Effect of Waste Metal and Chamotte Fillers on the Thermal and Mechanical Properties of Geopolymer Composites for Energy Storage Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical and Testing Methods
2.3. Preparation of Composite Material
3. Results and Discussion
3.1. Thermal Properties—Thermal Effusivity
3.2. Mechanical Properties
3.2.1. Flexural Strength
3.2.2. Compressive Strength
3.2.3. Thermal Effusivity vs. Flexural and Compressive Strength
3.2.4. Structure and Particle Distribution in the Composite
4. Conclusions
- Optimized Thermal Properties through Density Control: Bulk density was identified as a critical factor governing the thermal properties of the composites. Higher bulk densities consistently correlated with superior thermal storage capabilities. Importantly, the inclusion of chamotte also positively contributed to thermal performance. The highest thermal effusivity was observed in the following two formulations: one containing 40% chamotte and 10% waste steel (G60C40W10, 1484 W·s1/2·m−2·K−1), and another with 30% chamotte and 30% waste steel (G70C30W30, 1467 W·s1/2·m−2·K−1). These values represent a significant improvement of over 50% compared to conventional chamotte brick, positioning these composites as highly competitive sustainable alternatives for thermal energy storage applications.
- Enhanced Mechanical Resilience with Waste Steel Inclusion: The incorporation of waste steel chips demonstrably improved the mechanical properties of the geopolymer composites. This enhancement was particularly pronounced in flexural strength due to the crack-bridging effect of the elongated steel particles. Controlled cooling after thermal exposure, especially at 1100 °C, further benefited flexural strength. The optimal mechanical performance was achieved by sample G60C40W20 (40% chamotte, 20% waste steel), which exhibited the highest flexural strength of 12.68 MPa and the highest compressive strength of 86.18 MPa under low-temperature (LT) conditions. This highlights the potential of waste steel as a valuable reinforcing filler in geopolymer systems.
- Material Selection via Network Graphs: The application of network graphs proved to be an invaluable tool for the assessment and selection of optimal composite formulations. By simultaneously visualizing flexural strength, compressive strength, and thermal effusivity, these graphs enabled a comprehensive comparative analysis. Based on this multi-criteria evaluation, the formulations G80C20W30, G70C30W20, and G60C40W20 were identified as the most promising materials, offering a versatile balance of robust mechanical performance and efficient thermal energy exchange. This methodology can be broadly applied for tailoring composite materials to specific application demands.
- Structural Integrity and Compatibility: To prepare samples for microstructural analysis, areas within the blocks that were free from obvious defects, pores, and air bubbles were selected. Optical microscopy subsequently confirmed good compatibility among the geopolymer binder, chamotte particles, and waste steel chips. The observed homogeneity and lack of significant porosity at the examined scale suggest a well-integrated composite matrix. While further high-resolution imaging techniques could elucidate finer interfacial details, these findings support the robust nature of the developed composites.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turner, L.K.; Collins, F.G. Carbon Dioxide Equivalent (CO2-E) Emissions: A Comparison Between Geopolymer and Opc Cement Concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Carreño-Gallardo, C.; Tejeda-Ochoa, A.; Perez-Ordonez, O.I.; Ledezma-Sillas, J.E.; Lardizabal-Gutierrez, D.; Prieto-Gomez, C.; Valenzuela-Grado, J.A.; Robles Hernandez, F.C.; Herrera-Ramirez, J.M. In the CO2 Emission Remediation by Means of Alternative Geopolymers as Substitutes for Cements. J. Environ. Chem. Eng. 2018, 6, 4878–4884. [Google Scholar] [CrossRef]
- Alsalman, A.; Assi, L.N.; Kareem, R.S.; Carter, K.; Ziehl, P. Energy and CO2 Emission Assessments of Alkali-Activated Concrete and Ordinary Portland Cement Concrete: A Comparative Analysis of Different Grades of Concrete. Clean. Environ. Syst. 2021, 3, 100047. [Google Scholar] [CrossRef]
- Abiodun, Y.O.; Olanrewaju, O.A.; Gbenebor, O.P.; Ochulor, E.F.; Obasa, D.V.; Adeosun, S.O. Cutting Cement Industry CO2 Emissions Through Metakaolin Use in Construction. Atmosphere 2022, 13, 1494. [Google Scholar] [CrossRef]
- Hager, I.; Sitarz, M.; Mróz, K. Fly-Ash Based Geopolymer Mortar for High-Temperature Application—Effect of Slag Addition. J. Clean. Prod. 2021, 316, 128168. [Google Scholar] [CrossRef]
- Jiao, Z.; Li, X.; Yu, Q. Effect of Curing Conditions on Freeze-Thaw Resistance of Geopolymer Mortars Containing Various Calcium Resources. Constr. Build. Mater. 2021, 313, 125507. [Google Scholar] [CrossRef]
- Zhuang, H.J.; Zhang, H.Y.; Xu, H. Resistance of Geopolymer Mortar to Acid and Chloride Attacks. Procedia Eng. 2017, 210, 126–131. [Google Scholar] [CrossRef]
- Guo, G.; Lv, C.; Liu, J.; Wang, L. Properties of Fiber-Reinforced One-Part Geopolymers: A Review. Polymers 2022, 14, 3333. [Google Scholar] [CrossRef]
- Provis, J.L.; van Deventer, J.S.J. Geopolymers; Woodhead Publishing Limited: Boca Raton, FL, USA, 2009; ISBN 978-1-84569-449-4. [Google Scholar]
- Luhar, S.; Nicolaides, D.; Luhar, I. Fire Resistance Behaviour of Geopolymer Concrete: An Overview. Buildings 2021, 11, 82. [Google Scholar] [CrossRef]
- Mendoza-Cachú, D.; Rojas-Trigos, J.B.; Hernández-Wong, J.; Madera-Santana, T.J.; Franco-Urquiza, E.A. Geopolymers for Space Applications. Physchem 2024, 4, 197–213. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, C.; Qiao, Y.; Wang, X.; Jia, D.; Li, H.; Colombo, P. Porous Geopolymer Composites: A Review. Compos. Part A Appl. Sci. Manuf. 2021, 150, 106629. [Google Scholar] [CrossRef]
- Jindal, B.B.; Alomayri, T.; Hasan, A.; Kaze, C.R. Geopolymer Concrete with Metakaolin For Sustainability: A Comprehensive Review on Raw Material’s Properties, Synthesis, Performance, and Potential Application. Environ. Sci. Pollut. Res. 2023, 30, 25299–25324. [Google Scholar] [CrossRef] [PubMed]
- Pandurangan, K.; Thennavan, M.; Muthadhi, A. Studies on Effect of Source of Flyash on the Bond Strength of Geopolymer Concrete. Mater. Today Proc. 2018, 5, 12725–12733. [Google Scholar] [CrossRef]
- Kohout, J.; Koutník, P.; Bezucha, P.; Kwoczynski, Z. Leachability of the Metakaolinite-Rich Materials in Different Alkaline Solutions. Mater. Today Commun. 2019, 21, 100669. [Google Scholar] [CrossRef]
- Williamson, T.; Juenger, M.C.G. The Role of Activating Solution Concentration on Alkali–Silica Reaction in Alkali-Activated Fly Ash Concrete. Cem. Concr. Res. 2016, 83, 124–130. [Google Scholar] [CrossRef]
- Arnoult, M.; Perronnet, M.; Autef, A.; Rossignol, S. How to Control the Geopolymer Setting Time with the Alkaline Silicate Solution. J. Non-Cryst. Solids 2018, 495, 59–66. [Google Scholar] [CrossRef]
- Zhu, X.; Qian, H.; Wu, H.; Zhou, Q.; Feng, H.; Zeng, Q.; Tian, Y.; Ruan, S.; Zhang, Y.; Chen, S.; et al. Early-Stage Geopolymerization Process of Metakaolin-Based Geopolymer. Materials 2022, 15, 6125. [Google Scholar] [CrossRef]
- Chuewangkam, N.; Kidkhunthod, P.; Pinitsoontorn, S. Direct Evidence for the Mechanism of Early-Stage Geopolymerization Process. Case Stud. Constr. Mater. 2024, 21, e03539. [Google Scholar] [CrossRef]
- Kohout, J.; Koutník, P. Effect of Filler Type on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Materials 2020, 13, 2395. [Google Scholar] [CrossRef]
- Kohout, J.; Koutník, P.; Hájková, P.; Kohoutová, E.; Soukup, A. Effect of K/Al Molar Ratio on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Polymers 2021, 13, 3754. [Google Scholar] [CrossRef]
- Rovnaník, P. Effect of Curing Temperature on the Development of Hard Structure of Metakaolin-Based Geopolymer. Constr. Build. Mater. 2010, 24, 1176–1183. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.; Dong, T.; Ouyang, G. Structural and Mechanical Properties of Geopolymers Made of Aluminosilicate Powder with Different SiO2/Al2O3 Ratio: Molecular Dynamics Simulation and Microstructural Experimental Study. Constr. Build. Mater. 2020, 240, 117935. [Google Scholar] [CrossRef]
- Kullová, L.; Kovářík, T.; Rieger, D.; Čekalová, M. Geopolymerní Kompozit Na Bázi Roztoku Křemičitanu Draselného S Plnivem O Různém Granulometrickém Složení. Chemické Listy 2016, 110, 581–584. [Google Scholar]
- Tammam, Y.; Uysal, M.; Canpolat, O. Effects of Alternative Ecological Fillers on the Mechanical, Durability, and Microstructure of Fly Ash-Based Geopolymer Mortar. Eur. J. Environ. Civ. Eng. 2022, 26, 5877–5900. [Google Scholar] [CrossRef]
- Alserai, S.J.; Alsaraj, W.K.; Abass, Z.W. Effect of Iron Filings on the Mechanical Properties of Different Types of Sustainable Concrete. Open Civ. Eng. J. 2018, 12, 441–457. [Google Scholar] [CrossRef]
- Nongnuang, T.; Jitsangiam, P.; Rattanasak, U.; Tangchirapat, W.; Suwan, T.; Thongmunee, S. Characteristics of Waste Iron Powder as a Fine Filler in a High-Calcium Fly Ash Geopolymer. Materials 2021, 14, 2515. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, F.U.A.; Hosan, A. Mechanical Properties of Steel Fibre Reinforced Geopolymer Concretes at Elevated Temperatures. Constr. Build. Mater. 2016, 114, 15–28. [Google Scholar] [CrossRef]
- Ranjbar, N.; Talebian, S.; Mehrali, M.; Kuenzel, C.; Cornelis Metselaar, H.S.; Jumaat, M.Z. Mechanisms of Interfacial Bond in Steel and Polypropylene Fiber Reinforced Geopolymer Composites. Compos. Sci. Technol. 2016, 122, 73–81. [Google Scholar] [CrossRef]
- Prałat, K.; Ciemnicka, J.; Koper, A.; Szczypiński, M.M.; Łoś, P.; Nguyen, V.V.; Le, V.S.; Rapiejko, C.; Ercoli, R.; Buczkowska, K.E. Determination of the Thermal Parameters of Geopolymers Modified with Iron Powder. Polymers 2022, 14, 2009. [Google Scholar] [CrossRef]
- Wang, M.R.; Zheng, Y.; Jia, D.C.; Zhou, Y. Effect of High-Temperature Heat Treatment on Mechanical Property of Cr-Geopolymer Composite. Adv. Mater. Res. 2011, 399–401, 469–473. [Google Scholar] [CrossRef]
- Kuranlı, Ö.F.; Uysal, M.; Abbas, M.T.; Cosgun, T.; Niş, A.; Aygörmez, Y.; Canpolat, O.; Al-mashhadani, M.M. Evaluation of Slag/Fly Ash Based Geopolymer Concrete with Steel, Polypropylene and Polyamide Fibers. Constr. Build. Mater. 2022, 325, 126747. [Google Scholar] [CrossRef]
- Rahjoo, M.; Goracci, G.; Martauz, P.; Rojas, E.; Dolado, J.S. Geopolymer Concrete Performance Study for High-Temperature Thermal Energy Storage (TES) Applications. Sustainability 2022, 14, 1937. [Google Scholar] [CrossRef]
- Jacob, R.; Trout, N.; Solé, A.; Clarke, S.; Fernández, A.I.; Cabeza, L.F.; Saman, W.; Bruno, F. Novel Geopolymer for Use as a Sensible Storage Option in High Temperature Thermal Energy Storage Systems. AIP Conf. Proc. 2020, 2303, 190019. [Google Scholar] [CrossRef]
- Colangelo, F.; Cioffi, R.; Roviello, G.; Capasso, I.; Caputo, D.; Aprea, P.; Liguori, B.; Ferone, C. Thermal Cycling Stability of Fly Ash Based Geopolymer Mortars. Compos. Part B Eng. 2017, 129, 11–17. [Google Scholar] [CrossRef]
- ISO 7345:2018; Thermal Performance of Buildings and Building Components—Physical Quantities and Definitions 2018. ISO: Geneva, Switzerland, 2018.
- Milicic, I.; Folic, R.; Prokic, A.; Ceh, A. Model for the Analysis of Thermal Conductivity of Composite Material of Natural Origin. Therm. Sci. 2019, 23, 3513–3523. [Google Scholar] [CrossRef]
- Kušnerová, M.; Harničárová, M.; Valíček, J.; Palková, Z.; Tkáč, Z.; Panda, A.; Kmec, J.; Lukáč, O. Measurement of the Thermal Properties of Innovative Highly-Insulating Non-Structural Concretes. Defect Diffus. Forum 2019, 390, 41–52. [Google Scholar] [CrossRef]
- Demezhko, D.Y. Measurements of the Thermal Effusivity of Solid Materials by the Contact Method. Instrum. Exp. Tech. 2011, 54, 867–871. [Google Scholar] [CrossRef]
- EN 1015-11:2019; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar 2020. British Standards Institution: London, UK.
- ISO 1920-10:2010; Testing of Concrete—Part 10: Determination of Static Modulus of Elasticity in Compression 2010. ISO: Geneva, Switzerland, 2010.
- Koutnik, P.; Soukup, A.; Bezucha, P.; Šafář, J.; Hájková, P.; Čmelík, J. Comparison of Kaolin and Kaolinitic Claystones as Raw Materials for Preparing Meta-Kaolinite-Based Geopolymers. Ceramics-Silikáty 2019, 63, 110–123. [Google Scholar] [CrossRef]
- Koutník, P.; Soukup, A.; Bezucha, P.; Šafář, J.; Kohout, J. Low Viscosity Metakaolinite Based Geopolymer Binders. Constr. Build. Mater. 2020, 230, 116978. [Google Scholar] [CrossRef]
- Stempkowska, A.; Mastalska-Popławska, J.; Izak, P.; Wójcik, Ł.; Gawenda, T.; Karbowy, M. Research on the Thermal Properties of Fireplace Concrete Materials Containing Various Mineral Aggregates Enriched by Organic and Inorganic Fibers. Materials 2021, 14, 904. [Google Scholar] [CrossRef]
- Khouadjia, M.L.K.; Bensalem, S.; Belebchouche, C.; Boumaza, A.; Hamlaoui, S.; Czarnecki, S. Sustainable Geopolymer Tuff Composites Utilizing Iron Powder Waste: Rheological and Mechanical Performance Evaluation. Sustainability 2025, 17, 1240. [Google Scholar] [CrossRef]
- Jain, A. The Role of Thermal Effusivity in Heat Exchange Between Finite-Sized Bodies. Int. J. Heat Mass Transf. 2023, 202, 123721. [Google Scholar] [CrossRef]
- An, J.; Xue, X. Life-Cycle Carbon Footprint Analysis of Magnesia Products. Resour. Conserv. Recycl. 2017, 119, 4–11. [Google Scholar] [CrossRef]
- Gao, X.; Yu, Q.L.; Yu, R.; Brouwers, H.J.H. Evaluation of Hybrid Steel Fiber Reinforcement in High Performance Geopolymer Composites. Mater. Struct. 2017, 50, 165. [Google Scholar] [CrossRef]
- Gailitis, R.; Korniejenko, K.; Łach, M.; Sliseris, J.; Morán, J.; Rodriguez, E.; Mikuła, J. Mechanical Properties of Geopolymer Concretes Reinforced with Waste Steel Fibers. IOP Conf. Ser. Mater. Sci. Eng. 2019, 660, 012007. [Google Scholar] [CrossRef]
- Rashad, A.M. Effect of Steel Fibers on Geopolymer Properties—The Best Synopsis for Civil Engineer. Constr. Build. Mater. 2020, 246, 118534. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, J.; Li, Q.; Wan, J.; Ling, Y. Mechanical and Fracture Properties of Steel Fiber-Reinforced Geopolymer Concrete. Sci. Eng. Compos. Mater. 2021, 28, 299–313. [Google Scholar] [CrossRef]
- Rovnaník, P.; Šafránková, K. Thermal Behaviour of Metakaolin/Fly Ash Geopolymers with Chamotte Aggregate. Materials 2016, 9, 535. [Google Scholar] [CrossRef]
- Schneider, U. Concrete at High Temperatures—A General Review. Fire Saf. J. 1988, 13, 55–68. [Google Scholar] [CrossRef]
- Husem, M. The Effects of High Temperature on Compressive and Flexural Strengths of Ordinary and High-Performance Concrete. Fire Saf. J. 2006, 41, 155–163. [Google Scholar] [CrossRef]
Raw Materials | Material Composition [wt.%] | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LOIa | H2O | SiO2 | Al2O3 | TiO2 | Fe2O3 | K2O | Na2O | CaO | MgO | P2O5 | V2O5 | Cr2O3 | ZrO2 | SrO | |
Mefisto L05 | 1.53 | 0.34 | 51.90 | 42.50 | 1.66 | 0.88 | 0.83 | 0.04 | 0.16 | 0.16 | 0.07 | 0.05 | 0.03 | 0.02 | 0.01 |
Potassium silicate | - | 60.44 | 27.00 | 0.05 | - | - | 12.12 | 0.38 | - | - | - | - | - | - | - |
Chamotte | 1.48 | 1.03 | 53.71 | 39.82 | 2.05 | 1.26 | 0.96 | 0.03 | 0.20 | 0.13 | 0.07 | 0.06 | 0.03 | 0.04 | 0.02 |
Material | Specific Gravity [kg/m3] | Bulk Density [kg/m3] | Particle Size | Specific Surface Area (BET) [m2/g] | |
---|---|---|---|---|---|
D50 [µm] | D90 [µm] | ||||
Mefisto L05 | 2573 | 541 | 3.73 | 10.55 | 15.6 |
Chamotte | 2741 | 1428 | 389.44 | 720.13 | 1.8 |
Reference Materials | Material Composition [wt.%] | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LOIa | H2O | SiO2 | Al2O3 | TiO2 | Fe2O3 | K2O | Na2O | CaO | MgO | P2O5 | V2O5 | Cr2O3 | ZrO2 | SrO | |
Ultraboard | 0.04 | 0.41 | 32.10 | 67.60 | - | 0.11 | - | 0.14 | 0.04 | - | - | - | - | - | - |
Chamotte brick | 0.31 | 0.19 | 53.90 | 38.90 | 1.29 | 2.13 | 2.57 | 0.27 | 0.27 | 0.53 | 0.06 | - | 0.02 | 0.04 | 0.01 |
Magnetite brick | 0.00 | 0.16 | 16.00 | 3.42 | 0.49 | 74.50 | 0.36 | 0.56 | - | 1.62 | 0.67 | 0.11 | 0.02 | - | - |
Composite Marking | Ratio of Geopolymer Binder and Chamotte in the Geo-Polymer Mixture | Steel Content in Composite Material [wt.%] |
---|---|---|
G80C20W00 | 80:20 | 0 |
G80C20W10 | 10 | |
G80C20W20 | 20 | |
G80C20W30 | 30 | |
G80C20W40 | 40 | |
G70C30W00 | 70:30 | 0 |
G70C30W10 | 10 | |
G70C30W20 | 20 | |
G70C30W30 | 30 | |
G70C30W40 | 40 | |
G60C40W00 | 60:40 | 0 |
G60C40W10 | 10 | |
G60C40W20 | 20 | |
G60C40W30 | 30 | |
G60C40W40 | 40 |
Samples | Bulk Density ρ [kg·m−3] | Thermal Conductivity Coefficient λ [W·m−1·K−1] | Specific Vol. Heat Capacity cp [J·m−3·K−1] | Temperature Diffusivity a [m2·s−1] | Specific Mass Heat Capacity c [J·kg−1·K−1] | Thermal Effusivity B [W·s1/2·m−2·K−1] | |
---|---|---|---|---|---|---|---|
Chamotte 20% | G80C20W00 | 1466 | 0.50 | 1.68 | 0.30 | 1143 | 917 |
G80C20W10 | 1763 | 0.76 | 1.62 | 0.47 | 918 | 1107 | |
G80C20W20 | 1828 | 0.84 | 1.64 | 0.56 | 897 | 1176 | |
G80C20W30 | 1876 | 1.13 | 1.66 | 0.68 | 885 | 1367 | |
G80C20W40 | 1335 | 0.50 | 1.51 | 0.33 | 1129 | 867 | |
Chamotte 30% | G70C30W00 | 1736 | 0.55 | 1.68 | 0.33 | 968 | 963 |
G70C30W10 | 1878 | 1.15 | 1.72 | 0.67 | 917 | 1404 | |
G70C30W20 | 2082 | 1.23 | 1.63 | 0.75 | 784 | 1415 | |
G70C30W30 | 2201 | 1.36 | 1.59 | 0.86 | 721 | 1467 | |
G70C30W40 | 1239 | 0.57 | 1.50 | 0.38 | 1213 | 922 | |
Chamotte 40% | G60C40W00 | 1831 | 0.64 | 1.62 | 0.39 | 883 | 1015 |
G60C40W10 | 1999 | 1.18 | 1.87 | 0.63 | 936 | 1484 | |
G60C40W20 | 2119 | 1.27 | 1.67 | 0.76 | 786 | 1452 | |
G60C40W30 | 1675 | 0.80 | 1.64 | 0.48 | 981 | 1144 | |
G60C40W40 | 1458 | 0.61 | 1.47 | 0.41 | 1010 | 945 |
Samples | Bulk Density ρ [kg·m−3] | Thermal Conductivity Coefficient λ [W·m−1·K−1] | Specific Vol. Heat Capacity cp [J·m−3·K−1] | Temperature Diffusivity a [m2·s−1] | Specific Mass Heat Capacity c [J·kg−1·K−1] | Thermal Effusivity B [W·s1/2·m−2·K−1] |
---|---|---|---|---|---|---|
Ultraboard | 400 | 0.08 | 0.08 | 0.31 | 786 | 162 |
Chamotte brick | 1951 | 0.60 | 0.60 | 1.44 | 736 | 930 |
Magnetite brick | 3818 | 2.76 | 2.76 | 1.73 | 453 | 2186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soukup, A.; Vakili, M.; Hájková, P. Effect of Waste Metal and Chamotte Fillers on the Thermal and Mechanical Properties of Geopolymer Composites for Energy Storage Applications. Materials 2025, 18, 3853. https://doi.org/10.3390/ma18163853
Soukup A, Vakili M, Hájková P. Effect of Waste Metal and Chamotte Fillers on the Thermal and Mechanical Properties of Geopolymer Composites for Energy Storage Applications. Materials. 2025; 18(16):3853. https://doi.org/10.3390/ma18163853
Chicago/Turabian StyleSoukup, Aleš, Mohammadtaghi Vakili, and Pavlína Hájková. 2025. "Effect of Waste Metal and Chamotte Fillers on the Thermal and Mechanical Properties of Geopolymer Composites for Energy Storage Applications" Materials 18, no. 16: 3853. https://doi.org/10.3390/ma18163853
APA StyleSoukup, A., Vakili, M., & Hájková, P. (2025). Effect of Waste Metal and Chamotte Fillers on the Thermal and Mechanical Properties of Geopolymer Composites for Energy Storage Applications. Materials, 18(16), 3853. https://doi.org/10.3390/ma18163853