Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = electropermeabilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4829 KiB  
Article
Quantitative Analysis of Ginger Maturity and Pulsed Electric Field Thresholds: Effects on Microstructure and Juice’s Nutritional Profile
by Zhong Han, Pan He, Yu-Huan Geng, Muhammad Faisal Manzoor, Xin-An Zeng, Suqlain Hassan and Muhammad Talha Afraz
Foods 2025, 14(15), 2637; https://doi.org/10.3390/foods14152637 - 28 Jul 2025
Viewed by 309
Abstract
This study used fresh (young) and old (mature) ginger tissues as model systems to investigate how plant maturity modulates the response to pulsed electric field (PEF), a non-thermal processing technology. Specifically, the influence of tissue maturity on dielectric behavior and its downstream effect [...] Read more.
This study used fresh (young) and old (mature) ginger tissues as model systems to investigate how plant maturity modulates the response to pulsed electric field (PEF), a non-thermal processing technology. Specifically, the influence of tissue maturity on dielectric behavior and its downstream effect on juice yield and bioactive compound extraction was systematically evaluated. At 2.5 kV/cm, old ginger exhibited a pronounced dielectric breakdown effect due to enhanced electrolyte content and cell wall lignification, resulting in a higher degree of cell disintegration (0.65) compared with fresh ginger (0.44). This translated into a significantly improved juice yield of 90.85% for old ginger, surpassing the 84.16% limit observed in fresh ginger. HPLC analysis revealed that the extraction efficiency of 6-gingerol and 6-shogaol increased from 1739.16 to 2233.60 µg/g and 310.31 to 339.63 µg/g, respectively, in old ginger after PEF treatment, while fresh ginger showed increases from 1257.88 to 1824.05 µg/g and 166.43 to 213.52 µg/g, respectively. Total phenolic content (TPC) and total flavonoid content (TFC) also increased in both tissues, with OG-2.5 reaching 789.57 µg GAE/mL and 336.49 µg RE/mL, compared with 738.19 µg GAE/mL and 329.62 µg RE/mL in FG-2.5. Antioxidant capacity, as measured by ABTS•+ and DPPH inhibition, improved more markedly in OG-2.5 (37.8% and 18.7%, respectively) than in FG-2.5. Moreover, volatile compound concentrations increased by 177.9% in OG-2.5 and 137.0% in FG-2.5 compared with their respective controls, indicating differential aroma intensification and compound transformation. Structural characterization by SEM and FT-IR further corroborated enhanced cellular disruption and biochemical release in mature tissue. Collectively, these results reveal a maturity-dependent mechanism of electro-permeabilization in plant tissues, offering new insights into optimizing non-thermal processing for functional food production. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

12 pages, 1585 KiB  
Article
Potentiation of Gelonin Cytotoxicity by Pulsed Electric Fields
by Olga N. Pakhomova, Eleni Zivla, Giedre Silkuniene, Mantas Silkunas and Andrei G. Pakhomov
Int. J. Mol. Sci. 2025, 26(2), 458; https://doi.org/10.3390/ijms26020458 - 8 Jan 2025
Viewed by 808
Abstract
Gelonin is a ribosome-inactivating protein with extreme intracellular toxicity but poor permeation into cells. Targeted disruption of cell membranes to facilitate gelonin entry is explored for cancer and tissue ablation. We demonstrate a hundreds- to thousands-fold enhancement of gelonin cytotoxicity by pulsed electric [...] Read more.
Gelonin is a ribosome-inactivating protein with extreme intracellular toxicity but poor permeation into cells. Targeted disruption of cell membranes to facilitate gelonin entry is explored for cancer and tissue ablation. We demonstrate a hundreds- to thousands-fold enhancement of gelonin cytotoxicity by pulsed electric fields in the T24, U-87, and CT26 cell lines. The effective gelonin concentration to kill 50% of cells (EC50) after electroporation ranged from <1 nM to about 100 nM. For intact cells, the EC50 was unattainable even at the highest gelonin concentration of 1000 nM, which reduced cell survival by only 5–15%. For isoeffective electroporation treatments using 300 ns, 9 µs, and 100 µs pulses, longer pulses were more efficient at lowering gelonin EC50. Increasing the electric field strength of 8, 100 µs pulses from 0.65 to 1.25 kV/cm reduced gelonin EC50 from 128 nM to 0.72 nM. Conversely, the presence of 100 nM gelonin enabled a more than 20-fold reduction in the number of pulses required for equivalent cell killing. Pulsed electric field-mediated delivery of gelonin shows promise for hyperplasia ablation at concentrations sufficiently low to minimize or avoid systemic toxicity. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

14 pages, 2789 KiB  
Article
Pulsed Electric Field Pretreatment Enhances the Enzyme Hydrolysis of Baker’s Yeast
by Ralitsa Veleva, Valentina Ganeva and Miroslava Zhiponova
Microorganisms 2024, 12(12), 2470; https://doi.org/10.3390/microorganisms12122470 - 1 Dec 2024
Viewed by 1274
Abstract
Baker’s yeast is a key starting material for producing extracts with diverse compositions and applications. This study investigates the effect of pulsed electric field (PEF) pretreatment, which induces irreversible electropermeabilization, on the enzymatic hydrolysis of yeast. Cell suspensions were exposed to monopolar rectangular [...] Read more.
Baker’s yeast is a key starting material for producing extracts with diverse compositions and applications. This study investigates the effect of pulsed electric field (PEF) pretreatment, which induces irreversible electropermeabilization, on the enzymatic hydrolysis of yeast. Cell suspensions were exposed to monopolar rectangular pulses in a continuous flow system followed by 4 h of incubation with Alcalase at concentrations of 0.2% and 0.5%. PEF pretreatment significantly improved enzymatic hydrolysis, with maximum intracellular content recovery under electrical conditions resulting in outlet temperatures of 56–58 °C. The released protein reached 163.7 ± 13 mg per gram of dry cell weight (DCW). SDS-PAGE analysis showed that the extracts predominantly contained peptides with molecular masses below 4.7 kDa. The phenolic content was comparable to that of cell lysates obtained after mechanical disruption. The free α-amino nitrogen content and total antioxidant activity reached 218.2 ± 26 mg/gDCW and 53.4 ± 4.6 mg TE/gDCW, respectively, representing 3.2-fold and 2.65-fold increases compared to cell lysates. The hydrolysates from PEF-pretreated cells demonstrated a positive effect on the proliferation of the human keratinocyte cell line HaCat. The obtained data lead to the conclusion that PEF pretreatment is a promising approach to enhance the production of yeast hydrolysates with various applications. Full article
Show Figures

Figure 1

13 pages, 3486 KiB  
Article
Control of the Electroporation Efficiency of Nanosecond Pulses by Swinging the Electric Field Vector Direction
by Vitalii Kim, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler, Ruben M. L. Colunga Biancatelli and Andrei G. Pakhomov
Int. J. Mol. Sci. 2023, 24(13), 10921; https://doi.org/10.3390/ijms241310921 - 30 Jun 2023
Cited by 1 | Viewed by 2152
Abstract
Reversing the pulse polarity, i.e., changing the electric field direction by 180°, inhibits electroporation and electrostimulation by nanosecond electric pulses (nsEPs). This feature, known as “bipolar cancellation,” enables selective remote targeting with nsEPs and reduces the neuromuscular side effects of ablation therapies. We [...] Read more.
Reversing the pulse polarity, i.e., changing the electric field direction by 180°, inhibits electroporation and electrostimulation by nanosecond electric pulses (nsEPs). This feature, known as “bipolar cancellation,” enables selective remote targeting with nsEPs and reduces the neuromuscular side effects of ablation therapies. We analyzed the biophysical mechanisms and measured how cancellation weakens and is replaced by facilitation when nsEPs are applied from different directions at angles from 0 to 180°. Monolayers of endothelial cells were electroporated by a train of five pulses (600 ns) or five paired pulses (600 + 600 ns) applied at 1 Hz or 833 kHz. Reversing the electric field in the pairs (180° direction change) caused 2-fold (1 Hz) or 20-fold (833 kHz) weaker electroporation than the train of single nsEPs. Reducing the angle between pulse directions in the pairs weakened cancellation and replaced it with facilitation at angles <160° (1 Hz) and <130° (833 kHz). Facilitation plateaued at about three-fold stronger electroporation compared to single pulses at 90–100° angle for both nsEP frequencies. The profound dependence of the efficiency on the angle enables novel protocols for highly selective focal electroporation at one electrode in a three-electrode array while avoiding effects at the other electrodes. Nanosecond-resolution imaging of cell membrane potential was used to link the selectivity to charging kinetics by co- and counter-directional nsEPs. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

14 pages, 3878 KiB  
Article
Identification of Proteins Involved in Cell Membrane Permeabilization by Nanosecond Electric Pulses (nsEP)
by Giedre Silkuniene, Uma M. Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov and Olga Pakhomova
Int. J. Mol. Sci. 2023, 24(11), 9191; https://doi.org/10.3390/ijms24119191 - 24 May 2023
Cited by 7 | Viewed by 2000
Abstract
The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 [...] Read more.
The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 genes encoding for membrane proteins in U937 human monocytes stably expressing Cas9 nuclease. The extent of membrane permeabilization by nsEP was measured by the uptake of Yo-Pro-1 (YP) dye and compared to sham-exposed KOs and control cells transduced with a non-targeting (scrambled) gRNA. Only two KOs, for SCNN1A and CLCA1 genes, showed a statistically significant reduction in YP uptake. The respective proteins could be part of electropermeabilization lesions or increase their lifespan. In contrast, as many as 39 genes were identified as likely hits for the increased YP uptake, meaning that the respective proteins contributed to membrane stability or repair after nsEP. The expression level of eight genes in different types of human cells showed strong correlation (R > 0.9, p < 0.02) with their LD50 for lethal nsEP treatments, and could potentially be used as a criterion for the selectivity and efficiency of hyperplasia ablations with nsEP. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

14 pages, 5187 KiB  
Article
Design and Modeling of a Device Combining Single-Cell Exposure to a Uniform Electrical Field and Simultaneous Characterization via Bioimpedance Spectroscopy
by Rémi Bettenfeld, Julien Claudel, Djilali Kourtiche, Mustapha Nadi and Cyril Schlauder
Sensors 2023, 23(7), 3460; https://doi.org/10.3390/s23073460 - 25 Mar 2023
Cited by 3 | Viewed by 1979
Abstract
Previous studies have demonstrated the electropermeabilization of cell membranes exposed to an electric field with moderate intensity (<2 V/cm) and a frequency of <100 MHz. Bioimpedance spectroscopy (BIS) is an electrical characterization technique that can be useful in studying this phenomenon because it [...] Read more.
Previous studies have demonstrated the electropermeabilization of cell membranes exposed to an electric field with moderate intensity (<2 V/cm) and a frequency of <100 MHz. Bioimpedance spectroscopy (BIS) is an electrical characterization technique that can be useful in studying this phenomenon because it is already used for electroporation. In this paper, we report a device designed to perform BIS on single cells and expose them to an electric field simultaneously. It also allows cells to be monitored by visualization through a transparent exposure electrode. This device is based on a lab-on-a-chip (LOC) with a microfluidic cell-trapping system and microelectrodes for BIS characterization. We present numerical simulations that support the design of the LOC. We also describe the fabrication of the LOC and the first electrical characterization of its measurement bandwidth. This first test, performed on reference medium with a conductivity in the same order than human cells, confirms that the measurement capabilities of our device are suitable for electrical cells characterization. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Lab-on-a-Chip)
Show Figures

Figure 1

19 pages, 3846 KiB  
Article
Gene Electrotransfer Efficiency in 2D and 3D Cancer Cell Models Using Different Electroporation Protocols: A Comparative Study
by Alexia de Caro, Elisabeth Bellard, Jelena Kolosnjaj-Tabi, Muriel Golzio and Marie-Pierre Rols
Pharmaceutics 2023, 15(3), 1004; https://doi.org/10.3390/pharmaceutics15031004 - 21 Mar 2023
Cited by 7 | Viewed by 2807
Abstract
Electroporation, a method relying on a pulsed electric field to induce transient cell membrane permeabilization, can be used as a non-viral method to transfer genes in vitro and in vivo. Such transfer holds great promise for cancer treatment, as it can induce or [...] Read more.
Electroporation, a method relying on a pulsed electric field to induce transient cell membrane permeabilization, can be used as a non-viral method to transfer genes in vitro and in vivo. Such transfer holds great promise for cancer treatment, as it can induce or replace missing or non-functioning genes. Yet, while efficient in vitro, gene-electrotherapy remains challenging in tumors. To assess the differences of gene electrotransfer in respect to applied pulses in multi-dimensional (2D, 3D) cellular organizations, we herein compared pulsed electric field protocols applicable to electrochemotherapy and gene electrotherapy and different “High Voltage–Low Voltage” pulses. Our results show that all protocols can result in efficient permeabilization of 2D- and 3D-grown cells. However, their efficiency for gene delivery varies. The gene-electrotherapy protocol is the most efficient in cell suspensions, with a transfection rate of about 50%. Conversely, despite homogenous permeabilization of the entire 3D structure, none of the tested protocols allowed gene delivery beyond the rims of multicellular spheroids. Taken together, our findings highlight the importance of electric field intensity and the occurrence of cell permeabilization, and underline the significance of pulses’ duration, impacting plasmids’ electrophoretic drag. The latter is sterically hindered in 3D structures and prevents the delivery of genes into spheroids’ core. Full article
(This article belongs to the Special Issue Plasmid DNA for Gene Therapy and DNA Vaccine Applications)
Show Figures

Figure 1

16 pages, 3788 KiB  
Article
Pulsed Electric Field Ablation of Esophageal Malignancies and Mitigating Damage to Smooth Muscle: An In Vitro Study
by Emily Gudvangen, Uma Mangalanathan, Iurii Semenov, Allen S. Kiester, Mark A. Keppler, Bennett L. Ibey, Joel N. Bixler and Andrei G. Pakhomov
Int. J. Mol. Sci. 2023, 24(3), 2854; https://doi.org/10.3390/ijms24032854 - 2 Feb 2023
Cited by 2 | Viewed by 2979
Abstract
Cancer ablation therapies aim to be efficient while minimizing damage to healthy tissues. Nanosecond pulsed electric field (nsPEF) is a promising ablation modality because of its selectivity against certain cell types and reduced neuromuscular effects. We compared cell killing efficiency by PEF (100 [...] Read more.
Cancer ablation therapies aim to be efficient while minimizing damage to healthy tissues. Nanosecond pulsed electric field (nsPEF) is a promising ablation modality because of its selectivity against certain cell types and reduced neuromuscular effects. We compared cell killing efficiency by PEF (100 pulses, 200 ns–10 µs duration, 10 Hz) in a panel of human esophageal cells (normal and pre-malignant epithelial and smooth muscle). Normal epithelial cells were less sensitive than the pre-malignant ones to unipolar PEF (15–20% higher LD50, p < 0.05). Smooth muscle cells (SMC) oriented randomly in the electric field were more sensitive, with 30–40% lower LD50 (p < 0.01). Trains of ten, 300-ns pulses at 10 kV/cm caused twofold weaker electroporative uptake of YO-PRO-1 dye in normal epithelial cells than in either pre-malignant cells or in SMC oriented perpendicularly to the field. Aligning SMC with the field reduced the dye uptake fourfold, along with a twofold reduction in Ca2+ transients. A 300-ns pulse induced a twofold smaller transmembrane potential in cells aligned with the field, making them less vulnerable to electroporation. We infer that damage to SMC from nsPEF ablation of esophageal malignancies can be minimized by applying the electric field parallel to the predominant SMC orientation. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 2500 KiB  
Article
Infrared Laser-Based Single Cell Permeabilization by Plasma Membrane Temperature Gradients
by Allen L. Garner, Bogdan Neculaes and Dmitry V. Dylov
Membranes 2022, 12(6), 574; https://doi.org/10.3390/membranes12060574 - 31 May 2022
Cited by 3 | Viewed by 2173
Abstract
Single cell microinjection provides precise tuning of the volume and timing of delivery into the treated cells; however, it also introduces workflow complexity that requires highly skilled operators and specialized equipment. Laser-based microinjection provides an alternative method for targeting a single cell using [...] Read more.
Single cell microinjection provides precise tuning of the volume and timing of delivery into the treated cells; however, it also introduces workflow complexity that requires highly skilled operators and specialized equipment. Laser-based microinjection provides an alternative method for targeting a single cell using a common laser and a workflow that may be readily standardized. This paper presents experiments using a 1550 nm, 100 fs pulse duration laser with a repetition rate of 20 ns for laser-based microinjection and calculations of the hypothesized physical mechanism responsible for the experimentally observed permeabilization. Chinese Hamster Ovarian (CHO) cells exposed to this laser underwent propidium iodide uptake, demonstrating the potential for selective cell permeabilization. The agreement between the experimental conditions and the electropermeabilization threshold based on estimated changes in the transmembrane potential induced by a laser-induced plasma membrane temperature gradient, even without accounting for enhancement due to traditional electroporation, strengthens the hypothesis of this mechanism for the experimental observations. Compared to standard 800 nm lasers, 1550 nm fs lasers may ultimately provide a lower cost microinjection method that readily interfaces with a microscope and is agnostic to operator skill, while inducing fewer deleterious effects (e.g., temperature rise, shockwaves, and cavitation bubbles). Full article
Show Figures

Figure 1

14 pages, 2747 KiB  
Article
Dependence of Electric Pulse Mediated Growth Factor Release on the Platelet Rich Plasma Separation Method
by Bogdan Neculaes, Allen L. Garner, Steven Klopman and Emme A. Longman
Appl. Sci. 2022, 12(10), 4965; https://doi.org/10.3390/app12104965 - 14 May 2022
Cited by 2 | Viewed by 2257
Abstract
Platelet rich plasma (PRP) has been explored for multiple clinical applications, including dentistry, orthopedics, sports medicine, diabetic foot ulcers, and cosmetic treatments. Topical applications of PRP typically use thrombin to induce platelet activation, which is accompanied by growth factor release and clotting of [...] Read more.
Platelet rich plasma (PRP) has been explored for multiple clinical applications, including dentistry, orthopedics, sports medicine, diabetic foot ulcers, and cosmetic treatments. Topical applications of PRP typically use thrombin to induce platelet activation, which is accompanied by growth factor release and clotting of the PRP, prior to treatment. Injectable PRP treatments typically use non-activated PRP under the assumption that collagen at the site of the injury mediates platelet activation to ensure growth factor release in vivo. Ex-vivo electrical stimulation of platelets is emerging as a robust, easy to use, instrument-based PRP activation technique to facilitate growth factor release with or without clotting, while providing tunability of growth factor release, clot mechanical properties (when desired), and serotonin release from the dense granules. This paper briefly reviews the key results of the electrical activation of platelets and demonstrates successful growth factor release by electrical ex-vivo stimulation without clotting for three types of PRP separated from whole blood using available commercial kits: Harvest, EmCyte and Eclipse. While these three types of PRP feature a wide range of platelet and red blood cell content compared to whole blood, we demonstrate that pulsed electric fields enable growth factor release for all these biological matrices generated using whole blood from four human donors. These experiments open opportunities for using electrically stimulated PRP with released growth factors without clotting for injectable platelet treatments in relevant clinical applications. Full article
(This article belongs to the Special Issue Biomedical Applications of Pulsed Power and Plasmas)
Show Figures

Figure 1

15 pages, 4497 KiB  
Review
Electrochemotherapy and Other Clinical Applications of Electroporation for the Targeted Therapy of Metastatic Melanoma
by Corina Ioana Cucu, Călin Giurcăneanu, Liliana Gabriela Popa, Olguța Anca Orzan, Cristina Beiu, Alina Maria Holban, Alexandru Mihai Grumezescu, Bogdan Mircea Matei, Marius Nicolae Popescu, Constantin Căruntu and Mara Mădălina Mihai
Materials 2021, 14(14), 3985; https://doi.org/10.3390/ma14143985 - 16 Jul 2021
Cited by 7 | Viewed by 5066
Abstract
Electrochemotherapy (ECT) is an effective bioelectrochemical procedure that uses controlled electrical pulses to facilitate the increase of intracellular concentration of certain substances (electropermeabilization/ reversible electroporation). ECT using antitumor drugs such as bleomycin and cisplatin is a minimally invasive targeted therapy that can be [...] Read more.
Electrochemotherapy (ECT) is an effective bioelectrochemical procedure that uses controlled electrical pulses to facilitate the increase of intracellular concentration of certain substances (electropermeabilization/ reversible electroporation). ECT using antitumor drugs such as bleomycin and cisplatin is a minimally invasive targeted therapy that can be used as an alternative for oncologic patients not eligible for surgery or other standard therapies. Even though ECT is mainly applied as palliative care for metastases, it may also be used for primary tumors that are unresectable due to size and location. Skin neoplasms are the main clinical indication of ECT, the procedure reporting good curative results and high efficiency across all tumor types, including melanoma. In daily practice, there are many cases in which the patient’s quality of life can be significantly improved by a safe procedure such as ECT. Its popularity must be increased because it has a safe profile and minor local adverse reactions. The method can be used by dermatologists, oncologists, and surgeons. The aim of this paper is to review recent literature concerning electrochemotherapy and other clinical applications of electroporation for the targeted therapy of metastatic melanoma. Full article
(This article belongs to the Special Issue Targeted Drug Delivery)
Show Figures

Figure 1

22 pages, 1669 KiB  
Review
Clinical Applications and Immunological Aspects of Electroporation-Based Therapies
by Jean Carlos dos Santos da Luz, Fernanda Antunes, Maria Alejandra Clavijo-Salomon, Emanuela Signori, Nayara Gusmão Tessarollo and Bryan E. Strauss
Vaccines 2021, 9(7), 727; https://doi.org/10.3390/vaccines9070727 - 2 Jul 2021
Cited by 19 | Viewed by 4846
Abstract
Reversible electropermeabilization (RE) is an ultrastructural phenomenon that transiently increases the permeability of the cell membrane upon application of electrical pulses. The technique was described in 1972 by Neumann and Rosenheck and is currently used in a variety of applications, from medicine to [...] Read more.
Reversible electropermeabilization (RE) is an ultrastructural phenomenon that transiently increases the permeability of the cell membrane upon application of electrical pulses. The technique was described in 1972 by Neumann and Rosenheck and is currently used in a variety of applications, from medicine to food processing. In oncology, RE is applied for the intracellular transport of chemotherapeutic drugs as well as the delivery of genetic material in gene therapies and vaccinations. This review summarizes the physical changes of the membrane, the particularities of bleomycin, and the immunological aspects involved in electrochemotherapy and gene electrotransfer, two important EP-based cancer therapies in human and veterinary oncology. Full article
(This article belongs to the Special Issue Immunogenic Effects of Electroporation-Based Treatments)
Show Figures

Figure 1

18 pages, 3439 KiB  
Article
Peculiarities of Neurostimulation by Intense Nanosecond Pulsed Electric Fields: How to Avoid Firing in Peripheral Nerve Fibers
by Vitalii Kim, Emily Gudvangen, Oleg Kondratiev, Luis Redondo, Shu Xiao and Andrei G. Pakhomov
Int. J. Mol. Sci. 2021, 22(13), 7051; https://doi.org/10.3390/ijms22137051 - 30 Jun 2021
Cited by 27 | Viewed by 3512
Abstract
Intense pulsed electric fields (PEF) are a novel modality for the efficient and targeted ablation of tumors by electroporation. The major adverse side effects of PEF therapies are strong involuntary muscle contractions and pain. Nanosecond-range PEF (nsPEF) are less efficient at neurostimulation and [...] Read more.
Intense pulsed electric fields (PEF) are a novel modality for the efficient and targeted ablation of tumors by electroporation. The major adverse side effects of PEF therapies are strong involuntary muscle contractions and pain. Nanosecond-range PEF (nsPEF) are less efficient at neurostimulation and can be employed to minimize such side effects. We quantified the impact of the electrode configuration, PEF strength (up to 20 kV/cm), repetition rate (up to 3 MHz), bi- and triphasic pulse shapes, and pulse duration (down to 10 ns) on eliciting compound action potentials (CAPs) in nerve fibers. The excitation thresholds for single unipolar but not bipolar stimuli followed the classic strength–duration dependence. The addition of the opposite polarity phase for nsPEF increased the excitation threshold, with symmetrical bipolar nsPEF being the least efficient. Stimulation by nsPEF bursts decreased the excitation threshold as a power function above a critical duty cycle of 0.1%. The threshold reduction was much weaker for symmetrical bipolar nsPEF. Supramaximal stimulation by high-rate nsPEF bursts elicited only a single CAP as long as the burst duration did not exceed the nerve refractory period. Such brief bursts of bipolar nsPEF could be the best choice to minimize neuromuscular stimulation in ablation therapies. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

20 pages, 4277 KiB  
Review
Concepts and Capabilities of In-House Built Nanosecond Pulsed Electric Field (nsPEF) Generators for Electroporation: State of Art
by Paulius Butkus, Arūnas Murauskas, Sonata Tolvaišienė and Vitalij Novickij
Appl. Sci. 2020, 10(12), 4244; https://doi.org/10.3390/app10124244 - 20 Jun 2020
Cited by 22 | Viewed by 6215
Abstract
Electroporation is a pulsed electric field triggered phenomenon of cell permeabilization, which is extensively used in biomedical and biotechnological context. There is a growing scientific demand for high-voltage and/or high-frequency pulse generators for electropermeabilization of cells (electroporators). In the scope of this article [...] Read more.
Electroporation is a pulsed electric field triggered phenomenon of cell permeabilization, which is extensively used in biomedical and biotechnological context. There is a growing scientific demand for high-voltage and/or high-frequency pulse generators for electropermeabilization of cells (electroporators). In the scope of this article we have reviewed the basic topologies of nanosecond pulsed electric field (nsPEF) generators for electroporation and the parametric capabilities of various in-house built devices, which were introduced in the last two decades. Classification of more than 60 various nsPEF generators was performed and pulse forming characteristics (pulse shape, voltage, duration and repetition frequency) were listed and compared. Lastly, the trends in the development of the electroporation technology were discussed. Full article
(This article belongs to the Special Issue Electroporation Systems and Applications)
Show Figures

Figure 1

12 pages, 2675 KiB  
Communication
Caffeic Acid Phenethyl Ester Assisted by Reversible Electroporation—In Vitro Study on Human Melanoma Cells
by Anna Choromanska, Jolanta Saczko and Julita Kulbacka
Pharmaceutics 2020, 12(5), 478; https://doi.org/10.3390/pharmaceutics12050478 - 24 May 2020
Cited by 11 | Viewed by 3390
Abstract
Melanoma is one of the most serious skin cancers. The incidence of this malignant skin lesion is continuing to increase worldwide. Melanoma is resistant to chemotherapeutic drugs and highly metastatic. Surgical resection can only be used to treat melanoma in the early stages, [...] Read more.
Melanoma is one of the most serious skin cancers. The incidence of this malignant skin lesion is continuing to increase worldwide. Melanoma is resistant to chemotherapeutic drugs and highly metastatic. Surgical resection can only be used to treat melanoma in the early stages, while chemotherapy is limited due to melanoma multi-drug resistance. The overexpression of glutathione S-transferase (GST) may have a critical role in this resistance. Caffeic acid phenethyl ester (CAPE) is a natural phenolic compound, which occurs in many plants. Previous studies demonstrated that CAPE suppresses the growth of melanoma cells and induces reactive oxygen species generation. It is also known that bioactivation of CAPE to its corresponding quinone metabolite by tyrosinase would lead to GST inhibition and selective melanoma cell death. We investigated the biochemical toxicity of CAPE in combination with microsecond electropermeabilization in two human melanoma cell lines. Our results indicate that electroporation of melanoma cells in the presence of CAPE induced high oxidative stress, which correlates with high cytotoxicity. Moreover, it can disrupt the metabolism of cancer cells by inducing apoptotic cell death. Electroporation of melanoma cells may be an efficient CAPE delivery system, enabling the application of this compound, while reducing its dose and exposure time. Full article
Show Figures

Graphical abstract

Back to TopTop