Development of a Microscale Urban Airflow Modeling System Incorporating Buildings and Terrain
Abstract
1. Introduction
2. Model Description and Simulation Setup
2.1. Description of the Modeling System
2.2. Simulation Domain and Configuration
3. Results and Discussion
3.1. Model Validation
3.2. Urban Airflow Analysis with the Developed Modeling System
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernando, H. Fluid dynamics of urban atmospheres in complex terrain. Annu. Rev. Fluid Mech. 2010, 42, 365–389. [Google Scholar] [CrossRef]
- Oke, T.R. Street design and urban canopy layer climate. Energy Build. 1988, 11, 103–113. [Google Scholar] [CrossRef]
- Toparlar, Y.; Blocken, B.; Maiheu, B.; van Heijst, G.J.F. A review on the CFD analysis of urban microclimate. Renew. Sust. Energ. 2017, 80, 1613–1640. [Google Scholar] [CrossRef]
- Britter, R.E.; Hanna, S.R. Flow and dispersion in urban areas. Annu. Rev. Fluid Mech. 2003, 35, 469–496. [Google Scholar] [CrossRef]
- Baklanov, A.; Grimmond, C.S.B.; Carlson, D.; Terblanche, D.; Tang, X.; Bouchet, V.; Lee, B.; Langendijk, G.; Kolli, R.K.; Hovsepyan, A. From urban meteorology, climate and environment research to integrated city services. Urban Clim. 2018, 23, 330–341. [Google Scholar] [CrossRef]
- Santiago, J.; Martilli, A. A dynamic urban canopy parameterization for mesoscale models based on computational fluid dynamics Reynolds-averaged Navier–Stokes microscale simulations. Bound.-Layer Meteorol. 2010, 137, 417–439. [Google Scholar] [CrossRef]
- Qiu, Y.; He, Y.; Li, M.; Zhu, X. A Generalization of Building Clusters in an Urban Wind Field Simulated by CFD. Atmosphere 2023, 15, 9. [Google Scholar] [CrossRef]
- Tominaga, Y.; Stathopoulos, T. CFD simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques. Atmos. Environ. 2013, 79, 716–730. [Google Scholar] [CrossRef]
- Li, Z.; Han, B.; Chu, Y.; Shi, Y.; Huang, N.; Shi, T. Evaluating the Impact of Road Layout Patterns on Pedestrian-Level Ventilation Using Computational Fluid Dynamics (CFD). Atmosphere 2025, 16, 123. [Google Scholar] [CrossRef]
- Pantusheva, M.; Mitkov, R.; Hristov, P.O.; Petrova-Antonova, D. Air pollution dispersion modelling in urban environment using CFD: A systematic review. Atmosphere 2022, 13, 1640. [Google Scholar] [CrossRef]
- An, H.B.; Park, S.B. Assessing urban ventilation using large-eddy simulations. Build. Environ. 2024, 263, 111899. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Z.; Zhu, Q.; Shi, H.; Yu, Z.; Xu, X. Air-Permeable Building Envelopes for Building Ventilation and Heat Recovery: Research Progress and Future Perspectives. Buildings 2023, 14, 42. [Google Scholar] [CrossRef]
- Kang, G.; Kim, J.J.; Choi, W. Computational fluid dynamics simulation of tree effects on pedestrian wind comfort in an urban area. Sustain. Cities Soc. 2020, 56, 102086. [Google Scholar] [CrossRef]
- Ioannidis, G.; Li, C.; Tremper, P.; Riedel, T.; Ntziachristos, L. Application of CFD modelling for pollutant dispersion at an urban traffic hotspot. Atmosphere 2024, 15, 113. [Google Scholar] [CrossRef]
- Park, S.B.; Baik, J.J.; Han, B.S. Large-eddy simulation of turbulent flow in a densely built-up urban area. Environ. Fluid Mech. 2015, 15, 235–250. [Google Scholar] [CrossRef]
- Li, S.; Sun, X.; Zhang, S.; Zhao, S.; Zhang, R. A study on microscale wind simulations with a coupled WRF–CFD model in the Chongli mountain region of Hebei Province, China. Atmosphere 2019, 10, 731. [Google Scholar] [CrossRef]
- Baik, J.J.; Park, S.B.; Kim, J.J. Urban flow and dispersion simulation using a CFD model coupled to a mesoscale model. J. Appl. Meteorol. Climatol. 2009, 48, 1667–1681. [Google Scholar] [CrossRef]
- Liu, J.; Niu, J. CFD simulation of the wind environment around an isolated high-rise building: An evaluation of SRANS, LES and DES models. Build. Environ. 2016, 96, 91–106. [Google Scholar] [CrossRef]
- Park, S.B.; Baik, J.J.; Raasch, S.; Letzel, M.O. A large-eddy simulation study of thermal effects on turbulent flow and dispersion in and above a street canyon. J. Appl. Meteorol. Climatol. 2012, 51, 829–841. [Google Scholar] [CrossRef]
- Kavian Nezhad, M.R.; Lange, C.F.; Fleck, B.A. Performance evaluation of the RANS models in predicting the pollutant concentration field within a compact urban setting: Effects of the source location and turbulent Schmidt number. Atmosphere 2022, 13, 1013. [Google Scholar] [CrossRef]
- Liu, S.; Pan, W.; Zhao, X.; Zhang, H.; Cheng, X.; Long, Z.; Chen, Q. Influence of surrounding buildings on wind flow around a building predicted by CFD simulations. Build. Environ. 2018, 140, 1–10. [Google Scholar] [CrossRef]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics the Finite Volume Method; Pearson Education India: Noida, India, 1995. [Google Scholar]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. In Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion; Elsevier: Amsterdam, The Netherlands, 1983; pp. 96–116. [Google Scholar] [CrossRef]
- Greenshields, C.; Weller, H. Notes on Computational Fluid Dynamics: General Principles; CFD Direct Ltd.: Reading, UK, 2022. [Google Scholar]
- OpenCFD. OpenFOAM Documentation: atmNutUWallFunction 2023. Available online: https://doc.openfoam.com/2306/tools/processing/boundary-conditions/rtm/derived/atmospheric/atmNutUWallFunction/ (accessed on 2 June 2025).
- Latif, H.; Hultmark, G.; Rahnama, S.; Maccarini, A.; Afshari, A. Performance evaluation of active chilled beam systems for office buildings—A literature review. Sustain. Energy Technol. Assess. 2022, 52, 101999. [Google Scholar] [CrossRef]
- Tominaga, Y.; Mochida, A.; Yoshie, R.; Kataoka, H.; Nozu, T.; Yoshikawa, M.; Shirasawa, T. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J. Wind Eng. Ind. Aerodyn. 2008, 96, 1749–1761. [Google Scholar] [CrossRef]
- Patankar, S. Numerical Heat Transfer and Fluid Flow; CRC Press: Boca Raton, FL, USA, 1980. [Google Scholar] [CrossRef]
- Weller, H.G.; Tabor, G.; Jasak, H.; Fureby, C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 1998, 12, 620–631. [Google Scholar] [CrossRef]
- National Geographic Information Institute. National Spatial Information Portal. 2025. Available online: https://map.ngii.go.kr/mn/mainPage.do (accessed on 2 June 2025).
- Mohammadian, A.; Kheirkhah Gildeh, H.; Yan, X. An introduction to OpenFOAM. In Numerical Simulation of Effluent Discharges; Taylor & Francis: Oxfordshire, UK, 2023. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Open MET Data Portal. 2025. Available online: https://data.kma.go.kr/cmmn/main.do (accessed on 2 June 2025).
- Pasquill, F. Atmospheric dispersion of pollution. Q. J. R. Meteorol. Soc. 1971, 97, 369–395. [Google Scholar] [CrossRef]
- Environmental Wind Tunnel Laboratory, University of Hamburg. CEDVAL A1-1: Experimental Data for CFD Validation—Isolated Building. 2001. Available online: https://www.mi.uni-hamburg.de/en/arbeitsgruppen/windkanallabor/data-sets.html (accessed on 2 June 2025).
- Wang, Y.; Li, J.; Liu, W.; Zhang, S.; Dong, J. Prediction of urban airflow fields around isolated high-rise buildings using data-driven non-linear correction models. Build. Environ. 2023, 246, 110894. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Dimitrova, R.; Richards, K.; Hamlyn, D.; Camilleri, G.; Weeks, M.; Sini, J.F.; Britter, R.; Borrego, C.; Schatzmann, M.; et al. Numerical model inter-comparison for wind flow and turbulence around single-block buildings. Environ. Model. Assess. 2011, 16, 169–181. [Google Scholar] [CrossRef]
- Cheng, L.W.; Yu, C.K.; Chen, S.P. Identifying mechanisms of tropical cyclone generated orographic precipitation with Doppler radar and rain gauge observations. Npj Clim. Atmos. Sci. 2025, 8, 35. [Google Scholar] [CrossRef]
- Wise, A.S.; Neher, J.M.; Arthur, R.S.; Mirocha, J.D.; Lundquist, J.K.; Chow, F.K. Meso-to micro-scale modeling of atmospheric stability effects on wind turbine wake behavior in complex terrain. Wind Energy Sci. 2021, 2021, 1–36. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Finardi, S.; Morselli, M.; Jeannet, P.; Szepesi, D.; Vergeiner, I.; Deligiannis, P.; Lagouvardos, K.; Planinsek, A.; Borrel, L.; Fekete, K.; et al. Wind Flow Models over Complex Terrain for Dispersion Calculations; Report of Working Group 4, COST Action 710; Office for Official Publications of the European Communities: Luxembourg, 1997. [Google Scholar]
- Ricci, A.; Guasco, M.; Caboni, F.; Orlanno, M.; Giachetta, A.; Repetto, M. Impact of surrounding environments and vegetation on wind comfort assessment of a new tower with vertical green park. Build. Environ. 2022, 207, 108409. [Google Scholar] [CrossRef]
Case | Station Name | Datetime | WS10m (m s−1) | WD (°) |
---|---|---|---|---|
NW414 | Seongbuk | 27 October 2024 17:00 | 2.0 | 304 |
NE407 | Nowon | 22 April 2024 20:00 | 2.5 | 52 |
SW421 | Seongdong | 29 July 2024 20:00 | 2.3 | 223 |
E409 | Jungnang | 20 August 2024 20:00 | 2.2 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, H.-B.; Park, S.-B. Development of a Microscale Urban Airflow Modeling System Incorporating Buildings and Terrain. Atmosphere 2025, 16, 905. https://doi.org/10.3390/atmos16080905
An H-B, Park S-B. Development of a Microscale Urban Airflow Modeling System Incorporating Buildings and Terrain. Atmosphere. 2025; 16(8):905. https://doi.org/10.3390/atmos16080905
Chicago/Turabian StyleAn, Hyo-Been, and Seung-Bu Park. 2025. "Development of a Microscale Urban Airflow Modeling System Incorporating Buildings and Terrain" Atmosphere 16, no. 8: 905. https://doi.org/10.3390/atmos16080905
APA StyleAn, H.-B., & Park, S.-B. (2025). Development of a Microscale Urban Airflow Modeling System Incorporating Buildings and Terrain. Atmosphere, 16(8), 905. https://doi.org/10.3390/atmos16080905