Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (286)

Search Parameters:
Keywords = electromagnetic prospecting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 874 KiB  
Article
Open-Label Uncontrolled, Monocentric Study to Evaluate the Efficacy and Safety of the Electromagnetic Field and Negative Pressure in the Treatment of Cellulite
by Antonio Scarano, Antonio Calopresti, Salvatore Marafioti, Gianluca Nicolai and Erda Qorri
Life 2025, 15(7), 1148; https://doi.org/10.3390/life15071148 - 21 Jul 2025
Viewed by 402
Abstract
Cellulite is a widespread aesthetical dermatological condition affecting a significant proportion of postpubertal women, characterized by dimpled skin, primarily on the thighs, buttocks, and hips, which has an important psychological impact. Cellulite, also called lipodystrophy or oedematosclerotic panniculitis, causes an aesthetic change in [...] Read more.
Cellulite is a widespread aesthetical dermatological condition affecting a significant proportion of postpubertal women, characterized by dimpled skin, primarily on the thighs, buttocks, and hips, which has an important psychological impact. Cellulite, also called lipodystrophy or oedematosclerotic panniculitis, causes an aesthetic change in the skin that affects the epidermis, dermis, hypodermis and subcutaneous fat in different ways. The aim of the present prospective study research was to evaluate the efficacy of electromagnetic field and negative pressure in the treatment of cellulite. Methods: A total of 35 women with an average age of 40, ranging from 18 to 50 (mean 32.2 ± 7.48), with a body mass index between 18.5 and 26.9 (mean 22 ± 3.01), were enrolled in this study. The degree of cellulite of the patients was assessed clinically using the Cellulite Severity Scale (CSS) and Nürnberger–Müller classification. All patients received one session per week for a total 12 treatment sessions with Bi-one® LifeTouchTherapy medical device (Expo Italia Srl—Florence—Italy), which generates a combination of vacuum and electromagnetic fields (V-EMF). Total treatment time was approximately 20–30 min per patient. The GAIS score, Cellulite Severity Scale (CSS) and Nürnberger–Müller classification for cellulite was evaluated 1 month after the 12 treatments with LifeTouchTherapy. Results: A statistical difference was recorded in cellulite improvement by visual analog scale (VAS) and global aesthetic improvement scale (GAIS). Conclusions: The results of the present prospective clinical study show the efficacy and safety of Bi-one® LifeTouchTherapy in the treatment of cellulite. Electromagnetic fields combined with negative pressure therapy promote tissue regeneration and reduce fibrosis, which results in visible cosmetic improvements of cellulite. Full article
(This article belongs to the Collection Clinical Trials)
Show Figures

Figure 1

23 pages, 3333 KiB  
Article
Pulse Compression Probing for Active Islanding Detection
by Nicholas Piaquadio, N. Eva Wu and Morteza Sarailoo
Energies 2025, 18(13), 3354; https://doi.org/10.3390/en18133354 - 26 Jun 2025
Viewed by 259
Abstract
The rapid growth of inverter-based resources (IBRs) has created a need for new islanding detection methodologies to determine whether an IBR has been disconnected from the transmission grid in some manner (islanded) or remains connected to the transmission grid (grid-connected). Active islanding detection [...] Read more.
The rapid growth of inverter-based resources (IBRs) has created a need for new islanding detection methodologies to determine whether an IBR has been disconnected from the transmission grid in some manner (islanded) or remains connected to the transmission grid (grid-connected). Active islanding detection methods inject a signal into the power system to achieve detection. Existing schemes frequently limit consideration to a single node system with one IBR. Schemes tested on multiple IBRs often see interference, with the signals from one IBR disturbing the others, or require intricate communication. Further, several methods destabilize an islanded grid to detect it, preventing a prospective microgrid from remaining in operation while islanded. This work develops an active islanding detection scheme using Pulse Compression Probing (PCP) that is microgrid-compatible and can be used with multiple IBRs without requirement for communication. This active islanding detection scheme can be implemented on existing inverter switching sequences and has a detection time of 167–223 ms, well within the detection time specified by existing standards. The method is verified via electromagnetic transient (EMT) simulation on a modified version of a 34-bus test system. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

19 pages, 6101 KiB  
Article
Modern Capabilities of Semi-Airborne UAV-TEM Technology on the Example of Studying the Geological Structure of the Uranium Paleovalley
by Ayur Bashkeev, Alexander Parshin, Ilya Trofimov, Sergey Bukhalov, Danila Prokhorov and Nikolay Grebenkin
Minerals 2025, 15(6), 630; https://doi.org/10.3390/min15060630 - 10 Jun 2025
Cited by 1 | Viewed by 414
Abstract
Unmanned systems provide significant prospects for improving the efficiency of electromagnetic geophysical exploration in mineral prospecting and geological mapping, as they can significantly increase the productivity of field surveys by accelerating the movement of the measuring system along the site, as well as [...] Read more.
Unmanned systems provide significant prospects for improving the efficiency of electromagnetic geophysical exploration in mineral prospecting and geological mapping, as they can significantly increase the productivity of field surveys by accelerating the movement of the measuring system along the site, as well as minimizing problems in cases where the pedestrian walkability of the site is a challenge. Lightweight and cheap UAV systems with a take-off weight in the low tens of kilograms are unable to carry a powerful current source; therefore, semi-airborne systems with a ground transmitter (an ungrounded loop or grounded at the ends of the line) and a measuring system towed on a UAV are becoming more and more widespread. This paper presents the results for a new generation of semi-airborne technology SibGIS UAV-TEMs belonging to the “line-loop” type and capable of realizing the transient/time-domain (TEM) electromagnetics method used for studying a uranium object of the paleovalley type. Objects of this type are characterized by a low resistivity of the ore zone located in relatively high-resistivity host rocks and, from the position of the geoelectric structure, can be considered a good benchmark for assessing the capabilities of different electrical exploration technologies in general. The aeromobile part of the geophysical system created is implemented on the basis of a hexacopter carrying a measuring system with an inductive sensor, an analog of a 50 × 50 m loop, an 18-bit ADC with satellite synchronization, and a transmitter. The ground part consists of a galvanically grounded supply line and a current source with a transmitter creating multipolar pulses of quasi-DC current in the line. The survey is carried out with a terrain drape based on a satellite digital terrain model. The article presents the results obtained from the electromagnetic soundings in comparison with the reference (drilled) profile, convincingly proving the high efficiency of UAV-TEM. This approach to pre-processing UAV–electrospecting data is described with the aim of improving data quality by taking into account the movement and swaying of the measuring system’s sensor. On the basis of the real data obtained, the sensitivity of the created semi-airborne system was modeled by solving a direct problem in the class of 3D models, which allowed us to evaluate the effectiveness of the method in relation to other geological cases. Full article
(This article belongs to the Special Issue Geoelectricity and Electrical Methods in Mineral Exploration)
Show Figures

Figure 1

51 pages, 5793 KiB  
Review
Electromagnetic Techniques Applied to Cultural Heritage Diagnosis: State of the Art and Future Prospective: A Comprehensive Review
by Patrizia Piersigilli, Rocco Citroni, Fabio Mangini and Fabrizio Frezza
Appl. Sci. 2025, 15(12), 6402; https://doi.org/10.3390/app15126402 - 6 Jun 2025
Cited by 1 | Viewed by 722
Abstract
When discussing Cultural Heritage (CH), the risk of causing damage is inherently linked to the artifact itself due to several factors: age, perishable materials, manufacturing techniques, and, at times, inadequate preservation conditions or previous interventions. Thorough study and diagnostics are essential before any [...] Read more.
When discussing Cultural Heritage (CH), the risk of causing damage is inherently linked to the artifact itself due to several factors: age, perishable materials, manufacturing techniques, and, at times, inadequate preservation conditions or previous interventions. Thorough study and diagnostics are essential before any intervention, whether for preventive, routine maintenance or major restoration. Given the symbolic, socio-cultural, and economic value of CH artifacts, non-invasive (NI), non-destructive (ND), or As Low As Reasonably Achievable (ALARA) approaches—capable of delivering efficient and long-lasting results—are preferred whenever possible. Electromagnetic (EM) techniques are unrivaled in this context. Over the past 20 years, radiography, tomography, fluorescence, spectroscopy, and ionizing radiation have seen increasing and successful applications in CH monitoring and preservation. This has led to the frequent customization of standard instruments to meet specific diagnostic needs. Simultaneously, the integration of terahertz (THz) technology has emerged as a promising advancement, enhancing capabilities in artifact analysis. Furthermore, Artificial Intelligence (AI), particularly its subsets—Machine Learning (ML) and Deep Learning (DL)—is playing an increasingly vital role in data interpretation and in optimizing conservation strategies. This paper provides a comprehensive and practical review of the key achievements in the application of EM techniques to CH over the past two decades. It focuses on identifying established best practices, outlining emerging needs, and highlighting unresolved challenges, offering a forward-looking perspective for the future development and application of these technologies in preserving tangible cultural heritage for generations to come. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

30 pages, 8909 KiB  
Review
Recent Design and Application Advances in Micro-Electro-Mechanical System (MEMS) Electromagnetic Actuators
by Jianqun Cheng, Ning Xue, Bocang Qiu, Boqi Qin, Qingchun Zhao, Gang Fang, Zhihui Yao, Wenyi Zhou and Xuguang Sun
Micromachines 2025, 16(6), 670; https://doi.org/10.3390/mi16060670 - 31 May 2025
Cited by 1 | Viewed by 3573
Abstract
Micro-electro-mechanical system (MEMS) electromagnetic actuators have rapidly evolved into critical components of various microscale applications, offering significant advantages including precision, controllability, high force density, and rapid responsiveness. Recent advancements in actuator design, fabrication methodologies, smart control integration, and emerging application domains have significantly [...] Read more.
Micro-electro-mechanical system (MEMS) electromagnetic actuators have rapidly evolved into critical components of various microscale applications, offering significant advantages including precision, controllability, high force density, and rapid responsiveness. Recent advancements in actuator design, fabrication methodologies, smart control integration, and emerging application domains have significantly broadened their capabilities and practical applications. This comprehensive review systematically analyzes the recent developments in MEMS electromagnetic actuators, highlighting core operating principles such as Lorentz force and magnetic attraction/repulsion mechanisms and examining state-of-the-art fabrication technologies, such as advanced microfabrication techniques, additive manufacturing, and innovative material applications. Additionally, we provide an in-depth discussion on recent enhancements in actuator performance through smart and adaptive integration strategies, focusing on improved reliability, accuracy, and dynamic responsiveness. Emerging application fields, particularly micro-optical systems, microrobotics, precision micromanipulation, and microfluidic components, are extensively explored, demonstrating how recent innovations have significantly impacted these sectors. Finally, critical challenges, including miniaturization constraints, integration complexities, power efficiency, and reliability issues, are identified, alongside a prospective outlook outlining promising future research directions. This review aims to serve as an authoritative resource, fostering further innovation and technological advancement in MEMS actuators and related interdisciplinary fields. Full article
(This article belongs to the Special Issue Magnetic Manipulation in Micromachines)
Show Figures

Figure 1

36 pages, 5184 KiB  
Review
Aerial Drones for Geophysical Prospection in Mining: A Review
by Dimitris Perikleous, Katerina Margariti, Pantelis Velanas, Cristina Saez Blazquez and Diego Gonzalez-Aguilera
Drones 2025, 9(5), 383; https://doi.org/10.3390/drones9050383 - 21 May 2025
Viewed by 2468
Abstract
This review explores the evolution and current state of aerial drones’ use in geophysical mining applications. Aerial drones have transformed many fields by offering high-resolution and cost-effective data acquisition. In geophysics, drones equipped with advanced sensors such as magnetometers, ground-penetrating radar, electromagnetic induction, [...] Read more.
This review explores the evolution and current state of aerial drones’ use in geophysical mining applications. Aerial drones have transformed many fields by offering high-resolution and cost-effective data acquisition. In geophysics, drones equipped with advanced sensors such as magnetometers, ground-penetrating radar, electromagnetic induction, and gamma-ray spectrometry have enabled more precise and rapid subsurface investigations, reducing operational costs and improving safety in mining exploration and monitoring. Over the last decade, advances in drone navigation, sensor integration, and data processing have improved the accuracy and applicability of geophysical surveys in mining. This review provides a historical overview and examines the latest developments in aerial drones, sensing technologies, data acquisition strategies, and processing methodologies. It analyses 59 studies spanning 66 drone-based geophysical applications and 63 geophysical method entries, published between 2005 and 2025. Multirotor drones are the most common, used in 72.73% of cases, followed by fixed-wing drones (12.12%), unmanned helicopters (9.09%), hybrid VTOL designs (3.03%), airships (1.52%), and one unspecified platform (1.52%). In terms of geophysical methods, magnetometry was the most frequently used technique, applied in thirty-nine studies, followed by gamma-ray spectrometry (eighteen studies), electromagnetic surveys (five studies), and ground-penetrating radar (one study). The findings show how drone-based geophysical techniques enhance resource exploration, safety, and sustainability in mining. Full article
Show Figures

Figure 1

25 pages, 2641 KiB  
Review
Precise Electromagnetic Modulation of the Cell Cycle and Its Applications in Cancer Therapy
by Keni Shi, Xiqing Peng, Ting Xu, Ziqi Lin, Mingyu Sun, Yiran Li, Qingyi Xian, Tingting Xiao, Siyuan Chen, Ying Xie, Ruihan Zhang, Jincheng Zeng and Bingzhe Xu
Int. J. Mol. Sci. 2025, 26(9), 4445; https://doi.org/10.3390/ijms26094445 - 7 May 2025
Cited by 1 | Viewed by 1411
Abstract
Precise modulation of the cell cycle via electromagnetic (EM) control presents a groundbreaking approach for cancer therapy, especially in the development of personalized treatment strategies. EM fields can precisely regulate key cellular homeostatic mechanisms such as proliferation, apoptosis, and repair by finely tuning [...] Read more.
Precise modulation of the cell cycle via electromagnetic (EM) control presents a groundbreaking approach for cancer therapy, especially in the development of personalized treatment strategies. EM fields can precisely regulate key cellular homeostatic mechanisms such as proliferation, apoptosis, and repair by finely tuning parameters like frequency, intensity, and duration. This review summarizes the mechanisms through which EM fields influence cancer cell dynamics, highlighting recent developments in high-throughput electromagnetic modulation platforms that facilitate precise cell cycle regulation. Additionally, the integration of electromagnetic modulation with emerging technologies such as artificial intelligence, immunotherapy, and nanotechnology is explored, collectively enhancing targeting precision, immune activation, and therapeutic efficacy. A systematic analysis of existing clinical studies indicates that EM modulation technology significantly overcomes key challenges such as tumor heterogeneity, microenvironment complexity, and treatment-related adverse effects. This review summarizes the prospects of electromagnetic modulation in clinical translation and future research directions, emphasizing its critical potential as a core element in individualized and multimodal cancer treatment strategies. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

27 pages, 27489 KiB  
Review
Advances in Magnetically Controlled Medical Robotics: A Review of Actuation Systems, Continuum Designs, and Clinical Prospects for Minimally Invasive Therapies
by Tiantian Kong, Qitong Zheng, Jiarong Sun, Chunxiao Wang, Huibin Liu, Zhizheng Gao, Zezheng Qiao and Wenguang Yang
Micromachines 2025, 16(5), 561; https://doi.org/10.3390/mi16050561 - 6 May 2025
Cited by 2 | Viewed by 1751
Abstract
Magnetically controlled micro-robots hold immense potential for revolutionizing advanced medical applications, garnering significant research interest. This potential is underscored by the dual focus on magnetic control systems—both as driving forces and manipulation field sources—and magnetic continuums that have demonstrated clinical therapeutic efficacy. This [...] Read more.
Magnetically controlled micro-robots hold immense potential for revolutionizing advanced medical applications, garnering significant research interest. This potential is underscored by the dual focus on magnetic control systems—both as driving forces and manipulation field sources—and magnetic continuums that have demonstrated clinical therapeutic efficacy. This comprehensive review delves into the actuation characteristics of permanent magnet systems, electromagnetic systems, and commercially available magnetic control systems. It also explores innovative designs of magnetic wires and tubes serving as continuum structures and investigates the variable stiffness properties of magnetic continua, informed by material and structural attributes. Furthermore, the discussion extends to their prospective roles and future applications within the medical realm. The objective is to elucidate emerging trends in the study of magnetic control systems and magnetic continua, marked by an expanding operational scope and enhanced precision in manipulation. By aligning these trends with clinical challenges and requirements, this review seeks to refine research trajectories, expedite practical implementations, and ultimately advocate for minimally invasive therapies. These therapies, leveraging magnetic control systems and magnetic continuums as cutting-edge treatment modalities, promise transformative impacts on the future of healthcare. Full article
(This article belongs to the Special Issue Functional Materials and Microdevices, 2nd Edition)
Show Figures

Figure 1

18 pages, 4187 KiB  
Article
Transient Force Measurement and Mechanism Analysis of Nanosecond Laser Ablation of Al/Ti Alloys Using Polyvinylidene Fluoride Sensors
by Ming Wen, Baosheng Du, Luyun Jiang, Heyan Gao, Jianhui Han, Haichao Cui, Jifei Ye and Chenhui Yang
Sensors 2025, 25(9), 2783; https://doi.org/10.3390/s25092783 - 28 Apr 2025
Viewed by 384
Abstract
This study proposes a novel calibration method for polyvinylidene fluoride (PVDF) piezoelectric sensors based on electromagnetic force. The standard force source is obtained by calibrating the original force source of the inductor coil through an electronic balance. Transient force loading waveforms and peak [...] Read more.
This study proposes a novel calibration method for polyvinylidene fluoride (PVDF) piezoelectric sensors based on electromagnetic force. The standard force source is obtained by calibrating the original force source of the inductor coil through an electronic balance. Transient force loading waveforms and peak values of PVDF piezoelectric sensors were obtained to analyze the mechanical effects of laser ablation on Al/Ti alloys. Transient force sensing using PVDF piezoelectric sensors exhibits a wide linear detection range (0.01–5.8 V) and high response values in response to changes in electrical signals. When irradiating Al/Ti alloy targets with different laser energies and spot sizes, the electrical signal intensity of PVDF piezoelectric sensors varies greatly, and the corresponding transient force peak value test results range from 0.01 to 8.5 N. This excellent transient mechanical sensing performance can be attributed to the high laser power density, efficient laser energy utilization, and the physical properties of the target material. COMSOL Multiphysics simulation results confirmed that the temperature and ablation center position of the surface of the target material undergo significant changes after being irradiated with different laser energies and spots. The simulation results are consistent with the experimental results. This research indicates that transient force measurements based on PVDF piezoelectric sensors have broad prospects in high-performance optical laser propulsion applications. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

40 pages, 18562 KiB  
Review
Progress, Challenges and Prospects of Biomass-Derived Lightweight Carbon-Based Microwave-Absorbing Materials
by Xujing Ren, Meirong Zhen, Fuliang Meng, Xianfeng Meng and Maiyong Zhu
Nanomaterials 2025, 15(7), 553; https://doi.org/10.3390/nano15070553 - 4 Apr 2025
Cited by 1 | Viewed by 1062
Abstract
The widespread use of electronic devices in daily life, industry and military has led to a large amount of electromagnetic pollution, which has become an increasingly serious security issue. To eliminate or mitigate such risks and hazards, various advanced microwave absorption technologies and [...] Read more.
The widespread use of electronic devices in daily life, industry and military has led to a large amount of electromagnetic pollution, which has become an increasingly serious security issue. To eliminate or mitigate such risks and hazards, various advanced microwave absorption technologies and materials have been reported. As a new type of microwave absorber, biomass-derived carbon-based materials have received extensive attention. They have the characteristics of low cost, easy preparation, high porosity and environmental friendliness while retaining the advantageous adjustable dielectric properties, high conductivity and good stability of traditional carbon materials. The development of biomass microwave-absorbing materials not only provides a new idea for solving electromagnetic radiation but also helps to create an environmentally friendly and harmonious environment. Herein, various biomass-derived carbon-based microwave-absorbing materials (MAMs) including plant shells, plant fibers and other potential biomass materials are generalized and discussed including their preparation technology, microstructure design and so on. The two critical factors affecting microwave absorption properties, impedance matching and attenuation characteristics, are analyzed in detail. Finally, the confronting challenges and future development prospects of biomass-based microwave-absorbing materials are pointed out. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

24 pages, 6071 KiB  
Review
New Electromagnetic Interference Shielding Materials: Biochars, Scaffolds, Rare Earth, and Ferrite-Based Materials
by Dragana Marinković, Slađana Dorontić, Dejan Kepić, Kamel Haddadi, Muhammad Yasir, Blaž Nardin and Svetlana Jovanović
Nanomaterials 2025, 15(7), 541; https://doi.org/10.3390/nano15070541 - 2 Apr 2025
Cited by 1 | Viewed by 2330
Abstract
In this review, a comprehensive systematic study of the research background, developments, classification, trends, and advances over the past few years in research on new electromagnetic interference (EMI) shielding materials will be described. The following groups of new materials for EMI shielding will [...] Read more.
In this review, a comprehensive systematic study of the research background, developments, classification, trends, and advances over the past few years in research on new electromagnetic interference (EMI) shielding materials will be described. The following groups of new materials for EMI shielding will be discussed: biochars, scaffolds, rare earth, and ferrite-based materials. We selected two novel, organic, lightweight materials (biochars and scaffolds) and compared their shielding effectiveness to inorganic materials (ferrite and rare earth materials). This article will broadly discuss the EMI shielding performance, the basic principles of EMI shielding, the preparation methods of selected materials, and their application prospects. Biochars are promising, eco-friendly, sustainable, and renewable materials that can be potentially used as a filter in polymer composites for EMI shielding, along with scaffolds. Scaffolds are new-generation, easy-to-manufacture materials with excellent EMI shielding performance. Rare earth (RE) plays an important role in developing high-performance electromagnetic wave absorption materials due to the unique electronic shell configurations and higher ionic radii of RE elements. Ferrite-based materials are often combined with other components to achieve enhanced EMI shielding, mechanical strength, and electrical and thermal conductivity. Finally, the current challenges and future outlook of new EMI shielding materials will be highlighted in the hope of obtaining guidelines for their future development and application. Full article
Show Figures

Graphical abstract

21 pages, 4849 KiB  
Article
Candidate Sites for Millimeter and Submillimeter Ground-Based Telescopes: Atmospheric Rating for the Eurasian Submillimeter Telescopes Project
by Artem Y. Shikhovtsev, Pavel G. Kovadlo and Philippe Baron
Sensors 2025, 25(7), 2144; https://doi.org/10.3390/s25072144 - 28 Mar 2025
Viewed by 444
Abstract
Modern sensing technologies used in the field of ground-based telescopes still present several challenges. First of all, these challenges are associated with the development of new-generation instruments for astronomical observations and with the influence of Earth’s atmosphere on radiation in various ranges of [...] Read more.
Modern sensing technologies used in the field of ground-based telescopes still present several challenges. First of all, these challenges are associated with the development of new-generation instruments for astronomical observations and with the influence of Earth’s atmosphere on radiation in various ranges of the electromagnetic spectrum. The atmosphere is often the main factor determining the technical characteristics of the instruments in both the optical and millimeter ranges. In particular, for millimeter/submillimeter telescopes, water vapor is the main gas that determines atmospheric opacity. The correct assessment of water vapor makes it possible to estimate the optical opacity of the atmosphere and, on this basis, the capabilities of the millimeter/submillimeter telescope and the limitations of its use in the mode of very long baseline interferometry. Many studies seek to effectively characterize water vapor content and dynamics for site-testing purposes regarding ground-based millimeter and submillimeter telescope application. In the present article, we study the water vapor content within a fairly large region, which has been poorly covered in the modern literature. Based on the ERA-5 reanalysis data as a site-testing-oriented tool, we obtained spatial distributions of the precipitable water vapor (PWV) within a large region (20N70N, 35E120E). These distributions of PWV were corrected with respect to the characteristic vertical scale of water vapor Heff and the relative height difference in the grid nodes in the ERA-5. The calculated values of PWV are highly correlated with the Global Navigation Satellite System-derived PWV, with Pearson coefficients greater than 0.9. Using the refined estimations, we determined the median values of atmospheric opacities corresponding to new prospective sites (Khulugaisha Peak and Tashanta) as well as the Special Astrophysical Observatory (the key astronomical observatory in Russia). Together with Ali in China, Khulugaisha Peak and Tashanta are considered by us as potential sites for the placement of a millimeter/submillimeter telescope within the framework of the project of the Eurasian Submillimeter Telescopes. The results obtained in this paper suggest promising atmospheric conditions for astronomic observations, at least in the millimeter range. In particular, we believe that this study will be a basis for the Eurasian Submillimeter Telescopes (ESMT) project, within the framework of which it is assumed to create a number of ground-based millimeter/submillimeter telescopes. Full article
(This article belongs to the Special Issue Advanced Optics and Sensing Technologies for Telescopes)
Show Figures

Figure 1

18 pages, 2968 KiB  
Article
Research on the Mechanical and Photoelectric Properties Regulation of the New-Type Ceramic Material Ta2AlC
by Zhongzheng Zhang, Chunhong Zhang, Xinmao Qin and Wanjun Yan
Crystals 2025, 15(4), 309; https://doi.org/10.3390/cryst15040309 - 26 Mar 2025
Viewed by 375
Abstract
Ta2AlC is an emerging ceramic material characterized by its high melting point, high hardness, excellent thermal stability, and superior mechanical properties, which allow for broad application prospects in aerospace and defense fields. This paper investigates the physical mechanisms underlying the modulation [...] Read more.
Ta2AlC is an emerging ceramic material characterized by its high melting point, high hardness, excellent thermal stability, and superior mechanical properties, which allow for broad application prospects in aerospace and defense fields. This paper investigates the physical mechanisms underlying the modulation of the mechanical and photoelectric properties of Ta2AlC through doping using the first-principles pseudopotential plane-wave method. We specifically calculated the geometric structure, mechanical properties, electronic structure, Mulliken population analysis, and optical properties of Ta2AlC doped with V, Ga, or Si. The results indicate that doping induces significant changes in the structural parameters of Ta2AlC. By applying the Born’s criterion as the standard for mechanical stability, we have calculated that the structures of Ta2AlC, both before and after doping, are stable. The mechanical property calculations revealed that V and Si doping weaken the material’s resistance to deformation while enhancing its plasticity. In contrast, Ga doping increases the material’s resistance to lateral deformation and brittleness. Doping also increases the anisotropy of Ta2AlC. Electronic structure calculations confirmed that Ta2AlC is a conductor with excellent electrical conductivity, which is not diminished by doping. The symmetric distribution of spin-up and spin-down electronic state densities indicates that the Ta2AlC system remains non-magnetic after doping. The partial density of states diagrams successfully elucidated the influence of dopant atoms on the band structure and electronic state density. Mulliken population analysis revealed that V and Ga doping enhance the covalent interactions between C-Ta and Al-Ta atoms, whereas Si doping weakens these interactions. Optical property calculations showed that V and Si doping significantly enhance the electromagnetic energy storage capacity and dielectric loss of Ta2AlC, while Ga doping has minimal effect. The reflectivity of doped and undoped Ta2AlC reaches over 90% in the ultraviolet region, indicating its potential as an anti-ultraviolet coating material. In the visible light region, both doped and undoped Ta2AlC exhibit a similar metallic gray appearance, suggesting its potential as a temperature control coating material. The light loss of Ta2AlC is limited to a narrow energy range, indicating that doping does not affect its use as a light storage material. These results demonstrate that different dopants can effectively modulate the mechanical and photoelectric properties of Ta2AlC. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Crystalline Materials)
Show Figures

Figure 1

35 pages, 7430 KiB  
Review
Emerging Thermal Detectors Based on Low-Dimensional Materials: Strategies and Progress
by Yang Peng, Jun Liu, Jintao Fu, Ying Luo, Xiangrui Zhao and Xingzhan Wei
Nanomaterials 2025, 15(6), 459; https://doi.org/10.3390/nano15060459 - 18 Mar 2025
Cited by 1 | Viewed by 772
Abstract
Thermal detectors, owing to their broadband spectral response and ambient operating temperature capabilities, represent a key technological avenue for surpassing the inherent limitations of traditional photon detectors. A fundamental trade-off exists between the thermal properties and the response performance of conventional thermosensitive materials [...] Read more.
Thermal detectors, owing to their broadband spectral response and ambient operating temperature capabilities, represent a key technological avenue for surpassing the inherent limitations of traditional photon detectors. A fundamental trade-off exists between the thermal properties and the response performance of conventional thermosensitive materials (e.g., vanadium oxide and amorphous silicon), significantly hindering the simultaneous enhancement of device sensitivity and response speed. Recently, low-dimensional materials, with their atomically thin thickness leading to ultralow thermal capacitance and tunable thermoelectric properties, have emerged as a promising perspective for addressing these bottlenecks. Integrating low-dimensional materials with metasurfaces enables the utilization of subwavelength periodic configurations and localized electromagnetic field enhancements. This not only overcomes the limitation of low light absorption efficiency in thermal detectors based on low-dimensional materials (TDLMs) but also imparts full Stokes polarization detection capability, thus offering a paradigm shift towards multidimensional light field sensing. This review systematically elucidates the working principle and device architecture of TDLMs. Subsequently, it reviews recent research advancements in this field, delving into the unique advantages of metasurface design in terms of light localization and interfacial heat transfer optimization. Furthermore, it summarizes the cutting-edge applications of TDLMs in wideband communication, flexible sensing, and multidimensional photodetection. Finally, it analyzes the major challenges confronting TDLMs and provides an outlook on their future development prospects. Full article
Show Figures

Figure 1

16 pages, 3670 KiB  
Article
Incoherent Optical Neural Networks for Passive and Delay-Free Inference in Natural Light
by Rui Chen, Yijun Ma, Zhong Wang and Shengli Sun
Photonics 2025, 12(3), 278; https://doi.org/10.3390/photonics12030278 - 18 Mar 2025
Viewed by 834
Abstract
Optical neural networks are hardware neural networks implemented based on physical optics, and they have demonstrated advantages of high speed, low energy consumption, and resistance to electromagnetic interference in the field of image processing. However, most previous optical neural networks were designed for [...] Read more.
Optical neural networks are hardware neural networks implemented based on physical optics, and they have demonstrated advantages of high speed, low energy consumption, and resistance to electromagnetic interference in the field of image processing. However, most previous optical neural networks were designed for coherent light inputs, which required the introduction of an electro-optical conversion module before the optical computing device. This significantly hindered the inherent speed and energy efficiency advantages of optical computing. In this paper, we propose a diffraction algorithm for incoherent light based on mutual intensity propagation, and on this basis, we established a model of an incoherent optical neural network. This model is completely passive and directly performs inference calculations on natural light, with the detector directly outputting the results, achieving target classification in an all-optical environment. The proposed model was tested on the MNIST, Fashion-MNIST, and ISDD datasets, achieving classification accuracies of 82.32%, 72.48%, and 93.05%, respectively, with experimental verification showing an accuracy error of less than 5%. This neural network can achieve passive and delay-free inference in a natural light environment, completing target classification and showing good application prospects in the field of remote sensing. Full article
Show Figures

Figure 1

Back to TopTop