Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (827)

Search Parameters:
Keywords = elevated station

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 337 KiB  
Proceeding Paper
Exposure to PM2.5 While Walking in the City Center
by Anna Mainka, Witold Nocoń, Aleksandra Malinowska, Julia Pfajfer, Edyta Komisarczyk and Pawel Wargocki
Environ. Earth Sci. Proc. 2025, 34(1), 2; https://doi.org/10.3390/eesp2025034002 - 6 Aug 2025
Abstract
This study investigates personal exposure to fine particulate matter (PM2.5) during walking commutes in Gliwice, Poland—a city characterized by elevated levels of air pollution. Data from a low-cost air quality sensor were compared with a municipal monitoring station and the Silesian [...] Read more.
This study investigates personal exposure to fine particulate matter (PM2.5) during walking commutes in Gliwice, Poland—a city characterized by elevated levels of air pollution. Data from a low-cost air quality sensor were compared with a municipal monitoring station and the Silesian University of Technology laboratory. PM2.5 concentrations recorded by the low-cost sensor (7.3 µg/m3) were lower than those reported by the stationary monitoring sites. The findings suggest that low-cost sensors may offer valuable insights into short-term peaks in PM2.5 exposure to serve as a practical tool for increasing public awareness of personal exposure risks to protect respiratory health. Full article
Show Figures

Figure 1

27 pages, 15404 KiB  
Article
Machine-Learning Models for Surface Ozone Forecast in Mexico City
by Mateen Ahmad, Bernhard Rappenglück, Olabosipo O. Osibanjo and Armando Retama
Atmosphere 2025, 16(8), 931; https://doi.org/10.3390/atmos16080931 (registering DOI) - 1 Aug 2025
Viewed by 205
Abstract
Mexico City frequently experiences high near-surface ozone concentrations, and exposure to elevated near-surface ozone causes harmful effects to the inhabitants and the environment of Mexico City. This necessitates developing models for Mexico City that predict near-surface ozone levels in advance. Such models are [...] Read more.
Mexico City frequently experiences high near-surface ozone concentrations, and exposure to elevated near-surface ozone causes harmful effects to the inhabitants and the environment of Mexico City. This necessitates developing models for Mexico City that predict near-surface ozone levels in advance. Such models are crucial for regulatory procedures and can save a great deal of near-surface ozone detrimental effects by serving as early warning systems. We utilize three machine-learning models, trained on seven-year data (2015–2021) and tested on one-year data (2022), to forecast the near-surface ozone concentrations. The trained models predict the next day’s 24-h near-surface ozone concentrations for up to one month; before forecasting the following months, the models are trained again and updated. Based on prediction results, the convolutional neural network outperforms the rest of the models on a yearly scale with an index of agreement of 0.93 for three stations, 0.92 for nine stations, and 0.91 for one station. Full article
Show Figures

Figure 1

22 pages, 7156 KiB  
Communication
Water Management, Environmental Challenges, and Rehabilitation Strategies in the Khyargas Lake–Zavkhan River Basin, Western Mongolia: A Case Study of Ereen Lake
by Tseren Ochir Soyol-Erdene, Ganbat Munguntsetseg, Zambuu Burmaa, Ulziibat Bilguun, Shagijav Oyungerel, Soninkhishig Nergui, Nyam-Osor Nandintsetseg, Michael Walther and Ulrich Kamp
Geographies 2025, 5(3), 38; https://doi.org/10.3390/geographies5030038 - 1 Aug 2025
Viewed by 431
Abstract
The depletion of water resources caused by climate change and human activities is a pressing global issue. Lake Ereen is one of the ten natural landmarks of the Gobi-Altai of western Mongolia is included in the list of “important areas for birds” recognized [...] Read more.
The depletion of water resources caused by climate change and human activities is a pressing global issue. Lake Ereen is one of the ten natural landmarks of the Gobi-Altai of western Mongolia is included in the list of “important areas for birds” recognized by the international organization Birdlife. However, the construction of the Taishir Hydroelectric Power Station, aimed at supplying electricity to the western provinces of Mongolia, had a detrimental effect on the flow of the Zavkhan River, resulting in a drying-up and pollution of Lake Ereen, which relies on the river as its water source. This study assesses the pollution levels in Ereen Lake and determines the feasibility of its rehabilitation by redirecting the flow of the Zavkhan River. Field studies included the analysis of water quality, sediment contamination, and the composition of flora. The results show that the concentrations of ammonium, chlorine, fluorine, and sulfate in the lake water exceed the permissible levels set by the Mongolian standard. Analyses of elements from sediments revealed elevated levels of arsenic, chromium, and copper, exceeding international sediment quality guidelines and posing risks to biological organisms. Furthermore, several species of diatoms indicative of polluted water were discovered. Lake Ereen is currently in a eutrophic state and, based on a water quality index (WQI) of 49.4, also in a “polluted” state. Mass balance calculations and box model analysis determined the period of pollutant replacement for two restoration options: drying-up and complete removal of contaminated sediments and plants vs. dilution-flushing without direct interventions in the lake. We recommend the latter being the most efficient, eco-friendly, and cost-effective approach to rehabilitate Lake Ereen. Full article
Show Figures

Figure 1

37 pages, 23165 KiB  
Article
Leveraging High-Frequency UAV–LiDAR Surveys to Monitor Earthflow Dynamics—The Baldiola Landslide Case Study
by Francesco Lelli, Marco Mulas, Vincenzo Critelli, Cecilia Fabbiani, Melissa Tondo, Marco Aleotti and Alessandro Corsini
Remote Sens. 2025, 17(15), 2657; https://doi.org/10.3390/rs17152657 - 31 Jul 2025
Viewed by 218
Abstract
UAV platforms equipped with RTK positioning and LiDAR sensors are increasingly used for landslide monitoring, offering frequent, high-resolution surveys with broad spatial coverage. In this study, we applied high-frequency UAV-based monitoring to the active Baldiola earthflow (Northern Apennines, Italy), integrating 10 UAV–LiDAR and [...] Read more.
UAV platforms equipped with RTK positioning and LiDAR sensors are increasingly used for landslide monitoring, offering frequent, high-resolution surveys with broad spatial coverage. In this study, we applied high-frequency UAV-based monitoring to the active Baldiola earthflow (Northern Apennines, Italy), integrating 10 UAV–LiDAR and photogrammetric surveys, acquired at average intervals of 14 days over a four-month period. UAV-derived orthophotos and DEMs supported displacement analysis through homologous point tracking (HPT), with robotic total station measurements serving as ground-truth data for validation. DEMs were also used for multi-temporal DEM of Difference (DoD) analysis to assess elevation changes and identify depletion and accumulation patterns. Displacement trends derived from HPT showed strong agreement with RTS data in both horizontal (R2 = 0.98) and vertical (R2 = 0.94) components, with cumulative displacements ranging from 2 m to over 40 m between April and August 2024. DoD analysis further supported the interpretation of slope processes, revealing sector-specific reactivations and material redistribution. UAV-based monitoring provided accurate displacement measurements, operational flexibility, and spatially complete datasets, supporting its use as a reliable and scalable tool for landslide analysis. The results support its potential as a stand-alone solution for both monitoring and emergency response applications. Full article
Show Figures

Figure 1

31 pages, 5037 KiB  
Article
Evaluation and Improvement of Ocean Color Algorithms for Chlorophyll-a and Diffuse Attenuation Coefficients in the Arctic Shelf
by Yubin Yao, Tao Li, Qing Xu, Xiaogang Xing, Xingyuan Zhu and Yubao Qiu
Remote Sens. 2025, 17(15), 2606; https://doi.org/10.3390/rs17152606 - 27 Jul 2025
Viewed by 445
Abstract
Arctic shelf waters exhibit high optical variability due to terrestrial inputs and elevated colored dissolved organic matter (CDOM) concentrations, posing significant challenges for the accurate retrieval of chlorophyll-a (Chl-a) and downwelling diffuse attenuation coefficients (Κd(λ) [...] Read more.
Arctic shelf waters exhibit high optical variability due to terrestrial inputs and elevated colored dissolved organic matter (CDOM) concentrations, posing significant challenges for the accurate retrieval of chlorophyll-a (Chl-a) and downwelling diffuse attenuation coefficients (Κd(λ)). These retrieval biases contribute to substantial uncertainties in estimates of primary productivity and upper-ocean heat flux in the Arctic Ocean. However, the performance and constraints of existing ocean color algorithms in Arctic shelf environments remain insufficiently characterized, particularly under seasonally variable and optically complex conditions. In this study, we present a systematic multi-year evaluation of commonly used empirical and semi-analytical ocean color algorithms across the western Arctic shelf, based on seven expeditions and 240 in situ observation stations. Building on these evaluations, regionally optimized retrieval schemes were developed to enhance algorithm performance under Arctic-specific bio-optical conditions. The proposed OCx-AS series for Chl-a and Κd-DAS models for Κd(λ) significantly reduce retrieval errors, achieving RMSE improvements of over 50% relative to global standard algorithms. Additionally, we introduce QAA-LS, a modified semi-analytical model specifically adapted for the Laptev Sea, which addresses the strong absorption effects of CDOM and corrects the significant overestimation observed in previous QAA versions. Full article
Show Figures

Graphical abstract

19 pages, 12174 KiB  
Article
Spatiotemporal Trends and Exceedance Drivers of Ozone Concentration in the Yangtze River Delta Urban Agglomeration, China
by Junli Xu and Jian Wang
Atmosphere 2025, 16(8), 907; https://doi.org/10.3390/atmos16080907 - 26 Jul 2025
Viewed by 317
Abstract
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring [...] Read more.
The Yangtze River Delta urban agglomeration, characterized by high population density, an advanced transportation system, and a concentration of industrial activity, is one of the regions severely affected by O3 pollution in central and eastern China. Using data collected from 251 monitoring stations between 2015 and 2025, this paper analyzed the spatio-temporal variation of 8 h O3 concentrations and instances of exceedance. On the basis of exploring the influence of meteorological factors on regional 8 h O3 concentration, the potential source contribution areas of pollutants under the exceedance condition were investigated using the HYSPLIT model. The results indicate a rapid increase in the 8 h O3 concentration at a rate of 0.91 ± 0.98 μg·m−3·a−1, with the average number of days exceeding concentration standards reaching 41.05 in the Yangtze River Delta urban agglomeration. Spatially, the 8 h O3 concentrations were higher in coastal areas and lower in inland regions, as well as elevated in plains compared to hilly terrains. This distribution was significantly distinct from the concentration growth trend characterized by higher levels in the northwest and lower levels in the southeast. Furthermore, it diverged from the spatial characteristics where exceedances primarily occurred in the heavily industrialized northeastern region and the lightly industrialized central region, indicating that the growth and exceedance of 8 h O3 concentrations were influenced by disparate factors. Local human activities have intensified the emissions of ozone precursor substances, which could be the key driving factor for the significant increase in regional 8 h O3 concentrations. In the context of high temperatures and low humidity, this has contributed to elevated levels of 8 h O3 concentrations. When wind speeds were below 2.5 m·s−1, the proportion of 8 h O3 concentrations exceeding the standards was nearly 0 under almost calm wind conditions, and it showed an increasing trend with rising wind speeds, indicating that the potential precursor sources that caused high O3 concentrations originated occasionally from inland regions, with very limited presence within the study area. This observation implies that the main cause of exceedances was the transport effect of pollution from outside the region. Therefore, it is recommended that the Yangtze River Delta urban agglomeration adopt economic and technological compensation mechanisms within and between regions to reduce the emission intensity of precursor substances in potential source areas, thereby effectively controlling O3 concentrations and improving public living conditions and quality of life. Full article
Show Figures

Figure 1

14 pages, 38692 KiB  
Article
Development of a Microscale Urban Airflow Modeling System Incorporating Buildings and Terrain
by Hyo-Been An and Seung-Bu Park
Atmosphere 2025, 16(8), 905; https://doi.org/10.3390/atmos16080905 - 25 Jul 2025
Viewed by 163
Abstract
We developed a microscale airflow modeling system with detailed building and terrain data to better understand the urban microclimate. Building shapes and heights, and terrain elevation data were integrated to construct a high-resolution urban surface geometry. The system, based on computational fluid dynamics [...] Read more.
We developed a microscale airflow modeling system with detailed building and terrain data to better understand the urban microclimate. Building shapes and heights, and terrain elevation data were integrated to construct a high-resolution urban surface geometry. The system, based on computational fluid dynamics using OpenFOAM, can resolve complex flow structures around built environments. Inflow boundary conditions were generated using logarithmic wind profiles derived from Automatic Weather System (AWS) observations under neutral stability. After validation with wind-tunnel data for a single block, the system was applied to airflow modeling around a university campus in Seoul using AWS data from four nearby stations. The results demonstrated that the system captured key flow characteristics such as channeling, wake, and recirculation induced by complex terrain and building configurations. In particular, easterly inflow cases with high-rise buildings on the leeward side of a mountain exhibited intensified wakes and internal recirculations, with elevated centers influenced by tall structures. This modeling framework, with further development, could support diverse urban applications for microclimate and air quality, facilitating urban resilience. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

32 pages, 3950 KiB  
Article
Macrozoobenthos Response to Sediment Contamination near the S/s Stuttgart Wreck: A Biological and Chemical Assessment in the Gulf of Gdańsk, Southern Baltic Sea
by Anna Tarała, Diana Dziaduch, Katarzyna Galer-Tatarowicz, Aleksandra Bojke, Maria Kubacka and Marcin Kalarus
Water 2025, 17(15), 2199; https://doi.org/10.3390/w17152199 - 23 Jul 2025
Viewed by 329
Abstract
This study provides an up-to-date assessment of the environmental status in the area of the S/s Stuttgart wreck in the southern Baltic Sea, focusing on macrozoobenthos, sediment chemistry, and contamination in Mytilus trossulus soft tissues. Comparative analyses from 2016 and 2023 revealed increased [...] Read more.
This study provides an up-to-date assessment of the environmental status in the area of the S/s Stuttgart wreck in the southern Baltic Sea, focusing on macrozoobenthos, sediment chemistry, and contamination in Mytilus trossulus soft tissues. Comparative analyses from 2016 and 2023 revealed increased species richness and distinct benthic assemblages, shaped primarily by depth and distance from the wreck. Among macrozoobenthos, there dominated opportunistic species, characterized by a high degree of resistance to the unfavorable state of the environment, suggesting adaptation to local conditions. Elevated concentrations of heavy metals were detected in sediments, with maximum values of Cd—0.85 mg·kg−1, Cu—34 mg·kg−1, Zn—119 mg·kg−1, and Ni—32.3 mg·kg−1. However, no significant correlations between sediment contamination and macrozoobenthos composition were found. In Mytilus trossulus, contaminant levels were mostly within regulatory limits; however, mercury concentrations reached 0.069 mg·kg−1 wet weight near the wreck and 0.493 mg·kg−1 at the reference station, both exceeding the threshold defined in national legislation (0.02 mg·kg−1) (Journal of Laws of 2021, item 568). Condition indices for Macoma balthica were lower in the wreck area, suggesting sublethal stress. Ecotoxicological tests showed no acute toxicity in most sediment samples, emphasizing the complexity of pollutant effects. The data presented here not only enrich the existing literature on marine pollution but also contribute to the development of more effective environmental protection strategies for marine ecosystems under international protection. Full article
Show Figures

Figure 1

28 pages, 7506 KiB  
Article
Impact of Plateau Grassland Degradation on Ecological Suitability: Revealing Degradation Mechanisms and Dividing Potential Suitable Areas with Multi Criteria Models
by Yi Chai, Lin Xu, Yong Xu, Kun Yang, Rao Zhu, Rui Zhang and Xiaxing Li
Remote Sens. 2025, 17(15), 2539; https://doi.org/10.3390/rs17152539 - 22 Jul 2025
Viewed by 316
Abstract
The Qinghai–Tibetan Plateau (QTP), often referred to as the “Third Pole” of the world, harbors alpine grassland ecosystems that play an essential role as global carbon sinks, helping to mitigate the pace of climate change. Nonetheless, alterations in natural environmental conditions coupled with [...] Read more.
The Qinghai–Tibetan Plateau (QTP), often referred to as the “Third Pole” of the world, harbors alpine grassland ecosystems that play an essential role as global carbon sinks, helping to mitigate the pace of climate change. Nonetheless, alterations in natural environmental conditions coupled with escalating human activities have disrupted the seasonal growth cycles of grasslands, thereby intensifying degradation processes. To date, the key drivers and lifecycle dynamics of Grassland Depletion across the QTP remain contentious, limiting our comprehension of its ecological repercussions and regulatory mechanisms. This study comprehensively investigates grassland degradation on the Qinghai–Tibetan Plateau, analyzing its drivers and changes in ecological suitability during the growing season. By integrating natural factors (e.g., precipitation and temperature) and anthropogenic influences (e.g., population density and grazing intensity), it examines observational data from over 160 monitoring stations collected between the 1980s and 2020. The findings reveal three distinct phases of grassland degradation: an acute degradation phase in 1990 (GDI, Grassland Degradation Index = 2.53), a partial recovery phase from 1996 to 2005 (GDI < 2.0) during which the proportion of degraded grassland decreased from 71.85% in 1990 to 51.22% in 2005, and a renewed intensification of degradation after 2006 (GDI > 2.0), with degraded grassland areas reaching 56.39% by 2020. Among the influencing variables, precipitation emerged as the most significant driver, interacting closely with anthropogenic factors such as grazing practices and population distribution. Specifically, the combined impacts of precipitation with population density, grazing pressure, and elevation were particularly notable, yielding interaction q-values of 0.796, 0.767, and 0.752, respectively. Our findings reveal that while grasslands exhibit superior carbon sink potential relative to forests, their productivity and ecological functionality are undergoing considerable declines due to the compounded effects of multiple interacting factors. Consequently, the spatial distribution of ecologically suitable zones has contracted significantly, with the remaining high-suitability regions concentrating in the “twin-star” zones of Baingoin and Zanda grasslands, areas recognized as focal points for future ecosystem preservation. Furthermore, the effects of climate change and intensifying anthropogenic activity have driven the reduction in highly suitable grassland areas, shrinking from 41,232 km2 in 1990 to 24,485 km2 by 2020, with projections indicating a further decrease to only 2844 km2 by 2060. This study sheds light on the intricate mechanisms behind Grassland Depletion, providing essential guidance for conservation efforts and ecological restoration on the QTP. Moreover, it offers theoretical underpinnings to support China’s carbon neutrality and peak carbon emission goals. Full article
Show Figures

Figure 1

21 pages, 4261 KiB  
Article
Seasonal Temperature and Precipitation Patterns in Caucasus Landscapes
by Mariam Elizbarashvili, Nazibrola Beglarashvili, Mikheil Pipia, Elizbar Elizbarashvili and Nino Chikhradze
Atmosphere 2025, 16(7), 889; https://doi.org/10.3390/atmos16070889 - 19 Jul 2025
Viewed by 766
Abstract
The Caucasus region, characterized by its complex topography and diverse climatic regimes, exhibits pronounced spatial variability in temperature and precipitation patterns. This study investigates the seasonal behavior of air temperature, precipitation, vertical temperature gradients, and inversion phenomena across distinct landscape types using observational [...] Read more.
The Caucasus region, characterized by its complex topography and diverse climatic regimes, exhibits pronounced spatial variability in temperature and precipitation patterns. This study investigates the seasonal behavior of air temperature, precipitation, vertical temperature gradients, and inversion phenomena across distinct landscape types using observational data from 63 meteorological stations for 1950–2022. Temperature trends were analyzed using linear regression, while vertical lapse rates and inversion layers were assessed based on seasonal temperature–elevation relationships. Precipitation regimes were evaluated through Mann-Kendall trend tests and Sen’s slope estimators. Results reveal that temperature regimes are strongly modulated by landscape type and elevation, with higher thermal variability in montane and subalpine zones. Seasonal temperature inversions are most frequent in spring and winter, especially in western lowlands and enclosed valleys. Precipitation patterns vary markedly across landscapes: humid lowlands show autumn–winter maxima, while arid and semi-arid zones peak in spring or late autumn. Some landscapes exhibit secondary maxima and minima, influenced by Mediterranean cyclones and regional atmospheric stability. Statistically significant trends include increasing cool-season precipitation in humid regions and decreasing spring rainfall in arid areas. These findings highlight the critical role of topography and landscape structure in shaping regional climate patterns and provide a foundation for improved climate modeling, ecological planning, and adaptation strategies in the Caucasus. Full article
Show Figures

Figure 1

12 pages, 4866 KiB  
Technical Note
An Elevation-Coupled Multivariate Regression Model for GNSS-Based FY-4A Precipitable Water Vapor
by Yaping Gao, Jing Lin, Junqiang Han, Tong Luo, Min Zhou and Zhen Jiang
Remote Sens. 2025, 17(14), 2371; https://doi.org/10.3390/rs17142371 - 10 Jul 2025
Viewed by 280
Abstract
The measurement of atmospheric moisture content is essential for the monitoring of severe weather events and hydrological studies. This paper proposes a multivariate linear regression correction model that integrates elevation data with Global Navigation Satellite System (GNSS)-derived precipitable water vapor (PWV) to refine [...] Read more.
The measurement of atmospheric moisture content is essential for the monitoring of severe weather events and hydrological studies. This paper proposes a multivariate linear regression correction model that integrates elevation data with Global Navigation Satellite System (GNSS)-derived precipitable water vapor (PWV) to refine the water vapor content based on FY-4A satellite remote sensing data, thereby improving its accuracy. Taking Hong Kong as an experimental area, we investigated the correlation between GNSS PWV and FY-4A PWV, confirming the feasibility of utilizing GNSS PWV to calibrate FY-4A PWV. Subsequently, by examining the differences between the two PWV values, we found that the elevation of the stations affects the consistency of PWV measurement. Based on this finding, the elevation data are introduced to construct a multivariate linear regression correction model with a first-order polynomial. To evaluate the performance of the proposed model, a comparison with other correction models is made, including second-order polynomials and power functions. The results indicate that the elevation-integrated water vapor correction model improves the root mean square error (RMSE) by 27.4% and the MAE by 26.7%, and reduces the bias from 0.592 to nearly 0. Its accuracy surpasses that of second-order polynomial and power function models, demonstrating a considerable improvement in the precision of FY-4A. Full article
Show Figures

Graphical abstract

20 pages, 3828 KiB  
Article
Phylogenetic Structure Shifts Across Life-History Stages in Response to Microtopography and Competition in Subtropical Forests
by Weiqi Meng, Haonan Zhang, Lianhao Sun, Jianing Xu, Yajun Qiao and Haidong Li
Plants 2025, 14(14), 2098; https://doi.org/10.3390/plants14142098 - 8 Jul 2025
Viewed by 373
Abstract
This study focuses on a subtropical evergreen broad-leaved forest in China, utilizing a large permanent plot established in the Yaoluoping National Nature Reserve. By integrating data from a full-stem census and total station surveying, we analyzed the phylogenetic structure of the plant community [...] Read more.
This study focuses on a subtropical evergreen broad-leaved forest in China, utilizing a large permanent plot established in the Yaoluoping National Nature Reserve. By integrating data from a full-stem census and total station surveying, we analyzed the phylogenetic structure of the plant community as a whole and across different life-history stages (saplings, juveniles, and adults) while quantitatively assessing microtopographic variables and an interspecific competition index. The results indicate that the overall community in the Yaoluoping plot exhibited a weakly overdispersed pattern, and key microtopographic factors—including aspect, terrain position index (TPI), terrain ruggedness index (TRI), roughness, and flow direction—significantly influenced the evolution of phylogenetic structure. Distinctions were also observed among saplings, juveniles, and adults in phylogenetic structuring across life-history stages. Specifically, saplings displayed a higher degree of phylogenetic clustering, significantly influenced by density, elevation, TPI, and flow direction—suggesting that environmental filtering predominates at this stage, possibly due to lower environmental tolerance, limited dispersal ability, and conspecific negative density dependence. In contrast, juveniles and adults showed a more dispersed phylogenetic structure, with density, interspecific competition, aspect, TRI, TPI, and roughness significantly correlated with phylogenetic patterns, indicating that competition and niche differentiation become increasingly important as trees mature and establish within the community. Interspecific competition was found to play a crucial role in community structuring: the competition index was generally negatively correlated with the net relatedness index (NRI) and nearest taxon index (NTI) in juveniles and adults, implying that intense competition leads to the exclusion of some species and reduces overall diversity, with the strength and significance of competitive effects differing across stages. This study enhances our understanding of the complex interplay between microtopography and interspecific competition in shaping the phylogenetic structure and diversity of subtropical evergreen broad-leaved forests, elucidates the coupled mechanisms among microtopography, phylogenetic structure, and competition, and provides a scientific basis for forest conservation and management. Full article
(This article belongs to the Special Issue Origin and Evolution of the East Asian Flora (EAF)—2nd Edition)
Show Figures

Figure 1

21 pages, 2201 KiB  
Article
Evaluating China’s Electric Vehicle Adoption with PESTLE: Stakeholder Perspectives on Sustainability and Adoption Barriers
by Daniyal Irfan and Xuan Tang
Sustainability 2025, 17(14), 6258; https://doi.org/10.3390/su17146258 - 8 Jul 2025
Viewed by 528
Abstract
The electric vehicle (EV) business model integrates advanced battery technology, dynamic power train architectures, and intelligent energy management systems with ecosystem strategies and digital services. It incorporates environmental sustainability through lifecycle analysis and renewable energy integration. China, with 9.49 million EV sales in [...] Read more.
The electric vehicle (EV) business model integrates advanced battery technology, dynamic power train architectures, and intelligent energy management systems with ecosystem strategies and digital services. It incorporates environmental sustainability through lifecycle analysis and renewable energy integration. China, with 9.49 million EV sales in 2023 (33% market share), faces infrastructure gaps constraining further growth. China is strategically mitigating CO2 emissions while fostering economic expansion, notwithstanding constraints such as suboptimal battery technology advancements, elevated production expenditure, and enduring ecological impacts. This Political, Economic, Social, Technological, Legal, Environmental (PESTLE) assessment, operationalized through a survey of 800 stakeholders and Statistical Package for the Social Sciences IBM SPSS SPSS (Version 28) quantitative analysis (factor loading = 0.73 for Technology; eigenvalue = 4.12), identifies infrastructure gaps as the dominant barrier (72% of stakeholders). Political factors (β = 0.82) emerged as the strongest adoption predictor, outweighing economic subsidies in significance. The adoption of EVs in China presents a significant prospect for reducing CO2 emissions and advancing technology. However, economic barriers, market dynamics, inadequate infrastructure, regulatory uncertainty, and social acceptance issues are addressed in the assessment. The study recommends prioritizing infrastructure investment (e.g., 500 K fast-charging stations by 2027) and policy stability to overcome adoption barriers. This study provides three key advances: (1) quantification of PESTLE factor weights via factor analysis, revealing technological (infrastructure) and political factors as dominant; (2) identification of infrastructure gaps, not subsidies, as the primary adoption barrier; and (3) demonstration of infrastructure’s persistence post-subsidy cuts. These insights redefine EV adoption priorities in China. Full article
Show Figures

Figure 1

19 pages, 3586 KiB  
Article
Safety Analysis of Partial Downward Fire Evacuation Mode in Underground Metro Stations Based on Integrated Assessment of Harmful Factors
by Heng Yu, Yijing Huang and Haiyan He
Systems 2025, 13(7), 549; https://doi.org/10.3390/systems13070549 - 7 Jul 2025
Viewed by 322
Abstract
Underground metro stations are integral to urban transit infrastructure, and ensuring their safety during fire emergencies is crucial. This study proposes a novel evacuation strategy for underground metro stations wherein a segment of evacuees descends to the platform level via train, while the [...] Read more.
Underground metro stations are integral to urban transit infrastructure, and ensuring their safety during fire emergencies is crucial. This study proposes a novel evacuation strategy for underground metro stations wherein a segment of evacuees descends to the platform level via train, while the remaining individuals evacuate upward to the ground level through station exits. A novel safety assessment methodology is established to evaluate fire evacuation efficacy, incorporating the cumulative effects of smoke, elevated temperatures, carbon dioxide, and reduced oxygen levels. Employing an actual underground metro station in Guangzhou, China, as a case study, fire and evacuation models were developed to compare the traditional upward evacuation method with the proposed partial downward evacuation strategy. The analysis reveals that both evacuation strategies are effective under the assessed fire scenario. However, the partial downward evacuation is completed more swiftly—in 385.5 s compared to 494.8 s for upward evacuation—thereby mitigating smoke inhalation risks, as the smoke height remains above the critical threshold of 1.8 m for a longer duration than observed in the upward evacuation scenario. Simulations further indicate that neither high temperatures nor carbon monoxide concentrations reach hazardous levels in either evacuation mode, ensuring evacuee safety. The study concludes that, with appropriate training arrangements and under specific fire and evacuation conditions, the partial downward evacuation strategy is safer and more efficient than upward evacuation. Full article
Show Figures

Figure 1

34 pages, 4416 KiB  
Article
Strain Localization and Stress Evolution Along the Yangsan Fault: A Geodetic Approach to Seismic Hazard Assessment
by Seung-Jun Lee, Hong-Sik Yun, Dal-Ho Shin and Sang-Hoon Lee
Appl. Sci. 2025, 15(13), 7541; https://doi.org/10.3390/app15137541 - 4 Jul 2025
Viewed by 415
Abstract
This study addresses the lack of detailed geodetic assessments of crustal strain accumulation along the central Yangsan Fault in southeastern Korea, an area of recognized but insufficiently characterized seismic potential. To tackle this, we applied elastic strain tensor analysis to GNSS data from [...] Read more.
This study addresses the lack of detailed geodetic assessments of crustal strain accumulation along the central Yangsan Fault in southeastern Korea, an area of recognized but insufficiently characterized seismic potential. To tackle this, we applied elastic strain tensor analysis to GNSS data from 33 stations, forming 49 triangular elements across the fault zone. From this, we quantified areal strain (Δ), maximum shear strain (γmax), and principal stress orientations (θp, θ_γmax) to map spatial deformation heterogeneity. The results identify several high-strain zones, notably Triangle 10 (2.984 µstrain/yr), Triangle 16 (2.325), and Triangle 31 (2.452), with Triangle 16—located at the Yangsan–Ulsan Fault intersection—exhibiting pronounced shear strain and a sharp angular deviation in stress orientation. These findings reveal localized stress reorganization likely caused by fault–fault interaction. Our analysis highlights the capability of GNSS-based strain tensor modeling to detect subtle intraplate deformation. The proposed methodology offers a practical framework for pinpointing structurally sensitive fault segments with elevated seismic risk in otherwise stable continental interiors, supporting more targeted seismic hazard assessment in Korea and other intraplate regions worldwide. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

Back to TopTop