Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (341)

Search Parameters:
Keywords = electromagnetic pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2073 KiB  
Article
Dynamic Nucleation in Zr-2.5Nb During Reduced-Gravity Electromagnetic Levitation Experiments
by Gwendolyn P. Bracker, Stephan Schneider, Sarah Nell, Mitja Beckers, Markus Mohr and Robert W. Hyers
Crystals 2025, 15(8), 703; https://doi.org/10.3390/cryst15080703 (registering DOI) - 31 Jul 2025
Abstract
Levitation techniques reduce the available heterogeneous nucleation sites and provide stable access to deeply undercooled melts. However, some samples have repeatably demonstrated that, in the presence of strong stirring, solidification may be induced at moderate, sub-critical undercoolings. Dynamic nucleation is a mechanism by [...] Read more.
Levitation techniques reduce the available heterogeneous nucleation sites and provide stable access to deeply undercooled melts. However, some samples have repeatably demonstrated that, in the presence of strong stirring, solidification may be induced at moderate, sub-critical undercoolings. Dynamic nucleation is a mechanism by which solidification may be induced through flow effects within a sub-critically undercooled melt. In this mechanism, collapsing cavities within the melt produce very high-pressure shocks, which shift the local melting temperature. In these regions of locally shifted melt temperatures, thermodynamic conditions enable nuclei to grow and trigger solidification of the full sample. By deepening the local undercooling, dynamic nucleation enables solidification to occur in conditions where classical nucleation does not. Dynamic nucleation has been observed in several zirconium and zirconium-based samples in the Electromagnetic Levitator onboard the International Space Station (ISS-EML). The experiments presented here address conditions in which a zirconium sample alloyed with 2.5 atomic percent niobium spontaneously solidifies during electromagnetic levitation experiments with strong melt stirring. In these experimental conditions, classical nucleation predicts the sample to remain liquid. This solidification behavior is consistent with the solidification behavior observed in prior experiments on pure zirconium. Full article
Show Figures

Figure 1

12 pages, 874 KiB  
Article
Open-Label Uncontrolled, Monocentric Study to Evaluate the Efficacy and Safety of the Electromagnetic Field and Negative Pressure in the Treatment of Cellulite
by Antonio Scarano, Antonio Calopresti, Salvatore Marafioti, Gianluca Nicolai and Erda Qorri
Life 2025, 15(7), 1148; https://doi.org/10.3390/life15071148 - 21 Jul 2025
Viewed by 373
Abstract
Cellulite is a widespread aesthetical dermatological condition affecting a significant proportion of postpubertal women, characterized by dimpled skin, primarily on the thighs, buttocks, and hips, which has an important psychological impact. Cellulite, also called lipodystrophy or oedematosclerotic panniculitis, causes an aesthetic change in [...] Read more.
Cellulite is a widespread aesthetical dermatological condition affecting a significant proportion of postpubertal women, characterized by dimpled skin, primarily on the thighs, buttocks, and hips, which has an important psychological impact. Cellulite, also called lipodystrophy or oedematosclerotic panniculitis, causes an aesthetic change in the skin that affects the epidermis, dermis, hypodermis and subcutaneous fat in different ways. The aim of the present prospective study research was to evaluate the efficacy of electromagnetic field and negative pressure in the treatment of cellulite. Methods: A total of 35 women with an average age of 40, ranging from 18 to 50 (mean 32.2 ± 7.48), with a body mass index between 18.5 and 26.9 (mean 22 ± 3.01), were enrolled in this study. The degree of cellulite of the patients was assessed clinically using the Cellulite Severity Scale (CSS) and Nürnberger–Müller classification. All patients received one session per week for a total 12 treatment sessions with Bi-one® LifeTouchTherapy medical device (Expo Italia Srl—Florence—Italy), which generates a combination of vacuum and electromagnetic fields (V-EMF). Total treatment time was approximately 20–30 min per patient. The GAIS score, Cellulite Severity Scale (CSS) and Nürnberger–Müller classification for cellulite was evaluated 1 month after the 12 treatments with LifeTouchTherapy. Results: A statistical difference was recorded in cellulite improvement by visual analog scale (VAS) and global aesthetic improvement scale (GAIS). Conclusions: The results of the present prospective clinical study show the efficacy and safety of Bi-one® LifeTouchTherapy in the treatment of cellulite. Electromagnetic fields combined with negative pressure therapy promote tissue regeneration and reduce fibrosis, which results in visible cosmetic improvements of cellulite. Full article
(This article belongs to the Collection Clinical Trials)
Show Figures

Figure 1

14 pages, 1452 KiB  
Review
Recent Advances in Liquid Metal-Based Stretchable and Conductive Composites for Wearable Sensor Applications
by Boo Young Kim, Wan Yusmawati Wan Yusoff, Paolo Matteini, Peter Baumli and Byungil Hwang
Biosensors 2025, 15(7), 466; https://doi.org/10.3390/bios15070466 - 19 Jul 2025
Viewed by 473
Abstract
Liquid metals (LMs), with their unique combination of high electrical conductivity and mechanical deformability, have emerged as promising materials for stretchable electronics and biointerfaces. However, the practical application of bulk LMs in wearable sensors has been hindered by processing challenges and low stability. [...] Read more.
Liquid metals (LMs), with their unique combination of high electrical conductivity and mechanical deformability, have emerged as promising materials for stretchable electronics and biointerfaces. However, the practical application of bulk LMs in wearable sensors has been hindered by processing challenges and low stability. To overcome these limitations, liquid metal particles (LMPs) encapsulated by native oxide shells have gained attention as versatile and stable fillers for stretchable and conductive composites. Recent advances have focused on the development of LM-based hybrid composites that combine LMPs with metal, carbon, or polymeric fillers. These systems offer enhanced electrical and mechanical properties and can form conductive networks without the need for additional sintering processes. They also impart composites with multiple functions such as self-healing, electromagnetic interference shielding, and recyclability. Hence, the present review summarizes the fabrication methods and functional properties of LM-based composites, with a particular focus on their applications in wearable sensing. In addition, recent developments in the use of LM composites for physical motion monitoring (e.g., strain and pressure sensing) and electrophysiological signal recording (e.g., EMG and ECG) are presented, and the key challenges and opportunities for next-generation wearable platforms are discussed. Full article
(This article belongs to the Special Issue The Application of Biomaterials in Electronics and Biosensors)
Show Figures

Figure 1

21 pages, 7897 KiB  
Article
Quantum Selection for Genetic Algorithms Applied to Electromagnetic Design Problems
by Gabriel F. Martinez, Alessandro Niccolai, Eleonora L. Zich and Riccardo E. Zich
Appl. Sci. 2025, 15(14), 8029; https://doi.org/10.3390/app15148029 - 18 Jul 2025
Viewed by 320
Abstract
Optimization has always been viewed as a central component of many electrical engineering techniques, where it involves designing a complex system with various constraints and competing objectives. The method described in this work proposes a hybrid quantum–classical evolutionary optimization algorithm targeting high-frequency electromagnetic [...] Read more.
Optimization has always been viewed as a central component of many electrical engineering techniques, where it involves designing a complex system with various constraints and competing objectives. The method described in this work proposes a hybrid quantum–classical evolutionary optimization algorithm targeting high-frequency electromagnetic problems. A genetic algorithm with a quantum selection operator that applies high selection pressure while preserving selection diversity is introduced. This change means that stagnation can be reduced without compromising the speed of convergence. This was used on both real quantum hardware as well as quantum simulators. The results demonstrate that the performance of the real quantum devices was deteriorated by the noise in these devices and that simulators would be a useful option. We provide a description of the operation of the proposed evolutionary optimization method with mathematical benchmarks and electromagnetic design problems that show that it outperforms conventional evolutionary algorithms in terms of convergence behavior and robustness. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

15 pages, 1749 KiB  
Article
Optimization of Soft Actuator Control in a Continuum Robot
by Oleksandr Sokolov, Serhii Sokolov, Angelina Iakovets and Miroslav Malaga
Actuators 2025, 14(7), 352; https://doi.org/10.3390/act14070352 - 17 Jul 2025
Viewed by 206
Abstract
This study presents a quasi-static optimization framework for the pressure-based control of a multi-segment soft continuum manipulator. The proposed method circumvents traditional curvature and length-based modeling by directly identifying the quasi-static input–output relationship between actuator pressures and the 6-DoF end-effector pose. Experimental data [...] Read more.
This study presents a quasi-static optimization framework for the pressure-based control of a multi-segment soft continuum manipulator. The proposed method circumvents traditional curvature and length-based modeling by directly identifying the quasi-static input–output relationship between actuator pressures and the 6-DoF end-effector pose. Experimental data were collected using a high-frequency electromagnetic tracking system under monotonic pressurization to minimize hysteresis effects. Transfer functions were identified for each coordinate–actuator pair using the System Identification Toolbox in MATLAB, and optimal actuator pressures were computed analytically by solving a constrained quadratic program via a manual active-set method. The resulting control strategy achieved sub-millimeter positioning error while minimizing the number of actuators engaged. The approach is computationally efficient, sensor-minimal, and fully implementable in open-loop settings. Despite certain limitations due to sensor nonlinearity and actuator hysteresis, the method provides a robust foundation for feedforward control and the real-time deployment of soft robots in quasi-static tasks. Full article
(This article belongs to the Special Issue Advanced Technologies in Soft Actuators)
Show Figures

Figure 1

20 pages, 4500 KiB  
Article
Analysis and Performance Evaluation of CLCC Applications in Key Power Transmission Channels
by Kang Liu, Baohong Li and Qin Jiang
Energies 2025, 18(13), 3514; https://doi.org/10.3390/en18133514 - 3 Jul 2025
Viewed by 293
Abstract
The YZ-ZJ DC transmission project addresses significant power transmission challenges in a specific region’s power grid, which faces unique pressures due to overlapping “growth” and “transition” periods in energy demand. This study focuses on the integration of Controllable-Line-Commutated Converters (CLCCs) into the YZ-ZJ [...] Read more.
The YZ-ZJ DC transmission project addresses significant power transmission challenges in a specific region’s power grid, which faces unique pressures due to overlapping “growth” and “transition” periods in energy demand. This study focuses on the integration of Controllable-Line-Commutated Converters (CLCCs) into the YZ-ZJ DC transmission project at the receiving end, replacing the traditional LCCs to mitigate commutation failures during AC system faults. The main innovation lies in the development of a hybrid electromechanical–electromagnetic simulation model based on actual engineering parameters that provides a comprehensive analysis of the CLCC’s electromagnetic characteristics and system-level behavior under fault conditions. This is a significant advancement over previous research, which mainly focused on discrete electromagnetic modeling in ideal or simplified scenarios without considering the full complexity of real-world regional power grids. The research demonstrates that integrating CLCCs into the regional power grid not only prevents commutation failures but also enhances the overall reliability of the transmission system. The results show that CLCCs significantly improve fault tolerance, stabilize power transmission during faults, reduce power fluctuations in neighboring transmission lines, and enhance grid stability. Furthermore, this study confirms that the CLCC-based YZ-ZJ DC project outperforms the traditional LCC system, maintaining stable power transmission even under fault conditions. In conclusion, this study validates the feasibility of CLCCs in resisting commutation failures when integrated into a large power grid and reveals their positive impact on the regional grid. Full article
Show Figures

Figure 1

26 pages, 8312 KiB  
Article
A Meteorological Data-Driven eLoran Signal Propagation Delay Prediction Model: BP Neural Network Modeling for Long-Distance Scenarios
by Tao Jin, Shiyao Liu, Baorong Yan, Wei Guo, Changjiang Huang, Yu Hua, Shougang Zhang, Xiaohui Li and Lu Xu
Remote Sens. 2025, 17(13), 2269; https://doi.org/10.3390/rs17132269 - 2 Jul 2025
Viewed by 261
Abstract
The timing accuracy of eLoran systems is susceptible to meteorological fluctuations, with medium-to-long-range propagation delay variations reaching hundreds of nanoseconds to microseconds. While conventional models have been widely adopted for short-range delay prediction, they fail to accurately characterize the coupled effects of multiple [...] Read more.
The timing accuracy of eLoran systems is susceptible to meteorological fluctuations, with medium-to-long-range propagation delay variations reaching hundreds of nanoseconds to microseconds. While conventional models have been widely adopted for short-range delay prediction, they fail to accurately characterize the coupled effects of multiple factors in long-range scenarios. This study theoretically examines the influence mechanisms of temperature, humidity, and atmospheric pressure on signal propagation delays, proposing a hybrid prediction model integrating meteorological data with a back-propagation neural network (BPNN) through path-weighted Pearson correlation coefficient analysis. Long-term observational data from multiple differential reference stations and meteorological stations reveal that short-term delay fluctuations strongly correlate with localized instantaneous humidity variations, whereas long-term trends are governed by cumulative temperature–humidity effects in regional environments. A multi-tier neural network architecture was developed, incorporating spatial analysis of propagation distance impacts on model accuracy. Experimental results demonstrate enhanced prediction stability in long-range scenarios. The proposed model provides an innovative tool for eLoran system delay correction, while establishing an interdisciplinary framework that bridges meteorological parameters with signal propagation characteristics. This methodology offers new perspectives for reliable timing solutions in global navigation satellite system (GNSS)-denied environments and advances our understanding of meteorological–electromagnetic wave interactions. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

30 pages, 10389 KiB  
Review
Recent Advancements in Optical Fiber Sensors for Non-Invasive Arterial Pulse Waveform Monitoring Applications: A Review
by Jing Wen Chew, Soon Xin Gan, Jingxian Cui, Wen Di Chan, Sai T. Chu and Hwa-Yaw Tam
Photonics 2025, 12(7), 662; https://doi.org/10.3390/photonics12070662 - 30 Jun 2025
Viewed by 538
Abstract
The awareness of the importance of monitoring human vital signs has increased recently due to the outbreak of the COVID-19 pandemic. Non-invasive heart rate monitoring devices, in particular, have become some of the most popular tools for health monitoring. However, heart rate data [...] Read more.
The awareness of the importance of monitoring human vital signs has increased recently due to the outbreak of the COVID-19 pandemic. Non-invasive heart rate monitoring devices, in particular, have become some of the most popular tools for health monitoring. However, heart rate data alone are not enough to reflect the health of one’s cardiovascular function or arterial health. This growing interest has spurred research into developing high-fidelity non-invasive pulse waveform sensors. These sensors can provide valuable information such as data on blood pressure, arterial stiffness, and vascular aging from the pulse waveform. Among these sensors, optical fiber sensors (OFSs) stand out due to their remarkable properties, including resistance to electromagnetic interference, capability in monitoring multiple vital signals simultaneously, and biocompatibility. This paper reviews the latest advancements in using OFSs to measure human vital signs, with a focus on pulse waveform analysis. The various working mechanisms of OFSs and their performances in measuring the pulse waveform are discussed. In addition, we also address the challenges faced by OFSs in pulse waveform monitoring and explore the opportunities for future development. This technology shows great potential for both clinical and personal non-invasive pulse waveform monitoring applications. Full article
(This article belongs to the Special Issue Novel Advances in Optical Fiber Gratings)
Show Figures

Figure 1

14 pages, 3376 KiB  
Article
A Study of Ultra-Thin Surface-Mounted MEMS Fibre-Optic Fabry–Pérot Pressure Sensors for the In Situ Monitoring of Hydrodynamic Pressure on the Hull of Large Amphibious Aircraft
by Tianyi Feng, Xi Chen, Ye Chen, Bin Wu, Fei Xu and Lingcai Huang
Photonics 2025, 12(7), 627; https://doi.org/10.3390/photonics12070627 - 20 Jun 2025
Viewed by 288
Abstract
Hydrodynamic slamming loads during water landing are one of the main concerns for the structural design and wave resistance performance of large amphibious aircraft. However, current existing sensors are not used for full-scale hydrodynamic load flight tests on complex models due to their [...] Read more.
Hydrodynamic slamming loads during water landing are one of the main concerns for the structural design and wave resistance performance of large amphibious aircraft. However, current existing sensors are not used for full-scale hydrodynamic load flight tests on complex models due to their large size, fragility, intrusiveness, limited range, frequency response limitations, accuracy issues, and low sampling frequency. Fibre-optic sensors’ small size, immunity to electromagnetic interference, and reduced susceptibility to environmental disturbances have led to their progressive development in maritime and aeronautic fields. This research proposes a novel hydrodynamic profile encapsulation method using ultra-thin surface-mounted micro-electromechanical system (MEMS) fibre-optic Fabry–Pérot pressure sensors (total thickness of 1 mm). The proposed sensor exhibits an exceptional linear response and low-temperature sensitivity in hydrostatic calibration tests and shows superior response and detection accuracy in water-entry tests of wedge-shaped bodies. This work exhibits significant potential for the in situ monitoring of hydrodynamic loads during water landing, contributing to the research of large amphibious aircraft. Furthermore, this research demonstrates, for the first time, the proposed surface-mounted pressure sensor in conjunction with a high-speed acquisition system for the in situ monitoring of hydrodynamic pressure on the hull of a large amphibious prototype. Following flight tests, the sensors remained intact throughout multiple high-speed hydrodynamic taxiing events and 12 full water landings, successfully acquiring the complete dataset. The flight test results show that this proposed pressure sensor exhibits superior robustness in extreme environments compared to traditional invasive electrical sensors and can be used for full-scale hydrodynamic load flight tests. Full article
Show Figures

Figure 1

27 pages, 6291 KiB  
Article
Data-Driven Fault Detection and Diagnosis in Cooling Units Using Sensor-Based Machine Learning Classification
by Amilcar Quispe-Astorga, Roger Jesus Coaquira-Castillo, L. Walter Utrilla Mego, Julio Cesar Herrera-Levano, Yesenia Concha-Ramos, Erwin J. Sacoto-Cabrera and Edison Moreno-Cardenas
Sensors 2025, 25(12), 3647; https://doi.org/10.3390/s25123647 - 11 Jun 2025
Viewed by 684
Abstract
Precision air conditioning (PAC) systems are prone to various types of failures, leading to inefficiencies, increased energy consumption, and possible reductions in equipment performance. This study proposes an automatic real-time fault detection and diagnosis system. It classifies events as either faulty or normal [...] Read more.
Precision air conditioning (PAC) systems are prone to various types of failures, leading to inefficiencies, increased energy consumption, and possible reductions in equipment performance. This study proposes an automatic real-time fault detection and diagnosis system. It classifies events as either faulty or normal by analyzing key status signals such as pressure, temperature, current, and voltage. This research is based on data-driven models and machine learning, where a specific strategy is proposed for five types of system failures. The work was carried out on a Rittal PAC, model SK3328.500 (cooling unit), installing capacitive pressure sensors, Hall effect current sensors, electromagnetic induction voltage sensors, infrared temperature sensors, and thermocouple-type sensors. For the implementation of the system, a dataset of PAC status signals was obtained, initially consisting of 31,057 samples after a preprocessing step using the Random Under-Sampler (RUS) module. A database with 20,000 samples was obtained, which includes normal and failed operating events generated in the PAC. The selection of the models is based on accuracy criteria, evaluated by testing in both offline (database) and real-time conditions. The Support Vector Machine (SVM) model achieved 93%, Decision Tree (DT) 93%, Gradient Boosting (GB) 91%, K-Nearest Neighbors (KNN) 83%, and Naive Bayes (NB) 77%, while the Random Forest (RF) model stood out, having an accuracy of 96% in deferred tests and 95.28% in real-time. Finally, a validation test was performed with the best-selected model in real time, simulating a real environment for the PAC system, achieving an accuracy rate of 93.49%. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

31 pages, 7884 KiB  
Article
Magnetic Pulse Welding of Dissimilar Materials: Weldability Window for AA6082-T6/HC420LA Stacks
by Mario A. Renderos Cartagena, Edurne Iriondo Plaza, Amaia Torregaray Larruscain, Marie B. Touzet-Cortina and Franck A. Girot Mata
Metals 2025, 15(6), 619; https://doi.org/10.3390/met15060619 - 30 May 2025
Viewed by 652
Abstract
Magnetic pulse welding (MPW) is a promising solid-state joining process that utilizes electromagnetic forces to create high-speed, impact-like collisions between two metal components. This welding technique is widely known for its ability to join dissimilar metals, including aluminum, steel, and copper, without the [...] Read more.
Magnetic pulse welding (MPW) is a promising solid-state joining process that utilizes electromagnetic forces to create high-speed, impact-like collisions between two metal components. This welding technique is widely known for its ability to join dissimilar metals, including aluminum, steel, and copper, without the need for additional filler materials or fluxes. MPW offers several advantages, such as minimal heat input, no distortion or warping, and excellent joint strength and integrity. The process is highly efficient, with welding times typically ranging from microseconds to milliseconds, making it suitable for high-volume production applications in sectors including automotive, aerospace, electronics, and various other industries where strong and reliable joints are required. It provides a cost-effective solution for joining lightweight materials, reducing weight and improving fuel efficiency in transportation systems. This contribution concerns an application for the automotive sector (body-in-white) and specifically examines the welding of AA6082-T6 aluminum alloy with HC420LA cold-rolled micro-alloyed steel. One of the main aspects for MPW optimization is the determination of the process window that does not depend on the equipment used but rather on the parameters associated with the physical mechanisms of the process. It was demonstrated that process windows based on contact angle versus output voltage diagrams can be of interest for production use for a given component (shock absorbers, suspension struts, chassis components, instrument panel beams, next-generation crash boxes, etc.). The process window based on impact pressures versus impact velocity for different impact angles, in addition to not depending on the equipment, allows highlighting other factors such as the pressure welding threshold for different temperatures in the impact zone, critical transition speeds for straight or wavy interface formation, and the jetting/no jetting effect transition. Experimental results demonstrated that optimal welding conditions are achieved with impact velocities between 900 and 1200 m/s, impact pressures of 3000–4000 MPa, and impact angles ranging from 18–35°. These conditions correspond to optimal technological parameters including gaps of 1.5–2 mm and output voltages between 7.5 and 8.5 kV. Successful welds require mean energy values above 20 kJ and weld specific energy values exceeding 150 kJ/m2. The study establishes critical failure thresholds: welds consistently failed when gap distances exceeded 3 mm, output voltage dropped below 5.5 kV, or impact pressures fell below 2000 MPa. To determine these impact parameters, relationships based on Buckingham’s π theorem provide a viable solution closely aligned with experimental reality. Additionally, shear tests were conducted to determine weld cohesion, enabling the integration of mechanical resistance isovalues into the process window. The findings reveal an inverse relationship between impact angle and weld specific energy, with higher impact velocities producing thicker intermetallic compounds (IMCs), emphasizing the need for careful parameter optimization to balance weld strength and IMC formation. Full article
(This article belongs to the Topic Welding Experiment and Simulation)
Show Figures

Figure 1

16 pages, 5257 KiB  
Article
Effects of Driving Current Ripple Fluctuations on the Liquefied Layer of the Armature–Rail Interface in Railguns
by Wen Tian, Gongwei Wang, Ying Zhao, Weikang Zhao, Weiqun Yuan and Ping Yan
Energies 2025, 18(10), 2596; https://doi.org/10.3390/en18102596 - 16 May 2025
Viewed by 329
Abstract
During the electromagnetic launching process, the actual current input into the launcher is obtained by controlling the discharge of the pulsed power supply. Generally, the waveform of the pulse current is determined by the discharge characteristics and discharge time of the pulse power [...] Read more.
During the electromagnetic launching process, the actual current input into the launcher is obtained by controlling the discharge of the pulsed power supply. Generally, the waveform of the pulse current is determined by the discharge characteristics and discharge time of the pulse power supply. Due to the limitation of control accuracy, the driving current is not an ideal trapezoidal wave, but there is a certain fluctuation (current ripple) in the flat top portion of the trapezoidal wave. The fluctuation of the current will affect the thickness of the liquefied layer at the armature–rail interface as well as the magnitude of the contact pressure, thereby inducing instability at the armature–rail interface and generating micro-arcs, which result in a reduction in the service life of the rails within the launcher. Consequently, it is imperative to conduct an in-depth analysis of the influence of current ripple on the liquefied layer during electromagnetic launching. In this paper, a thermoelastic magnetohydrodynamic model is constructed by coupling temperature, stress, and electromagnetic fields, which are predicated on the Reynolds equation of the metal liquefied layer at the armature–rail contact interface. The effects of current fluctuations on the melting rate of the surface of the armature, the thickness of the liquefied layer, and the hydraulic pressure of the liquefied layer under four different current ripple coefficients (RCs) were analyzed. The results show the following: (1) The thickness and the pressure of the liquefied layer at the armature–rail interface fluctuate with the fluctuation of the current, and, the larger the ripple coefficient, the greater the fluctuations in the thickness and pressure of the liquefied layer. (2) The falling edge of the current fluctuation leads to a decrease in the hydraulic pressure of the liquefied layer, which results in the instability of the liquefied layer between the armature and rails. (3) As the ripple coefficient increases, the time taken for the liquefied layer to reach a stable state increases. In addition, a launching experiment was also conducted in this paper, and the results showed that, at the falling edge of the current fluctuation, the liquefied layer is unstable, and a phenomenon such as the ejection of molten armature and transition may occur. The results of the experiment and simulations mutually confirm that the impact of current fluctuations on the armature–rail interface increases with increases in the ripple coefficient. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

20 pages, 9601 KiB  
Article
Design, Simulation and Experimental Validation of a Pneumatic Actuation Method for Automating Manual Pipetting Devices
by Valentin Ciupe, Erwin-Christian Lovasz, Robert Kristof, Melania-Olivia Sandu and Carmen Sticlaru
Machines 2025, 13(5), 389; https://doi.org/10.3390/machines13050389 - 7 May 2025
Viewed by 513
Abstract
This study provides a set of designs, simulations and experiments for developing an actuating method for manual pipettes. The goal is to enable robotic manipulation and automatic pipetting, while using manual pipetting devices. This automation is designed to be used as a flexible [...] Read more.
This study provides a set of designs, simulations and experiments for developing an actuating method for manual pipettes. The goal is to enable robotic manipulation and automatic pipetting, while using manual pipetting devices. This automation is designed to be used as a flexible alternative tool in small and medium-sized biochemistry laboratories that do not possess proper automated pipetting technology, in order to relieve the lab technicians from the tedious, repetitive and error-prone process of manual pipetting needed for the preparation of biological samples. The selected approach is to use a set of pressure-controlled pneumatic cylinders in order to control the actuation and force of the pipettes’ manual buttons. This paper presents a mechanical design, analysis, pneumatic simulation and functional robotic simulation of the developed device, and a comparison of possible pneumatic solutions is presented to explain the selected actuation method. Remote pneumatic pressure sensing is employed in order to avoid electrical sensors, connectors and wires in the area of the actuators, thus expanding the possibility of working in some electromagnetic-compatible environments and to simplify the connecting and cleaning process of the entire device. A functional simulation is conducted using a combination of software packages: Fluidsim for pneumatic simulation, URSim for robot programming and CoppeliaSim for application integration and visualization. Experimental validation is conducted using off-the-shelf pneumatic components, assembled with 3D-printed parts and mounted onto an existing pneumatic gripper. This complete assembly is attached to an industrial collaborative robot, as an end effector, and a program is written to test and validate the functions of the complete device. The in-process actuators’ working pressure is recorded and analyzed to determine the suitability of the proposed method and pipetting ability. Supplemental digital data are provided in the form of pneumatic circuit diagrams, a robot program, simulation scene and recorded values, to facilitate experimental replication and further development. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

15 pages, 7430 KiB  
Article
High-Precision Transdermal Drug Delivery Device with Piezoelectric Mechanism
by Shengyu Liu, Junming Liu, Conghui Wang and Yang Zhan
Actuators 2025, 14(5), 212; https://doi.org/10.3390/act14050212 - 25 Apr 2025
Viewed by 463
Abstract
Piezoelectric (PE) micropumps are distinguished by their high precision, absence of electromagnetic radiation, and straightforward construction principles, making them vital in biomedicine and drug delivery. Integrating PE micropumps with microneedles creates a stable, accurate transdermal drug delivery device capable of finely tuning dosage, [...] Read more.
Piezoelectric (PE) micropumps are distinguished by their high precision, absence of electromagnetic radiation, and straightforward construction principles, making them vital in biomedicine and drug delivery. Integrating PE micropumps with microneedles creates a stable, accurate transdermal drug delivery device capable of finely tuning dosage, rate, and targeting. This paper proposes such a device, combining a PE micropump with a microneedle array. Initially, the internal flow dynamics of the PE micropump and the microneedle forces were analyzed through simulations. Subsequently, the optimal size for the PE micropump was established via parameter optimization experiments. Comprehensive tests were conducted to assess the device’s output performance, including frequency response, voltage characteristics, and flow resistance properties. Key performance indicators evaluated were output flow, pressure, and resolution. Experimental findings revealed that with a constant driving voltage, the PE micropump’s output flow and pressure initially increase and then decrease as the operating frequency rises. Conversely, with a fixed operating frequency, output flow and pressure positively correlate with the driving voltage, showing a near-linear relationship. Under stable working conditions, output pressure and flow are inversely proportional. The PE micropump achieves an output flow of 4.0 mL/min and a pressure of 35.7 kPa at 70 V and 80 Hz. The output flow rate and pressure of the device with the integrated microneedle array are 3.5 mL/min and 30 kPa, the minimum flow resolution is 0.28 μL, exemplifying the potential applications of PE micropumps and microneedles in the field of biomedicine. Full article
(This article belongs to the Section Precision Actuators)
Show Figures

Figure 1

44 pages, 17825 KiB  
Article
From Space to Stream: Combining Remote Sensing and In Situ Techniques for Comprehensive Stream Health Assessment
by Stratos Kokolakis, Eleni Kokinou, Matenia Karagiannidou, Nikos Gerarchakis, Christos Vasilakos, Melina Kotti and Catherine Chronaki
Remote Sens. 2025, 17(9), 1532; https://doi.org/10.3390/rs17091532 - 25 Apr 2025
Viewed by 1065
Abstract
Urban streams undergo significant ecological alterations due to urbanization, including hydrological changes, water contamination, and biodiversity loss. This research employs a combination of satellite and drone imagery alongside traditional chemical and geophysical methods, facilitating a multi-dimensional assessment of Almyros and Gazanos urban stream [...] Read more.
Urban streams undergo significant ecological alterations due to urbanization, including hydrological changes, water contamination, and biodiversity loss. This research employs a combination of satellite and drone imagery alongside traditional chemical and geophysical methods, facilitating a multi-dimensional assessment of Almyros and Gazanos urban stream health in Heraklion (Crete, Greece). The satellite imagery, obtained from the Copernicus program, allows for monitoring land use and impervious surface density around the streams, while drone surveys capture high-resolution images and calculate various water quality indices. In addition, chemical analyses of water samples for pollutants, as well as geophysical measurements using spectral induced polarization (SIP) and electromagnetic scanning (GEM-2), provide insight into the integrity of aquatic and riparian ecosystems. The study reflects on the different types of anthropogenic pressure faced by these two ecosystems. Almyros stream exhibits signs of eutrophication, characterized by elevated levels of chlorophyll and the presence of algal blooms, possibly due to runoff from adjacent agricultural activities. Conversely, the Gazanos stream shows signs of pollution mostly related to urbanization. The findings emphasize that both streams are under increasing anthropogenic pressure, thus highlighting the importance of employing comprehensive methods for effective stream management and policy implementation. This study ultimately advocates for ongoing monitoring initiatives that embrace technological advancements to safeguard urban water ecosystems. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

Back to TopTop