Drying Technologies for Stevia rebaudiana Bertoni: Advances, Challenges, and Impacts on Bioactivity for Food Applications—A Review
Abstract
1. Introduction
2. Bioactive Compounds of Stevia rebaudiana
3. Health Benefits and Safety Considerations of Stevia Products
4. Drying Technologies of Stevia rebaudiana Leaves
4.1. Solar Drying
4.2. Infrared Drying
4.3. (Convective) Hot Air Drying
4.4. Microwave Drying
4.5. Vacuum Oven Drying
4.6. Spray Drying
5. Comparison of Drying Technologies for Stevia Leaves and Extracts
5.1. Stevia Leaves
5.2. Stevia Extracts
Compared Drying Methods | Equipment Specifications (Processing Scale) | Industrial Applicability (Industrial Use Cases) | Drying Conditions | Key Results | Ref. |
---|---|---|---|---|---|
Stevia leaves | |||||
Spray, Freeze, and Vacuum oven drying |
|
|
|
| [11] |
Convective hot air, IR, and Vacuum drying |
|
|
|
| [66] |
Hot air, Freeze, and Shade drying |
|
|
|
| [71] |
Freeze, Convective, Vacuum, Microwave, IR, Sun, and Shade drying |
|
|
|
| [19] |
Sun, Oven, and Microwave drying |
|
|
|
| [69] |
Sun, Oven, and Microwave drying |
|
|
|
| [70] |
Solar, Shade, Oven, and Microwave drying |
|
|
|
| [14] |
Radiation, Convection, Sun, and Shade drying |
|
|
|
| [72] |
Oven, Sun, Microwave, and Freeze drying |
|
|
|
| [15] |
Oven, Shade, IR, Microwave, Sun, and Freeze drying |
|
|
|
| [75] |
Oven and Shade drying |
|
|
|
| [76] |
Stevia extracts | |||||
Spray drying and Electrospraying |
|
|
|
| [65] |
Sun, Shade, Air conditioner, and Oven drying |
|
|
|
| [73] |
6. Recent Applications of Dried and Extracted Forms of Stevia in Food Products
6.1. Dairy and Emulsion-Based Functional Foods
6.2. Baked, Confectionary, and Snack Products
6.3. Syrups, Drinks, Jams, and Preserves
6.4. Fish and Meat Preservation
7. Conclusions and Future Prospectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADI | Acceptable Daily Intake |
ALG | Alginate |
ANN | Artificial Neural Network |
ANFIS | Adaptive Neuro-Fuzzy Inference System |
CA | Casein |
DSC | Differential Scanning Calorimetry |
FT-IR | Fourier Transform Infrared |
GAE | Gallic Acid Equivalent |
IR | Infrared |
MFSCD | Mixed Mode Forced Convection Dryer |
MLF | Multilayer Feed-forward |
MSWID | Medium- and Short-Wave Infrared Drying |
OSD | Open Sun Drying |
SEM | Scanning Electron Microscope |
SIR | Short-wave Infrared |
MIR | Medium-wave Infrared |
SVglys. | Steviol Glycosides |
Tg | Glass Transition Temperature |
TPC | Total Polyphenolic Content |
XG | Xanthan Gum |
References
- World Health Organization (WHO). Diabetes Fact Sheet. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 1 August 2025).
- International Diabetes Federation (IDF). IDF Diabetes Atlas, 10th ed.; IDF: Brussels, Belgium, 2021; Available online: https://diabetesatlas.org (accessed on 1 August 2025).
- Martono, Y.; Pranawati, F.E.R.; Riyanto, C.A.; Muninggar, J. Clarification and Encapsulation of Stevia rebaudiana Bertoni Water Extract. J. Phys. Conf. Ser. 2019, 1307, 012016. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Yousefi, S.; Chronakis, I.S. Microbial Transglutaminase in Noodle and Pasta Processing. Crit. Rev. Food Sci. Nutr. 2019, 59, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Bakhshipour, A.; Zareiforoush, H.; Bagheri, I. Mathematical and Intelligent Modeling of Stevia (Stevia rebaudiana) Leaves Drying in an Infrared-Assisted Continuous Hybrid Solar Dryer. Food Sci. Nutr. 2021, 9, 532–543. [Google Scholar] [CrossRef]
- Kalsi, B.S.; Singh, S.; Alam, M.S.; Sidhu, G.K. Comparison of ANN and ANFIS Modeling for Predicting Drying Kinetics of Stevia rebaudiana Leaves in a Hot-Air Dryer and Characterization of Dried Powder. Int. J. Food Prop. 2023, 26, 3356–3375. [Google Scholar] [CrossRef]
- Castillo-Téllez, M.; Figueroa, I.P.; Téllez, B.C.; Vidaña, E.C.L.; Ortiz, A.L. Solar Drying of Stevia (Rebaudiana Bertoni) Leaves Using Direct and Indirect Technologies. Sol. Energy 2018, 159, 898–907. [Google Scholar] [CrossRef]
- Chranioti, C.; Chanioti, S.; Tzia, C. Microencapsulation of Steviol Glycosides (Stevia rebaudiana Bertoni) by a Spray Drying Method–Evaluation of Encapsulated Products and Prepared Syrups. Int. J. Food Stud. 2015, 4, 212–220. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Smith, B. Legume Proteins Are Smart Carriers to Encapsulate Hydrophilic and Hydrophobic Bioactive Compounds and Probiotic Bacteria: A Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1250–1279. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Jafari, S.M. Nano-Capsule Formation by Cyclodextrins. In Nanoencapsulation Technologies in the Food and Nutraceutical Industries; Jafari, S.M., Ed.; Elsevier: London, UK, 2017; Chapter 7; pp. 187–261. [Google Scholar]
- Chranioti, C.; Chanioti, S.; Tzia, C. Comparison of Spray, Freeze and Oven Drying as a Means of Reducing Bitter Aftertaste of Steviol Glycosides (Derived from Stevia rebaudiana Bertoni Plant)—Evaluation of the Final Products. Food Chem. 2016, 190, 1151–1158. [Google Scholar] [CrossRef]
- Lakshmi, D.V.N.; Muthukumar, P.; Layek, A.; Nayak, P.K. Performance Analyses of Mixed Mode Forced Convection Solar Dryer for Drying of Stevia Leaves. Sol. Energy 2019, 188, 507–518. [Google Scholar] [CrossRef]
- Periche, A.; Castelló, M.L.; Heredia, A.; Escriche, I. Influence of Drying Method on Steviol Glycosides and Antioxidants in Stevia rebaudiana Leaves. Food Chem. 2015, 172, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Al-Amrani, H.A.; Al-Taweel, S.K.; Abdul-Qader, Z.M. Steviosides Composition in Stevia rebaudiana Bertoni: Effect of Drying Methods. Plant Arch. 2018, 18, 2025–2030. [Google Scholar]
- Abdul Halim, A.; Mohd Zain, Z.; Mubarak, A.; Tufail Ahmad, F. Effect of Different Drying Methods on Antioxidant Properties, Stevioside and Rebaudioside A Contents of Stevia (Stevia rebaudiana Bertoni) Leaves. Asian J. Agric. Biol. 2019, 7, 61–68. [Google Scholar]
- Ai, Z.; Ren, H.; Lin, Y.; Sun, W.; Yang, Z.; Zhang, Y.; Zhang, H.; Yang, Z.; Pandiselvam, R.; Liu, Y. Improving Drying Efficiency and Product Quality of Stevia rebaudiana Leaves Using Innovative Medium-and Short-Wave Infrared Drying (MSWID). Innov. Food Sci. Emerg. Technol. 2022, 81, 103154. [Google Scholar] [CrossRef]
- Lemus-Mondaca, R.; Ah-Hen, K.; Vega-Gálvez, A.; Honores, C.; Moraga, N.O. Stevia rebaudiana Leaves: Effect of Drying Process Temperature on Bioactive Components, Antioxidant Capacity and Natural Sweeteners. Plant Foods Hum. Nutr. 2016, 71, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Muanda, F.N.; Soulimani, R.; Diop, B.; Dicko, A. Study on Chemical Composition and Biological Activities of Essential Oil and Extracts from Stevia rebaudiana Bertoni Leaves. LWT-Food Sci. Technol. 2011, 44, 1865–1872. [Google Scholar] [CrossRef]
- Lemus-Mondaca, R.; Vega-Gálvez, A.; Rojas, P.; Stucken, K.; Delporte, C.; Valenzuela-Barra, G.; Jagus, R.J.; Agüero, M.V.; Pasten, A. Antioxidant, Antimicrobial and Anti-Inflammatory Potential of Stevia rebaudiana Leaves: Effect of Different Drying Methods. J. Appl. Res. Med. Aromat. Plants 2018, 11, 37–46. [Google Scholar] [CrossRef]
- JECFA. Joint FAO/WHO Expert Committee on Food Additives. Steviol glycosides. In Compendium of Food Additive Specifications; 69th Meeting; FAO/WHO Monographs 5: Rome, Italy, 2008. [Google Scholar]
- Morissette, A.; de Wouters d’Oplinter, A.; Andre, D.M.; Lavoie, M.; Marcotte, B.; Varin, T.V.; Trottier, J.; Pilon, G.; Pelletier, M.; Cani, P.D. Rebaudioside D Decreases Adiposity and Hepatic Lipid Accumulation in a Mouse Model of Obesity. Sci. Rep. 2024, 14, 3077. [Google Scholar] [CrossRef] [PubMed]
- Chughtai, M.F.J.; Pasha, I.; Ahsan, S.; Mehmood, T.; Khalid, M.Z.; Farooq, M.A.; Liaqat, A.; Khaliq, A.; Tanweer, S.; Ungureanu-Iuga, M. Metabolic Syndrome Extenuation in Rat Model by Feeding Stevia rebaudiana Bertoni Cookies. Cogent Food Agric. 2024, 10, 2305513. [Google Scholar] [CrossRef]
- Han, J.-Y.; Park, M.; Lee, H.-J. Stevia (Stevia rebaudiana) Extract Ameliorates Insulin Resistance by Regulating Mitochondrial Function and Oxidative Stress in the Skeletal Muscle of Db/Db Mice. BMC Complement. Med. Ther. 2023, 23, 264. [Google Scholar] [CrossRef]
- Alavala, S.; Nalban, N.; Sangaraju, R.; Kuncha, M.; Jerald, M.K.; Kilari, E.K.; Sistla, R. Anti-Inflammatory Effect of Stevioside Abates Freund’s Complete Adjuvant (FCA)-Induced Adjuvant Arthritis in Rats. Inflammopharmacology 2020, 28, 1579–1597. [Google Scholar] [CrossRef]
- Mehmood, A.; Althobaiti, F.; Zhao, L.; Usman, M.; Chen, X.; Alharthi, F.; Soliman, M.M.; Shah, A.A.; Murtaza, M.A.; Nadeem, M. Anti-Inflammatory Potential of Stevia Residue Extract Against Uric Acid-Associated Renal Injury in Mice. J. Food Biochem. 2022, 46, e14286. [Google Scholar] [CrossRef] [PubMed]
- Qiao, G.; Ji, W.; Sun, Z.; Wang, X.; Li, P.; Jia, H.; Duan, L.; Qi, F. Isosteviol Reduces the Acute Inflammatory Response after Burns by Upregulating MMP9 in Macrophages Leading to M2 Polarization. Int. Immunopharmacol. 2022, 106, 108609. [Google Scholar] [CrossRef]
- Farid, A.; Hesham, M.; El-Dewak, M.; Amin, A. The Hidden Hazardous Effects of Stevia and Sucralose Consumption in Male and Female Albino Mice in Comparison to Sucrose. Saudi Pharm. J. 2020, 28, 1290–1300. [Google Scholar] [CrossRef] [PubMed]
- Shahu, R.; Kumar, D.; Ali, A.; Tungare, K.; Al-Anazi, K.M.; Farah, M.A.; Jobby, R.; Jha, P. Unlocking the Therapeutic Potential of Stevia rebaudiana Bertoni: A Natural Antiglycating Agent and Non-Toxic Support for HDF Cell Health. Molecules 2023, 28, 6797. [Google Scholar] [CrossRef] [PubMed]
- Al-Taweel, S.K.; Al-Anbari, I.H.; Al-Hamdani, H.M. Antioxidant identification, antimicrobial activity of Stevia rebaudiana Bertoni leaves extract on flavored milk. Int. J. Agric. Stat. Sci. 2022, 18, 547–556. [Google Scholar]
- Barczewski, M.; Aniśko, J.; Hejna, A.; Mysiukiewicz, O.; Kosmela, P.; Sałasińska, K.; Boczkowska, A.; Przybylska-Balcerek, A.; Stuper-Szablewska, K. Ground Lemon and Stevia Leaves as Renewable Functional Fillers with Antioxidant Activity for High-Density Polyethylene Composites. Clean Technol. Environ. Policy 2023, 25, 3345–3361. [Google Scholar] [CrossRef]
- Hidar, N.; Noufid, A.; Abouloifa, H.; Mouhib, M.; Asehraou, A.; Jaouad, A.; Mahrouz, M. Comparative Study of Two Preservation Methods (Freeze Drying and Gamma Irradiation) on the Phenolic Profile, Antioxidant and Antimicrobial Activities of the Essential Oils of Stevia. J. Food Meas. Charact. 2023, 17, 3665–3672. [Google Scholar] [CrossRef]
- Lahijanian, S.; Eskandari, M.; Akhbarfar, G.; Azizi, I.; Afazel, M.; Ghobadi, C. Morphological, Physiological and Antioxidant Response of Stevia rebaudiana Under In Vitro Agar Induced Drought Stress. J. Agric. Food Res. 2023, 11, 100495. [Google Scholar] [CrossRef]
- Lremizi, I.; Ait Ouazzou, A.; Bensouici, C.; Fauconnier, M.-L. Chemical Composition, Antioxidant, Anticholinesterase, and Alpha-Glucosidase Activity of Stevia rebaudiana Bertoni Extracts Cultivated in Algeria. J. Food Meas. Charact. 2023, 17, 2639–2650. [Google Scholar] [CrossRef]
- Sansano, S.; Rivas, A.; Pina-Pérez, M.C.; Martinez, A.; Rodrigo, D. Stevia rebaudiana Bertoni Effect on the Hemolytic Potential of Listeria monocytogenes. Int. J. Food Microbiol. 2017, 250, 7–11. [Google Scholar] [CrossRef]
- Shahu, R.; Jobby, R.; Patil, S.; Bhori, M.; Tungare, K.; Jha, P. Phytochemical Content and Antioxidant Activity of Different Varieties of Stevia rebaudiana. Hortic. Environ. Biotechnol. 2022, 63, 935–948. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, M.; Chao, X.; Zhang, C.; Yang, H.; Chen, J.; Zhou, B. Stevioside Improves Antioxidant Capacity and Intestinal Barrier Function While Attenuating Inflammation and Apoptosis by Regulating the NF-Κb/MAPK Pathways in Diquat-Induced Oxidative Stress of IPEC-J2 Cells. Antioxidants 2023, 12, 1070. [Google Scholar] [CrossRef]
- Fishi, A.N.A.; Nurhadi, B.; Mahani; Saputra, R.A. The Effect of Arabic Gum and Maltodextrin on the Physicochemical Properties of Vacuum-Dried Stevia (Stevia rebaudiana Bertoni) Extract Powder. Food Res. 2023, 7, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Chakma, A.; Afrin, F.; Rasul, M.G.; Maeda, H.; Yuan, C.; Shah, A.K.M.A. Effects of Extraction Techniques on Antioxidant and Antibacterial Activity of Stevia (Stevia rebaudiana Bertoni) Leaf Extracts. Food Chem. Adv. 2023, 3, 100494. [Google Scholar] [CrossRef]
- Alshawwa, S.Z.; Mohammed, E.J.; Hashim, N.; Sharaf, M.; Selim, S.; Alhuthali, H.M.; Alzahrani, H.A.; Mekky, A.E.; Elharrif, M.G. In Situ Biosynthesis of Reduced Alpha Hematite (A-Fe2O3) Nanoparticles by Stevia rebaudiana L. Leaf Extract: Insights Into Antioxidant, Antimicrobial and Anticancer Properties. Antibiotics 2022, 11, 1252. [Google Scholar] [CrossRef]
- Castillo-Téllez, B.; Téllez, M.C.; López-Vidaña, E.C.; Domínguez Niño, A.; Mejía-Pérez, G.A.; Vega-Gómez, C.J. Temperature–Air Velocity Association, Experimental and Modeling Study of Stevia Leaves Solar Drying. Energy Explor. Exploit. 2023, 41, 1802–1818. [Google Scholar] [CrossRef]
- Darwish, N.N.; Karkor, E.M.M.A.; Abou Tahoun, A.M.; Attia, A.S. Effect of Drying Methods and Storage Packages on Some Stevia Varieties Quality Traits. Al-Azhar J. Agric. Res. 2024, 49, 113–124. [Google Scholar] [CrossRef]
- Ahmadi, R.; Kalbasi-Ashtari, A.; Gharibzahedi, S.M.T. Physical Properties of Psyllium Seed. Int. Agrophys. 2012, 26, 91–93. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Nassiri, A.; Gharibzahedi, S.M.T. Physical and Mechanical Properties of Hemp Seed. Int. Agrophys. 2012, 26, 211–215. [Google Scholar] [CrossRef]
- Hidar, N.; Ouhammou, M.; Mghazli, S.; Idlimam, A.; Hajjaj, A.; Bouchdoug, M.; Jaouad, A.; Mahrouz, M. The Impact of Solar Convective Drying on Kinetics, Bioactive Compounds and Microstructure of Stevia Leaves. Renew. Energy 2020, 161, 1176–1183. [Google Scholar] [CrossRef]
- Huang, X.; Li, W.; Wang, Y.; Wan, F. Drying Characteristics and Quality of Stevia rebaudiana Leaves by Far-Infrared Radiation. LWT 2021, 140, 110638. [Google Scholar] [CrossRef]
- Kalsi, B.S.; Singh, S.; Alam, M.S.; Bhatia, S. Microwave Drying Modelling of Stevia rebaudiana Leaves Using Artificial Neural Network and Its Effect on Color and Biochemical Attributes. J. Food Qual. 2023, 2023, 2811491. [Google Scholar] [CrossRef]
- Uchiyama, H.; Asai, S.; Nakanishi, A.; Tandia, M.; Kadota, K.; Tozuka, Y. Applicability of Transglycosylated Stevia for Oil-in-Water Submicron Emulsions by High-Pressure Homogenization. Food Sci. Technol. Res. 2022, 28, 343–350. [Google Scholar] [CrossRef]
- Micanquer-Carlosama, A.; Serna-Cock, L.; Ayala-aponte, A. Double Emulsion and Complex Coacervation in Stevia Encapsulation. Vitae 2017, 24, 167–177. [Google Scholar]
- Chaparro-Hernández, I.; Méndez-Lagunas, L.; Rodríguez-Ramírez, J.; Sandoval-Torres, S.; Áquino-González, L.; Barriada-Bernal, G. Spray drying of Stevia rebaudiana Bertoni Aqueous Extract: Effect on Polyphenolic Compounds. Chem. Eng. Transac. 2023, 98, 33–38. [Google Scholar]
- Mutmainah, M.; Martono, Y.; Franyoto, Y.D.; Kusmita, L. Microencapsulation Stability of Stevia Leaf Extracts of Stevia rebaudiana Bert Using Inulin-Chitosan. Open Access Libr. J. 2019, 6, e5925. [Google Scholar] [CrossRef]
- Zorzenon, M.R.T.; Hodas, F.; Milani, P.G.; Formigoni, M.; Dacome, A.S.; Monteiro, A.R.G.; Mareze-Costa, C.E.; Costa, S.C. Microencapsulation by Spray-Drying of Stevia Fraction with Antidiabetics Effects. Chem. Eng. Trans. 2019, 75, 307–312. [Google Scholar]
- Kolar, S.; Jurić, S.; Marijan, M.; Vlahoviček-Kahlina, K.; Vinceković, M. Applicability of Alginate-Based Composite Microspheres Loaded with Aqueous Extract of Stevia rebaudiana Bertoni Leaves in Food and Pharmaceutical Products. Food Biosci. 2022, 50, 101970. [Google Scholar] [CrossRef]
- Kumar, P.; Tripathy, P.P. Experimental and Computational Analysis of Drying Characteristics and Quality Attributes of Indirect and Mixed-Mode Solar Dried Stevia rebaudiana Leaves. J. Food Process Eng. 2024, 47, e14760. [Google Scholar] [CrossRef]
- Kumar, P.; Rani, P.; Tripathy, P.P. Indirect Mode Solar Drying of Stevia (Stevia rebaudiana) Leaves: Experimental and Numerical Investigation of Fluid Flow Pattern, Moisture and Temperature Distribution Profile. Biomass Convers. Biorefin. 2025, 15, 7523–7542. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Razavi, S.H.; Mousavi, M. Kinetic Analysis and Mathematical Modeling of Cell Growth and Canthaxanthin Biosynthesis by Dietzia natronolimnaea HS-1 on Waste Molasses Hydrolysate. RSC Adv. 2013, 3, 23495–23502. [Google Scholar] [CrossRef]
- Bassey, E.J.; Cheng, J.-H.; Sun, D.-W. Improving Drying Kinetics, Physicochemical Properties and Bioactive Compounds Of Red Dragon Fruit (Hylocereus species) by Novel Infrared Drying. Food Chem. 2022, 375, 131886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, G.; Li, X.; Zhao, Y.; Lei, D.; Ding, G.; Ambrose, K.; Liu, Y. Combined medium-and short-wave infrared and hot air impingement drying of sponge gourd (Luffa cylindrical) slices. J. Food Eng. 2020, 284, 110043. [Google Scholar] [CrossRef]
- Alizadeh Bahaabad, G.; Gharibzahedi, S.M.T.; Esmaiili, M.; Alizadeh, M. Response Surface Modeling for Optimization of Textural and Color Characteristics of Dried Grapes. Int. J. Food Eng. 2014, 10, 493–502. [Google Scholar] [CrossRef]
- Askari Vaselabadi, S.; Gharibzahedi, S.M.T.; Greiner, R.; Vale, J.M.; Ovenseri, A.C.; Rashidinejad, A.; Roohinejad, S. Advancements in Spray-Drying for the Microencapsulation of Fat-Soluble Vitamins: Stability, Bioavailability and Applications. J. Food Biochem. 2025, 2025, 9974476. [Google Scholar] [CrossRef]
- Kakoei, H.; Mortazavian, A.M.; Mofid, V.; Gharibzahedi, S.M.T.; Hosseini, H. Single and Combined Hydrodistillation Techniques of Microwave and Ultrasound for Extracting Bio-Functional Hydrosols from Iranian Eryngium caucasicum Trautv. Chem. Pap. 2023, 77, 533–547. [Google Scholar] [CrossRef]
- Golbargi, F.; Gharibzahedi, S.M.T.; Zoghi, A.; Mohammadi, M.; Hashemifesharaki, R. Microwave-Assisted Extraction of Arabinan-Rich Pectic Polysaccharides from Melon Peels: Optimization, Purification, Bioactivity and Techno-Functionality. Carbohydr. Polym. 2021, 256, 117522. [Google Scholar] [CrossRef]
- Rostami, H.; Gharibzahedi, S.M.T. Mathematical Modeling of Mucilage Extraction Kinetic from the Waste Hydrolysates of Fruiting Bodies of Zizyphus jujuba Mill. J. Food Process. Preserv. 2017, 41, e13064. [Google Scholar] [CrossRef]
- Nurhad, B.; Andoyo, R.; Indiarto, R. Study the Properties of Honey Powder Produced from Spray Drying and Vacuum Drying Method. Int. Food Res. J. 2012, 19, 907–912. [Google Scholar]
- Mitra, J.; Shrivastava, S.L.; Rao, P.S. Non-enzymatic browning and flavour kinetics of vacuum dried onion slices. Int. Agrophys. 2015, 29, 91–100. [Google Scholar] [CrossRef]
- Oikonomopoulou, V.; Stramarkou, M.; Plakida, A.; Krokida, M. Optimization of Encapsulation of Stevia Glycosides Through Electrospraying and Spray Drying. Food Hydrocoll. 2022, 131, 107854. [Google Scholar] [CrossRef]
- Lemus-Mondaca, R.; Zura-Bravo, L.; Ah-Hen, K.; Di Scala, K. Effect of Drying Methods on Drying Kinetics, Energy Features, Thermophysical and Microstructural Properties of Stevia rebaudiana Leaves. J. Sci. Food Agric. 2021, 101, 6484–6495. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.I.; Ameer, K.; Chung, Y.B.; Min, S.G.; Eun, J.B. Optimization of Spray Drying Process for Recovery of Onion–Stevia Leaf Hot Water Extract Powder Using Response Surface Methodology. Food Sci. Nutr. 2023, 11, 1770–1784. [Google Scholar] [CrossRef]
- Hidar, N.; Noufid, A.; El Adnany, E.M.; Lahnine, L.; Idlimam, A.; Mouhib, M.; Jaouad, A.; Mahrouz, M. Sorption Behavior and Thermodynamic Characteristics of Stevia Leaves as Affected by Freeze Drying and Gamma Irradiation Technologies. Euro-Mediterr. J. Environ. Integr. 2023, 8, 179–189. [Google Scholar] [CrossRef]
- Gasmalla, M.A.A.; Yang, R.; Amadou, I.; Hua, X. Nutritional Composition of Stevia rebaudiana Bertoni Leaf: Effect of Drying Method. Trop. J. Pharm. Res. 2014, 13, 61–65. [Google Scholar] [CrossRef]
- Gasmalla, M.A.A.; Tessema, H.A.; Alahmed, K.; Hua, X.; Liao, X.; Yang, R. Effect of Different Drying Techniques on the Volatile Compounds, Morphological Characteristics and Thermal Stability of Stevia rebaudiana Bertoni Leaf. Trop. J. Pharm. Res. 2017, 16, 1399–1406. [Google Scholar] [CrossRef]
- Periche, A.; Castelló, M.L.; Heredia, A.; Escriche, I. Effect of Different Drying Methods on the Phenolic, Flavonoid and Volatile Compounds of Stevia rebaudiana Leaves. Flavour Fragr. J. 2016, 31, 173–177. [Google Scholar] [CrossRef]
- Moguel-Ordóñez, Y.B.; Cabrera-Amaro, D.L.; Segura-Campos, M.R.; Ruiz-Ruiz, J.C. Studies on Drying Characteristic, Nutritional Composition and Antioxidant Properties of Stevia rebaudiana (Bertoni) Leaves. Int. Agrophys. 2015, 29, 323–331. [Google Scholar] [CrossRef]
- Özyiğit, Y.; Esra, U.; Eruygur, N.; Mehmet, A.; İnanir, M.; Halil, B.A.L.; Kahrizi, D.; Turgut, K. Comparison of Different Drying Methods for Phytochemical Quality of Stevia (Stevia rebaudiana Bert.). Not. Sci. Biol. 2023, 15, 11527. [Google Scholar] [CrossRef]
- Arriola, N.D.A.; de Medeiros, P.M.; Prudencio, E.S.; Müller, C.M.O.; Amboni, R.D.D.M.C. Encapsulation of Aqueous Leaf Extract of Stevia Rebaudiana Bertoni with Sodium Alginate and Its Impact on Phenolic Content. Food Biosci. 2016, 13, 32–40. [Google Scholar] [CrossRef]
- Karimi, M.; Direkvand-moghadam, F.; Sheibani, N. Variation in Steviol Glycoside Contents of Stevia (Stevia rebaudiana) Leaves Under Various Leaf Drying Processes. Iran. J. Plant Physiol. 2023, 13, 4514–4521. [Google Scholar]
- Zalat, M.; Abido, A.I.; Radwan, F.I.; Zeitoun, A.A.; Shaaban, E.H. Drying Temperature and Storage Period and Their Relation to Stevia Leaf Chemical Composition. J. Adv. Agric. Res. 2019, 24, 590–603. [Google Scholar] [CrossRef]
- Campos, L.; Tuma, P.; Silva, T.; Gomes, D.; Pereira, C.D.; Henriques, M.H. Low Fat Yoghurts Produced with Different Protein Levels and Alternative Natural Sweeteners. Foods 2024, 13, 250. [Google Scholar] [CrossRef] [PubMed]
- Bilgiç, İ.G.; Seyrekoğlu, F. The Use of Stevia (Stevia rebaudiana) as a Sweetener in Fruit Yogurts Produced with Apple Powder and the Determination of Quality Parameters. J. Food Meas. Charact. 2025, 1–21. [Google Scholar] [CrossRef]
- Hameed, A.; Ashraf, F.; Anwar, M.J.; Amjad, A.; Hussain, M.; Imran, M.; Mujtaba, A.; Ahmad, I.; Aslam, M.S.; El-Ghorab, A.H.; et al. α-Amylase Enzyme Inhibition Relevant to Type II Diabetes by Using Functional Yogurt with Cinnamomum verum and Stevia rebaudiana. Food Agric. Immunol. 2024, 35, 2389091. [Google Scholar] [CrossRef]
- Hameed, A.; Ishtiaq, F.; Zeeshan, M.; Akhtar, S.; Ismail, T.; Ahmad, R.S.; Amir, M.; Anwar, M.J. Combined Antidiabetic Potential of Camel Milk Yogurt with Cinnamomum verum and Stevia rebaudiana by Using Rodent Modelling. J. Food Sci. Technol. 2023, 60, 1175–1184. [Google Scholar] [CrossRef]
- Akalan, M.; Bayrak Akay, K.; Başyiğit, B.; Karakuş, M.Ş.; Yücetepe, M.; Karaaslan, A.; Karaaslan, M. Instant Stevia Powder as a Novel Potential Additive for Enhancing Nutritional Value and Quality Characteristics of Yogurt. J. Food Sci. Technol. 2024, 61, 958–968. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Khorshidian, N.; Gharibzahedi, S.M.T. The Extended Oxidative and Sensory Stability of Traditional Dairy-Based Oil with Steam-Distilled Essential Oils Extracted from the Bioactive-Rich Leaves of Ziziphora tenuior, Ferulago angulata, and Bunium persicum. J. Food Qual. 2021, 2021, 6613198. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Altintas, Z. Transglutaminase-Induced Free-Fat Yogurt Gels Supplemented with Tarragon Essential Oil-Loaded Nanoemulsions: Development, Optimization, Characterization, Bioactivity and Storability. Gels 2022, 8, 551. [Google Scholar] [CrossRef]
- Evanuarini, H.; Nidhal, H.A. The Potential of Stevia Leaf Flour (Stevia rebaudiana) as a Natural Sweetener in Mayonnaise. Food Sci. Technol. 2023, 11, 154–160. [Google Scholar] [CrossRef]
- Ali, A.; Saha, K.K.; Choudhury, S.; Islam, N. Formulation, Senso-Chemical Analysis and Shelf-Life Study of Biscuits Using Stevia Leaf as the Substitute for Sugar. Asian J. Dairy Food Res. 2022, 41, 424–430. [Google Scholar] [CrossRef]
- Armaya, R.P.; Lubis, L.M.; Nurminah, M. The Effect of the Amount of Stevia Leaf Powder (Stevia rebaudiana) and Drying Time on the Quality of Snake Fruit Padang Sidempuan Dried Candied. Indones. J. Agric. Res. 2024, 7, 38–51. [Google Scholar] [CrossRef]
- Abo Hashem, M.M.; Nassar, A.G.; Abdelhamied, A.A.; Sulaiman, A.M. Effect of Addition Essential Oils and Partial Substituting of Sugar with Stevia Leaves Aqueous Extract on the Quality of Both Mango and Strawberry Jam During Storage. Arch. Agric. Sci. J. 2023, 6, 79–94. [Google Scholar] [CrossRef]
- Pielak, M.; Czarniecka-Skubina, E.; Głuchowski, A. Effect of Sugar Substitution with Steviol Glycosides on Sensory Quality and Physicochemical Composition of Low-Sugar Apple Preserves. Foods 2020, 9, 293. [Google Scholar] [CrossRef]
- Karagöz, Ş.; Demirdöven, A. Effect of Chitosan Coatings with and Without Stevia Rebaudiana and Modified Atmosphere Packaging on Quality of Cold Stored Fresh-Cut Apples. LWT 2019, 108, 332–337. [Google Scholar] [CrossRef]
- Wirivutthikorn, W. Effects of Stevia Syrup on Powdered Drink Products from Pumpkin Carrot and Lemongrass by Foam Mat Drying. Curr. Res. Nutr. Food Sci. J. 2025, 13, 405–416. [Google Scholar] [CrossRef]
- Kundu, A.; Chakma, A.; Dulal, M.A.; Rasul, M.G.; Mondal, M.N.; Shah, A.A. Effects of Stevia (Stevia rebaudiana Bertoni) Leaf Extracts on the Quality and Shelf Life of Refrigerated Catla (Gibelion catla) Fillets. J. Agric. Food Res. 2024, 15, 101058. [Google Scholar] [CrossRef]
- Yu, H.; Liu, W.; Zhou, X.; Lv, H.; Nakano, T.; Liu, H.; Zhao, Q.; Yang, G. Effect of Stevia rebaudiana Stem Waste Extract on Lipid Oxidation of Salted-Dried Pacific Saury During Chilled Storage. LWT 2024, 200, 116180. [Google Scholar] [CrossRef]
- Liu, H.; Yang, G.; Zhao, Q.; Li, H.; Niu, L.; Wu, H.; Yu, H. Antioxidant Effects of Stevia rebaudiana Leaf and Stem Extracts on Lipid Oxidation in Salted Pacific Saury (Cololabis saira) During Processing. Eur. J. Lipid Sci. Technol. 2022, 124, 2100223. [Google Scholar] [CrossRef]
- He, Z.G.; Zhang, Y.; Yang, M.D.; Zhang, Y.Q.; Cui, Y.Y.; Du, M.Y.; Zhao, D.; Sun, H. Effect of Different Sweeteners on the Quality, Fatty Acid and Volatile Flavor Compounds of Braised Pork. Front. Nutr. 2022, 9, 961998. [Google Scholar] [CrossRef]
Drying Method | Equipment Specifications (Processing Scale) | Industrial Applicability (Industrial Use Cases) | Drying Conditions | Findings | Ref. |
---|---|---|---|---|---|
Solar drying | Direct drying (cabinet-type dryer) and indirect drying (tunnel-type) assisted by flat plate solar collectors (Mostly batch) | Small- to medium-scale applications in solar-rich regions (Herbal teas, rural medicinal herb drying) |
|
| [7] |
A developed solar dryer of mixed mode forced convection type (MFSCD, pilot/batch scale but easily scalable to small–medium industrial), and open sun drying (OSD, simple trays/mats laid outdoors under direct sun; strictly batch, informal scale) | MFSCD (Efficiently dries herbal leaves, retains antioxidants and flavor, ideal for small herbal processing enterprises in sunny regions with limited grid access), OSD (traditionally used in rural or artisanal settings; low-cost but slow and lower quality preservation, less suitable for commercial food and nutraceutical production) |
|
| [12] | |
Solar air collector: (Area: 2.5 m2 (2.5 m length × 1 m width), Material: Black galvanized sheet iron absorber, ordinary glass cover, Inclination: 30°, Single circulation, glazed; Centrifugal fan: (Flow rate: 0.084 m3/s (adjustable 0.0296 to 0.0889 m3/s), Power: 0.1 kW, 220 V, Theoretical air velocity: 1.7 m/s); Ventilation duct: (Power: 0.1 kW, Includes a double T for partial or total air recirculation); Thermo regulator: (Temperature range: 0–99 °C, Connected to PT100 platinum probe and 4 kW resistive heaters); Drying chamber: (Dimensions: 1.40 m (height) × 0.90 m (length) × 0.50 m (width), Includes 10 racks, uniform hot air distribution) (Pilot/batch, expandable to small industrial) |
|
|
| [44] | |
Far-IR radiation | Far-IR drying equipment (Batch) | Batch-scale phytoproduct drying (used in drying of herbs, tea leaves, and plant-based ingredients with structural sensitivity) |
|
| [45] |
Medium-and short-wave IR drying | Dryer with both medium-wave IR (MIR) and short-wave IR (SIR) emission lamps, MIR lamps: Three medium-wave IR lamps (2–4 μm), radiation power of 450 W, 225 W, and 225 W, SIR lamps: Three SIR lamps (0.75–2 μm), radiation power of 450 W, 450 W, and 225 W, Thermal sensor: ±0.1 °C accuracy, placed on the material’s top surface (Batch) |
|
|
| [16] |
IR-assisted continuous hybrid solar dryer |
|
|
|
| [5] |
(Convective) hot air drying |
|
|
|
| [40] |
|
|
|
| [6] | |
|
|
|
| [17] | |
Microwave drying | A domestic microwave oven (IFB Industries, 900 W, 2450 MHz) with a rotating 30 cm glass plate (Batch-scale and lab- or pilot-level application) |
|
|
| [46] |
Freeze drying | Freeze dryer (FDU-830, Tokyo Rikakikai Co., Ltd., Tokyo, Japan), a laboratory device which requires precise temperature control to prevent degradation of sensitive freeze-dried materials (Batch) | Batch-scale freeze drying (used in preservation of sensitive emulsions and bioactive-rich botanicals for nutraceutical and pharmaceutical applications) |
|
| [47] |
Laboratory freeze dryer model Christ ALPHA 1–2 LD plus (Batch) | Batch-scale freeze drying (used in food-grade preservation of moisture-sensitive ingredients; applicable to powders for functional foods, nutraceutical blends, and encapsulated bioactives) |
|
| [31] | |
Ultra-freezer (NEW BRUNSWICK-U101, Hertfordshire, England), Laboratory freeze-dryer device (Labconco, Kansas, MO, USA) (Batch) | Batch-scale freeze drying (used in micro/nanoencapsulation of bioactive ingredients; applicable to functional food powders, sweetener systems, and flavor masking in nutraceutical formulations) |
|
| [48] | |
Vacuum oven drying | Vacuum oven (Batch) |
|
|
| [37] |
Spray drying | A Mobile Minor concurrent flow spray dryer equipped with a pneumatic pulse rotary spray dryer (Continuous (pilot to industrial)) |
|
|
| [49] |
Not reported (Probably, continuous (lab to pilot-scale)) |
|
|
| [50] | |
Mini Spray Dryer (Büchi, model B-191) (Continuous (lab-scale)) |
|
|
| [51] | |
A laboratory spray dryer with a two-fluid nozzle (B-191, Büchi Mini Spray Drier, Flawil, Switzerland) (Continuous (lab-scale)) |
|
|
| [8] | |
Not reported (Probably, continuous (lab-scale)) |
|
|
| [3] | |
Encapsulator Büchi-B390 (Büchi Labortechnik AG, Flawil, Switzerland) with a nozzle size of 1000 μm (Batch) |
|
|
| [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roohinejad, S.; Koubaa, M.; Gharibzahedi, S.M.T. Drying Technologies for Stevia rebaudiana Bertoni: Advances, Challenges, and Impacts on Bioactivity for Food Applications—A Review. Foods 2025, 14, 2801. https://doi.org/10.3390/foods14162801
Roohinejad S, Koubaa M, Gharibzahedi SMT. Drying Technologies for Stevia rebaudiana Bertoni: Advances, Challenges, and Impacts on Bioactivity for Food Applications—A Review. Foods. 2025; 14(16):2801. https://doi.org/10.3390/foods14162801
Chicago/Turabian StyleRoohinejad, Shahin, Mohamed Koubaa, and Seyed Mohammad Taghi Gharibzahedi. 2025. "Drying Technologies for Stevia rebaudiana Bertoni: Advances, Challenges, and Impacts on Bioactivity for Food Applications—A Review" Foods 14, no. 16: 2801. https://doi.org/10.3390/foods14162801
APA StyleRoohinejad, S., Koubaa, M., & Gharibzahedi, S. M. T. (2025). Drying Technologies for Stevia rebaudiana Bertoni: Advances, Challenges, and Impacts on Bioactivity for Food Applications—A Review. Foods, 14(16), 2801. https://doi.org/10.3390/foods14162801