges, including low ignitability, high toxicity, and notable NOx emissions compared to conventional fuels. Current exhaust treatment for ammonia-fueled engines primarily depends on SCR, selective catalytic reduction-coated diesel particulate filter (SDPF). Emerging NOx purification technologies, such as integrated NOx reduction via hydrogen or ammonia fuel utilization, still face challenges of stability and narrow effective temperatures. Full article
(This article belongs to the Special Issue Engine Combustion Characteristics, Performance, and Emission)
Show Figures

Figure 1

26 pages, 11108 KiB  
Article
Warming in the Maternal Environment Alters Seed Performance and Genetic Diversity of Stylosanthes capitata, a Tropical Legume Forage
by Priscila Marlys Sá Rivas, Fernando Bonifácio-Anacleto, Ivan Schuster, Carlos Alberto Martinez and Ana Lilia Alzate-Marin
Genes 2025, 16(8), 913; https://doi.org/10.3390/genes16080913 - 30 Jul 2025
Viewed by 513
Abstract
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to [...] Read more.
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to warming and elevated CO2 on progeny physiology, genetic diversity, and population structure in Stylosanthes capitata, a resilient forage legume native to Brazil. Methods: Maternal plants were cultivated under controlled treatments, including ambient conditions (control), elevated CO2 at 600 ppm (eCO2), elevated temperature at +2 °C (eTE), and their combined exposure (eTEeCO2), within a Trop-T-FACE field facility (Temperature Free-Air Controlled Enhancement and Free-Air Carbon Dioxide Enrichment). Seed traits (seeds per inflorescence, hundred-seed mass, abortion, non-viable seeds, coat color, germination at 32, 40, 71 weeks) and abnormal seedling rates were quantified. Genetic diversity metrics included the average (A) and effective (Ae) number of alleles, observed (Ho) and expected (He) heterozygosity, and inbreeding coefficient (Fis). Population structure was assessed using Principal Coordinates Analysis (PCoA), Analysis of Molecular Variance (AMOVA), number of migrants per generation (Nm), and genetic differentiation index (Fst). Two- and three-way Analysis of Variance (ANOVA) were used to evaluate factor effects. Results: Compared to control conditions, warming increased seeds per inflorescence (+46%), reduced abortion (−42.9%), non-viable seeds (−57%), and altered coat color. The germination speed index (GSI +23.5%) and germination rate (Gr +11%) improved with warming; combined treatments decreased germination time (GT −9.6%). Storage preserved germination traits, with warming enhancing performance over time and reducing abnormal seedlings (−54.5%). Conversely, elevated CO2 shortened GSI in late stages, impairing germination efficiency. Warming reduced Ae (−35%), He (−20%), and raised Fis (maternal 0.50, progeny 0.58), consistent with the species’ mixed mating system; A and Ho were unaffected. Allele frequency shifts suggested selective pressure under eTE. Warming induced slight structure in PCoA, and AMOVA detected 1% (maternal) and 9% (progeny) variation. Fst = 0.06 and Nm = 3.8 imply environmental influence without isolation. Conclusions: Warming significantly shapes seed quality, reproductive success, and genetic diversity in S. capitata. Improved reproduction and germination suggest adaptive advantages, but higher inbreeding and reduced diversity may constrain long-term resilience. The findings underscore the need for genetic monitoring and broader genetic bases in cultivars confronting environmental stressors. Full article
(This article belongs to the Special Issue Genetics and Breeding of Forage)
Show Figures

Graphical abstract

13 pages, 1599 KiB  
Article
Differential Expression of Hsp100 Gene in Scrippsiella acuminata: Potential Involvement in Life Cycle Transition and Dormancy Maintenance
by Fengting Li, Lixia Shang, Hanying Zou, Chengxing Sun, Zhangxi Hu, Ying Zhong Tang and Yunyan Deng
Diversity 2025, 17(8), 519; https://doi.org/10.3390/d17080519 - 26 Jul 2025
Viewed by 237
Abstract
Protein degradation plays a fundamental role in maintaining protein homeostasis and ensures proper cellular function by regulating protein quality and quantity. Heat shock protein 100 (Hsp100), found in bacteria, plants, and fungi, is a unique chaperone family responsible for rescuing misfolded proteins from [...] Read more.
Protein degradation plays a fundamental role in maintaining protein homeostasis and ensures proper cellular function by regulating protein quality and quantity. Heat shock protein 100 (Hsp100), found in bacteria, plants, and fungi, is a unique chaperone family responsible for rescuing misfolded proteins from aggregated states in an ATP-dependent manner. To date, they are primarily known to mediate heat stress adaptation and enhance cellular survival under extreme conditions in higher plants and algae. Resting cyst formation in dinoflagellates is widely recognized as a response to adverse conditions, which offers an adaptive advantage to endure harsh environmental extremes that are unsuitable for vegetative cell growth and survival. In this study, based on a full-length cDNA sequence, we characterized an Hsp100 gene (SaHsp100) from the cosmopolitan bloom-forming dinoflagellate Scrippsiella acuminata, aiming to examine its life stage-specific expression patterns and preliminarily explore its potential functions. The qPCR results revealed that Hsp100 transcript levels were significantly elevated in newly formed resting cysts compared to vegetative cells and continued to increase during storage under simulated marine sediment conditions (darkness, low temperature, and anoxia). Parallel reaction monitoring (PRM)-based quantification further confirmed that Hsp100 protein levels were significantly higher in resting cysts than in vegetative cells and increased after three months of storage. These findings collectively highlighted the fundamental role of Hsp100 in the alteration of the life cycle and dormancy maintenance of S. acuminata, likely by enhancing stress adaptation and promoting cell survival through participation in proteostasis maintenance, particularly under natural sediment-like conditions that trigger severe abiotic stress. Our work deepens the current understanding of Hsp family members in dinoflagellates, paving the way for future investigations into their ecological relevance within this ecologically significant group. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

14 pages, 1849 KiB  
Article
Climate-Driven Microbial Communities Regulate Soil Organic Carbon Stocks Along the Elevational Gradient on Alpine Grassland over the Qinghai–Tibet Plateau
by Xiaomei Mo, Jinhong He, Guo Zheng, Xiangping Tan and Shuyan Cui
Agronomy 2025, 15(8), 1810; https://doi.org/10.3390/agronomy15081810 - 26 Jul 2025
Viewed by 459
Abstract
The Qinghai–Tibet Plateau, a region susceptible to global change, stores substantial amounts of soil organic carbon (SOC) in its alpine grassland. However, little is known about how SOC is regulated by soil microbial communities, which vary with elevation, mean annual temperature (MAT), and [...] Read more.
The Qinghai–Tibet Plateau, a region susceptible to global change, stores substantial amounts of soil organic carbon (SOC) in its alpine grassland. However, little is known about how SOC is regulated by soil microbial communities, which vary with elevation, mean annual temperature (MAT), and mean annual precipitation (MAP). This study integrates phospholipid fatty acid (PLFA) analysis to simultaneously resolve microbial biomass, community composition, and membrane lipid adaptations along an elevational gradient (2861–5090 m) on the Qinghai–Tibet Plateau. This study found that microbial PLFAs increased significantly with rising MAP, while the relationship with MAT was nonlinear. PLFAs of different microbial groups all had a positive effect on SOC storage. At higher altitudes (characterized by lower MAP and lower MAT), Gram-positive bacteria dominated bacterial communities, and fungi dominated the overall microbial community, highlighting microbial structural adaptations as key regulators of carbon storage. Saturated fatty acids with branches of soil microbial membrane dominated across sites, but their prevalence over unsaturated fatty acids decreased at high elevations. These findings establish a mechanistic link between climate-driven microbial community restructuring and SOC vulnerability on the QTP, providing a predictive framework for carbon–climate feedbacks in alpine systems under global warming. Full article
(This article belongs to the Special Issue Soil Carbon Sequestration for Mitigating Climate Change in Grasslands)
Show Figures

Figure 1

21 pages, 13413 KiB  
Article
Three-Dimensional Modeling of Soil Organic Carbon Stocks in Forest Ecosystems of Northeastern China Under Future Climate Warming Scenarios
by Shuai Wang, Shouyuan Bian, Zicheng Wang, Zijiao Yang, Chen Li, Xingyu Zhang, Di Shi and Hongbin Liu
Forests 2025, 16(8), 1209; https://doi.org/10.3390/f16081209 - 23 Jul 2025
Viewed by 291
Abstract
Understanding the detailed spatiotemporal variations in soil organic carbon (SOC) stocks is essential for assessing soil carbon sequestration potential. However, most existing studies predominantly focus on topsoil SOC stocks, leaving significant knowledge gaps regarding critical zones, depth-dependent variations, and key influencing factors associated [...] Read more.
Understanding the detailed spatiotemporal variations in soil organic carbon (SOC) stocks is essential for assessing soil carbon sequestration potential. However, most existing studies predominantly focus on topsoil SOC stocks, leaving significant knowledge gaps regarding critical zones, depth-dependent variations, and key influencing factors associated with deeper SOC stock dynamics. This study adopted a comprehensive methodology that integrates random forest modeling, equal-area soil profile analysis, and space-for-time substitution to predict depth-specific SOC stock dynamics under climate warming in Northeast China’s forest ecosystems. By combining these techniques, the approach effectively addresses existing research limitations and provides robust projections of soil carbon changes across various depth intervals. The analysis utilized 63 comprehensive soil profiles and 12 environmental predictors encompassing climatic, topographic, biological, and soil property variables. The model’s predictive accuracy was assessed using 10-fold cross-validation with four evaluation metrics: MAE, RMSE, R2, and LCCC, ensuring comprehensive performance evaluation. Validation results demonstrated the model’s robust predictive capability across all soil layers, achieving high accuracy with minimized MAE and RMSE values while maintaining elevated R2 and LCCC scores. Three-dimensional spatial projections revealed distinct SOC distribution patterns, with higher stocks concentrated in central regions and lower stocks prevalent in northern areas. Under simulated warming conditions (1.5 °C, 2 °C, and 4 °C increases), both topsoil (0–30 cm) and deep-layer (100 cm) SOC stocks exhibited consistent declining trends, with the most pronounced reductions observed under the 4 °C warming scenario. Additionally, the study identified mean annual temperature (MAT) and normalized difference vegetation index (NDVI) as dominant environmental drivers controlling three-dimensional SOC spatial variability. These findings underscore the importance of depth-resolved SOC stock assessments and suggest that precise three-dimensional mapping of SOC distribution under various climate change projections can inform more effective land management strategies, ultimately enhancing regional soil carbon storage capacity in forest ecosystems. Full article
(This article belongs to the Special Issue Carbon Dynamics of Forest Soils Under Climate Change)
Show Figures

Figure 1

24 pages, 10538 KiB  
Article
Effects of Refrigerated Storage on the Physicochemical, Color and Rheological Properties of Selected Honey
by Joanna Piepiórka-Stepuk, Monika Sterczyńska, Marta Stachnik and Piotr Pawłowski
Agriculture 2025, 15(14), 1476; https://doi.org/10.3390/agriculture15141476 - 10 Jul 2025
Viewed by 476
Abstract
The paper presents a study of changes in selected physicochemical properties of honeys during their refrigerated storage at 8 ± 1 °C for 24 weeks. On the basis of the study of primary pollen, the botanical identification of the variety of honeys was [...] Read more.
The paper presents a study of changes in selected physicochemical properties of honeys during their refrigerated storage at 8 ± 1 °C for 24 weeks. On the basis of the study of primary pollen, the botanical identification of the variety of honeys was made—rapeseed, multiflower and buckwheat honey. The samples were stored for 24 weeks in dark, hermetically sealed glass containers in a refrigerated chamber (8 ± 1 °C, 73 ± 2% relative humidity). The comprehensive suite of analyses comprised sugar profiling (ion chromatography), moisture content determination (refractometry), pH and acidity measurement (titration), electrical conductivity, color assessment in the CIELab system (ΔE and BI indices), texture parameters (penetration testing), rheological properties (rheometry), and microscopic evaluation of crystal morphology; all data were subjected to statistical treatment (ANOVA, Tukey’s test, Pearson correlations). The changes in these parameters were examined at 1, 2, 3, 6, 12, and 24 weeks of storage. A slight but significant increase in moisture content was observed (most pronounced in rapeseed honey), while all parameters remained within the prescribed limits and showed no signs of fermentation. The honeys’ color became markedly lighter. Already in the first weeks of storage, an increase in the L* value and elevated ΔE indices were recorded. The crystallization process proceeded in two distinct phases—initial nucleation (occurring fastest in rapeseed honey) followed by the formation of crystal agglomerates—which resulted in rising hardness and cohesion up to weeks 6–12, after which these metrics gradually declined; simultaneously, a rheological shift was noted, with viscosity increasing and the flow behavior changing from Newtonian to pseudoplastic, especially in rapeseed honey. Studies show that refrigerated storage accelerates honey crystallization, as lower temperatures promote the formation of glucose crystals. This accelerated crystallization may have practical applications in the production of creamed honey, where controlled crystal formation is essential for achieving a smooth, spreadable texture. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Graphical abstract

18 pages, 6387 KiB  
Article
Evaluation of Washing with Sodium Hypochlorite, Ultraviolet Irradiation, and Storage Temperature on Shell Egg Quality During Storage
by Hui-Chuan Yu, I-Chi Chen and Fa-Jui Tan
Foods 2025, 14(13), 2156; https://doi.org/10.3390/foods14132156 - 20 Jun 2025
Cited by 1 | Viewed by 760
Abstract
Shell eggs are susceptible to fecal contamination, facilitating the adhesion of microorganisms to the eggshell surface. The consumption of such eggs, especially when unwashed or raw, poses potential health risks to consumers. This study aimed to evaluate the effects of unwashed control, sodium [...] Read more.
Shell eggs are susceptible to fecal contamination, facilitating the adhesion of microorganisms to the eggshell surface. The consumption of such eggs, especially when unwashed or raw, poses potential health risks to consumers. This study aimed to evaluate the effects of unwashed control, sodium hypochlorite (NaOCl) sanitization (150 ppm), and the combination of NaOCl and ultraviolet (UV) sanitization on the quality of eggs stored at varying temperatures over a four-week period. The findings demonstrated that NaOCl sanitization alone reduced surface bacterial counts by 1.23 log10 CFU/mL, while the combination of NaOCl and UV-C irradiation achieved a greater reduction of 1.48 log10 CFU/mL compared to the unwashed group. After two weeks of storage, unwashed egg groups (UC and UR) exhibited higher eggshell strength compared to NaOCl-sanitized groups (p < 0.05); however, this did not significantly influence internal contamination. Prolonged storage, particularly under refrigeration, led to increased hydroxyl (OH) group peak intensities on the eggshell, indicating dehydration and the formation of fissures in the cuticle. Elevated storage temperatures and extended durations adversely affected egg quality, whereas UV treatment did not have a detrimental impact. In conclusion, to ensure the safety and quality of shell eggs, it is recommended that they undergo NaOCl sanitization, UV irradiation, and be stored under refrigerated conditions. Full article
Show Figures

Figure 1

Back to TopTop