Three-Dimensional Modeling of Soil Organic Carbon Stocks in Forest Ecosystems of Northeastern China Under Future Climate Warming Scenarios
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Soil Samples
2.3. Calculation of SOC Stocks
2.4. Environmental Variables
2.4.1. Climatic Variables
2.4.2. Topographic Variables
2.4.3. Soil Property Variables
2.4.4. Biological Variables
2.5. Prediction Models
2.5.1. Equal-Area Spline Profile Function
2.5.2. Random Forest
2.5.3. Space-for-Time Substitution Method
2.6. Model Validation
3. Results
3.1. Descriptive Statistics
3.2. Model Performance and Uncertainty
3.3. Relative Importance of Environment Factors
3.4. Spatial Distribution Variation of SOC Stocks
4. Discussion
4.1. Controls of SOC Stocks
4.2. Response of SOC Stocks in Climate Warming
4.3. Uncertainties in the Present Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hansen, K.; Butzeck, C.; Eschenbach, A.; Gröngröft, A.; Jensen, K.; Pfeiffer, E.M. Factors influencing the organic carbon pools in tidal marsh soils of the Elbe estuary (Germany). J. Soils Sediments 2017, 17, 47–60. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Qu, Q.; Xu, H.; Xu, L.; You, C.; Tan, B.; Li, H.; Zhang, L.; Wang, L.; Liu, S.; Xu, Z.; et al. Forest thinning effects on soil carbon stocks and dynamics: Perspective of soil organic carbon sequestration rates. Catena 2025, 250, 108759. [Google Scholar] [CrossRef]
- Siegenthaler, U.; Wenk, T. Rapid atmospheric CO2 variations and ocean circulation. Nature 1984, 308, 624–626. [Google Scholar] [CrossRef]
- Qin, J.; Liu, P.; Martin, A.R.; Wang, W.; Lei, Y.; Li, H. Forest carbon storage and sink estimates under different management scenarios in China from 2020 to 2100. Sci. Total Environ. 2024, 927, 172076. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Sun, Y.; Yuan, M.; Li, J.; Zhang, Y.; Tang, J. Forest Soil Organic Carbon Review. Am. J. Plant Sci. 2025, 16, 155–169. [Google Scholar] [CrossRef]
- Ascenzi, I.; Hilbers, J.P.; van Katwijk, M.M.; Huijbregts, M.A.; Hanssen, S.V. Increased but not pristine soil organic carbon stocks in restored ecosystems. Nat. Commun. 2025, 16, 637. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Chen, Z.; Piao, S.; Peng, C.; Ciais, P.; Wang, Q.; Li, X.; Zhu, X. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111, 4910–4915. [Google Scholar] [CrossRef] [PubMed]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Wang, M.; Guo, X.; Zhang, S.; Jiao, L.; Mishra, U.; Yang, Y.; Zhu, B.; Wang, G.; Mao, X.; Qian, T.; et al. Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate. Nat. Commun. 2022, 13, 5514. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Feng, W.; Xu, J.; Kuzyakov, Y. Agroforestry systems: Meta-analysis of soil carbon stocks, sequestration processes, and future potentials. Land Degrad. Dev. 2018, 29, 3886–3897. [Google Scholar] [CrossRef]
- Arrouays, D.; McBratney, A.B.; Minasny, B.; Hempel, J.W.; Heuvelink, G.B.M.; MacMillan, R.A.; McKenzie, N.J. The GlobalSoilMap project specifications. In GlobalSoilMap: Basis of the Global Spatial Soil Information System; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Bonfatti, B.R.; Hartemink, A.E.; Giasson, E. Comparing soil C stocks from soil profile data using four different methods. In Digital Soil Morphometrics; Springer International Publishing: Cham, Switzerland, 2016; pp. 315–329. [Google Scholar]
- Zhang, M.; Shi, W.; Ren, Y.; Wang, Z.; Ge, Y.; Guo, X.; Mao, D.; Ma, Y. Proportional allocation with soil depth improved mapping soil organic carbon stocks. Soil Tillage Res. 2022, 224, 105519. [Google Scholar] [CrossRef]
- Jague, E.A.; Sommer, M.; Saby, N.P.; Cornelis, J.T.; Van Wesemael, B.; Van Oost, K. High resolution characterization of the soil organic carbon depth profile in a soil landscape affected by erosion. Soil Tillage Res. 2016, 156, 185–193. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Adhikari, K.; Wang, Z.; Shi, D.; Jin, X.; Qian, F. Impact of future climate warming on soil organic carbon stocks in Inner Mongolia, China. Ecol. Indic. 2023, 156, 111208. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E.; Minasny, B.; Bou Kheir, R.; Greve, M.B.; Greve, M.H. Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS ONE 2014, 9, e105519. [Google Scholar] [CrossRef] [PubMed]
- Mulder, V.L.; Lacoste, M.; Richer-De-Forges, A.C.; Arrouays, D. GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth. Sci. Total Environ. 2016, 573, 1352–1369. [Google Scholar] [CrossRef] [PubMed]
- McBratney, A.B.; Santos, M.L.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Le Noë, J.; Manzoni, S.; Abramoff, R.; Bölscher, T.; Bruni, E.; Cardinael, R.; Ciais, P.; Chenu, C.; Clivot, H.; Derrien, D.; et al. Soil organic carbon models need independent time-series validation for reliable prediction. Commun. Earth Environ. 2023, 4, 158. [Google Scholar] [CrossRef]
- Yang, L.; Cai, Y.; Zhang, L.; Guo, M.; Li, A.; Zhou, C. A deep learning method to predict soil organic carbon content at a regional scale using satellite-based phenology variables. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102428. [Google Scholar] [CrossRef]
- Payen, F.T.; Sykes, A.; Aitkenhead, M.; Alexander, P.; Moran, D.; MacLeod, M. Predicting the abatement rates of soil organic carbon sequestration management in Western European vineyards using random forest regression. Clean. Environ. Syst. 2021, 2, 100024. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Malone, B.P.; Wheeler, I. Digital mapping of soil carbon. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2013; Volume 118, pp. 1–47. [Google Scholar]
- Xie, E.; Zhang, X.; Lu, F.; Peng, Y.; Chen, J.; Zhao, Y. Integration of a process-based model into the digital soil mapping improves the space-time soil organic carbon modelling in intensively human-impacted area. Geoderma 2022, 409, 115599. [Google Scholar] [CrossRef]
- Wang, S.; Roland, B.; Adhikari, K.; Zhuang, Q.; Jin, X.; Han, C.; Qian, F. Spatial-temporal variations and driving factors of soil organic carbon in forest ecosystems of Northeast China. For. Ecosyst. 2023, 10, 100101. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statisitical Yearbook. Available online: https://www.stats.gov.cn/sj/ndsj/2024/indexch.htm (accessed on 20 July 2025).
- Zhu, A.X.; Yang, L.; Li, B.; Qin, C.; English, E.; Burt, J.E.; Zhou, C. Purposive sampling for digital soil mapping for areas with limited data. In Digital Soil Mapping with Limited Data; Hartemink, A.E., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 33–245. [Google Scholar]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: https://www.r-project.org/ (accessed on 20 July 2025).
- Gibson, A.J.; Hancock, G.R.; Verdon-Kidd, D.C.; Martinez, C.; Wells, T. The impact of shifting Köppen-Geiger climate zones on soil organic carbon concentrations in Australian grasslands. Glob. Planet. Change 2021, 202, 103523. [Google Scholar] [CrossRef]
- McKenney, D.W.; Pedlar, J.H.; Papadopol, P.; Hutchinson, M.F. The development of 1901–2000 historical monthly climate models for Canada and the United States. Agric. For. Meteorol. 2006, 138, 69–81. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, M.; Adhikari, K.; Zhuang, Q.; Bian, Z.; Wang, Y.; Jin, X. Anthropogenic controls over soil organic carbon distribution from the cultivated lands in Northeast China. Catena 2022, 210, 105897. [Google Scholar] [CrossRef]
- Román-Sánchez, A.; Vanwalleghem, T.; Peña, A.; Laguna, A.; Giráldez, J.V. Controls on soil carbon storage from topography and vegetation in a rocky, semi-arid landscapes. Geoderma 2018, 311, 159–166. [Google Scholar] [CrossRef]
- Blackburn, K.W.; Libohova, Z.; Adhikari, K.; Kome, C.; Maness, X.; Silman, M.R. Influence of land use and topographic factors on soil organic carbon stocks and their Spatial and vertical distribution. Remote Sens. 2022, 14, 2846. [Google Scholar] [CrossRef]
- Dharumarajan, S.; Hegde, R. Digital mapping of soil texture classes using Random Forest classification algorithm. Soil Use Manag. 2022, 38, 135–149. [Google Scholar] [CrossRef]
- Adhikari, K.; Owens, P.R.; Libohova, Z.; Miller, D.M.; Wills, S.A.; Nemecek, J. Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change. Sci. Total Environ. 2019, 667, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Shafizadeh-Moghadam, H.; Minaei, F.; Talebi-khiyavi, H.; Xu, T.; Homaee, M. Synergetic use of multi-temporal Sentinel-1, Sentinel-2, NDVI, and topographic factors for estimating soil organic carbon. Catena 2022, 212, 106077. [Google Scholar] [CrossRef]
- Bishop, T.F.A.; McBratney, A.B.; Laslett, G.M. Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma 1999, 91, 27–45. [Google Scholar] [CrossRef]
- Malone, B.P.; McBratney, A.B.; Minasny, B.; Laslett, G.M. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma 2009, 154, 138–152. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by random Forest. R News 2022, 2, 18–22. [Google Scholar]
- Strey, S.; Boy, J.; Strey, R.; Weber, O.; Guggenberger, G. Response of soil organic carbon to land-use change in central Brazil: A large-scale comparison of Ferralsols and Acrisols. Plant Soil 2016, 408, 327–342. [Google Scholar] [CrossRef]
- Yang, R.M.; Zhu, C.M.; Zhang, X.; Huang, L.M. A preliminary assessment of the space-for-time substitution method in soil carbon change prediction. Soil Sci. Soc. Am. J. 2022, 86, 423–434. [Google Scholar] [CrossRef]
- Bonfatti, B.R.; Hartemink, A.E.; Giasson, E.; Tornquist, C.G.; Adhikari, K. Digital mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma 2016, 261, 204–221. [Google Scholar] [CrossRef]
- Waring, C.; Stockmann, U.; Malone, B.P.; Whelan, B.; McBratney, A.B. Is percent ‘projected natural vegetation soil carbon’ a useful indicator of soil condition? In Soil Carbon; Springer: Cham, Swizerland, 2014; pp. 219–227. [Google Scholar]
- Adhikari, K.; Hartemink, A.E. Digital mapping of topsoil carbon content and changes in the Driftless Area of Wisconsin, USA. Soil Sci. Soc. Am. J. 2015, 79, 155–164. [Google Scholar] [CrossRef]
- Zhou, M.; Zhou, C.; Peng, Y.; Jia, R.; Zhao, W.; Liang, S.; Xu, X.; Terada, A.; Wang, G. Space-for-time substitution leads to carbon emission overestimation in eutrophic lakes. Environ. Res. 2023, 219, 115175. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.C.; Faria, R.M.; de Souza, E.; Veloso, G.V.; Schaefer, C.E.G.; Fernandes Filho, E.I. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma 2019, 340, 337–350. [Google Scholar] [CrossRef]
- Tsui, C.C.; Tsai, C.C.; Chen, Z.S. Soil organic carbon stocks in relation to elevation gradients in volcanic ash soils of Taiwan. Geoderma 2013, 209, 119–127. [Google Scholar] [CrossRef]
- Rezaei, S.A.; Gilkes, R.J. The effects of landscape attributes and plant community on soil chemical properties in rangelands. Geoderma 2005, 125, 167–176. [Google Scholar] [CrossRef]
- San Román, A.X.; Srikanthan, N.; Hamid, A.A.; Muratore, T.J.; Knorr, M.A.; Frey, S.D.; Simpson, M.J. Long-term warming in a temperate forest accelerates soil organic matter decomposition despite increased plant-derived inputs. Biogeochemistry 2024, 167, 1159–1174. [Google Scholar] [CrossRef]
- Li, J.; Pei, J.; Pendall, E.; Reich, P.B.; Noh, N.J.; Li, B.; Fang, C.; Nie, M. Rising Temperature May Trigger Deep Soil Carbon Loss Across Forest Ecosystems. Adv. Sci. 2020, 7, 2001242. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Huang, M.; Shao, X.; Mickler, R.A.; Li, K.; Ji, J. Vertical distribution of soil organic carbon in China. Environ. Manag. 2004, 33, S200–S209. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, A.; Thakur, T.K.; Sahoo, U.K.; Kumar, R.; Konsam, B.; Pandey, R. Soil organic carbon estimation along an altitudinal gradient of chir pine forests in the Garhwal Himalaya, India: A field inventory to remote sensing approach. Land Degrad. Dev. 2022, 33, 3387–3400. [Google Scholar] [CrossRef]
- Mondal, A.; Khare, D.; Kundu, S.; Mondal, S.; Mukherjee, S.; Mukhopadhyay, A. Spatial soil organic carbon (SOC) prediction by regression kriging using remote sensing data. Egypt. J. Remote Sens. Space Sci. 2017, 20, 61–70. [Google Scholar] [CrossRef]
- Ma, H.; Peng, M.; Yang, Z.; Yang, K.; Zhao, C.; Li, K.; Guo, F.; Yang, Z.; Cheng, H. Spatial distribution and driving factors of soil organic carbon in the Northeast China Plain: Insights from latest monitoring data. Sci. Total Environ. 2024, 911, 168602. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wang, D.; Mu, C.; Zhang, W.; Zhu, X.; Zhao, L.; Wu, X. Storage, patterns, and environmental controls of soil organic carbon stocks in the permafrost regions of the Northern Hemisphere. Sci. Total Environ. 2022, 828, 154464. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.; McConnell, C.; Coleman, K.; Cox, P.; Falloon, P.; Jenkinson, D.; Powlson, D. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Glob. Change Biol. 2005, 11, 154–166. [Google Scholar] [CrossRef]
- Zhao, F.; Wu, Y.; Hui, J.; Sivakumar, B.; Meng, X.; Liu, S. Projected soil organic carbon loss in response to climate warming and soil water content in a loess watershed. Carbon Balance Manag. 2021, 16, 24. [Google Scholar] [CrossRef] [PubMed]
Property | Unit | Min. | Max. | Mean | SD | Ske. | Kur. |
---|---|---|---|---|---|---|---|
BD0–5 | g cm−3 | 0.51 | 1.61 | 1.10 | 0.27 | −0.25 | −0.78 |
BD5–15 | g cm−3 | 0.61 | 1.80 | 1.13 | 0.26 | −0.10 | −0.30 |
BD15–30 | g cm−3 | 0.02 | 1.70 | 1.15 | 0.38 | −1.64 | 2.14 |
BD30–60 | g cm−3 | 0.02 | 1.83 | 1.12 | 0.52 | −1.15 | −0.14 |
BD60–100 | g cm−3 | 0.01 | 1.86 | 1.15 | 0.56 | −1.19 | −0.18 |
SOC0–5 | g kg−1 | 6.70 | 142.82 | 33.22 | 29.61 | 1.86 | 3.83 |
SOC5–15 | g kg−1 | 5.21 | 147.80 | 27.72 | 25.88 | 2.31 | 7.10 |
SOC15–30 | g kg−1 | 1.30 | 235.30 | 17.82 | 29.94 | 6.34 | 45.66 |
SOC30–60 | g kg−1 | 0.20 | 202.00 | 10.57 | 25.86 | 6.74 | 49.47 |
SOC60–100 | g kg−1 | 0.80 | 126.60 | 6.42 | 16.41 | 6.57 | 47.35 |
SOC stocks0–5 | t ha−1 | 3.78 | 56.81 | 14.67 | 11.02 | 1.86 | 4.29 |
SOC stocks5–15 | t ha−1 | 2.65 | 106.98 | 25.63 | 21.05 | 2.20 | 5.63 |
SOC stocks15–30 | t ha−1 | 0.13 | 170.33 | 24.08 | 29.43 | 3.55 | 15.04 |
SOC stocks30–60 | t ha−1 | 0.01 | 352.28 | 26.48 | 55.77 | 4.80 | 24.69 |
SOC stocks60–100 | t ha−1 | 0.01 | 232.86 | 19.71 | 38.92 | 4.63 | 22.78 |
ELE | m | 36.28 | 1266.74 | 394.49 | 251.66 | 1.17 | 1.81 |
SG | Degree | 0.08 | 9.05 | 2.21 | 1.58 | 1.76 | 5.29 |
SA | Degree | 7.80 | 355.30 | 217.95 | 92.42 | −0.49 | −0.75 |
CA | m2 m−1 | 4,523,550.00 | 1,214,630,000.00 | 126,385,146.51 | 199,643,814.28 | 3.58 | 15.19 |
PC | Index | −0.02 | 0.01 | 0.00 | 0.01 | −0.71 | 1.20 |
TWI | Index | 7.90 | 14.00 | 10.38 | 1.13 | 0.85 | 1.73 |
MAT | Celsius degree | −2.71 | 5.93 | 2.58 | 1.53 | −0.28 | 1.38 |
MAP | mm | 214.17 | 1290.23 | 652.24 | 286.01 | 0.51 | −0.35 |
NDVI | Index | 0.65 | 0.92 | 0.84 | 0.05 | −1.69 | 3.54 |
Clay | Percentage | 12.00 | 35.00 | 22.51 | 4.38 | 0.48 | 1.25 |
Silt | Percentage | 24.00 | 41.00 | 29.48 | 3.47 | 1.96 | 3.53 |
Sand | Percentage | 24.00 | 62.00 | 48.06 | 7.13 | −1.45 | 3.36 |
Property | ELE | SG | SA | CA | PC | TWI | MAT | MAP | NDVI | Clay | Silt | Sand |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC stocks0–5 | 0.40 ** | 0.27 * | 0.01 | −0.16 | 0.04 | −0.19 | 0.37 ** | 0.12 | 0.27 * | 0.06 | 0.05 | −0.06 |
SOC stocks5–15 | 0.36 ** | 0.26 * | 0.12 | −0.14 | 0.06 | −0.16 | 0.35 ** | 0.09 | 0.28 * | 0.08 | 0.05 | −0.07 |
SOC stocks15–30 | 0.26 * | 0.32 * | 0.12 | −0.11 | 0.07 | −0.16 | 0.27 * | 0.08 | 0.2 | −0.04 | −0.02 | 0.03 |
SOC stocks30–60 | 0.24 | 0.32 * | 0.11 | −0.08 | 0.12 | −0.14 | 0.17 | 0.05 | 0.11 | −0.05 | 0.04 | 0.01 |
SOC stocks60–100 | 0.23 | 0.30 * | 0.04 | −0.06 | 0.17 | −0.12 | 0.06 | −0.08 | 0.05 | −0.06 | 0.07 | 0.01 |
Depth (cm) | MAE | RMSE | R2 | LCCC |
---|---|---|---|---|
0–5 | 1.21 | 1.31 | 0.54 | 0.89 |
5–15 | 1.20 | 1.38 | 0.48 | 0.87 |
15–30 | 1.49 | 2.06 | 0.30 | 0.72 |
30–60 | 1.80 | 2.62 | 0.37 | 0.80 |
60–100 | 2.76 | 4.06 | 0.36 | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Bian, S.; Wang, Z.; Yang, Z.; Li, C.; Zhang, X.; Shi, D.; Liu, H. Three-Dimensional Modeling of Soil Organic Carbon Stocks in Forest Ecosystems of Northeastern China Under Future Climate Warming Scenarios. Forests 2025, 16, 1209. https://doi.org/10.3390/f16081209
Wang S, Bian S, Wang Z, Yang Z, Li C, Zhang X, Shi D, Liu H. Three-Dimensional Modeling of Soil Organic Carbon Stocks in Forest Ecosystems of Northeastern China Under Future Climate Warming Scenarios. Forests. 2025; 16(8):1209. https://doi.org/10.3390/f16081209
Chicago/Turabian StyleWang, Shuai, Shouyuan Bian, Zicheng Wang, Zijiao Yang, Chen Li, Xingyu Zhang, Di Shi, and Hongbin Liu. 2025. "Three-Dimensional Modeling of Soil Organic Carbon Stocks in Forest Ecosystems of Northeastern China Under Future Climate Warming Scenarios" Forests 16, no. 8: 1209. https://doi.org/10.3390/f16081209
APA StyleWang, S., Bian, S., Wang, Z., Yang, Z., Li, C., Zhang, X., Shi, D., & Liu, H. (2025). Three-Dimensional Modeling of Soil Organic Carbon Stocks in Forest Ecosystems of Northeastern China Under Future Climate Warming Scenarios. Forests, 16(8), 1209. https://doi.org/10.3390/f16081209