Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,830)

Search Parameters:
Keywords = electrode effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6441 KB  
Article
Tetrabromocobalt Phthalocyanine-Functionalized Carbon Nanotubes as a High-Performance Anode for Lithium-Ion Batteries
by Keshavananda Prabhu Channabasavana Hundi Puttaningaiah
Nanomaterials 2025, 15(22), 1713; https://doi.org/10.3390/nano15221713 (registering DOI) - 12 Nov 2025
Abstract
The search for high-capacity, stable anode materials is crucial for advancing lithium-ion battery (LIB) technology. Although carbon nanotubes (CNTs) are known for their excellent electrical conductivity and mechanical strength, their practical capacity is still limited. This study presents an advanced anode design by [...] Read more.
The search for high-capacity, stable anode materials is crucial for advancing lithium-ion battery (LIB) technology. Although carbon nanotubes (CNTs) are known for their excellent electrical conductivity and mechanical strength, their practical capacity is still limited. This study presents an advanced anode design by molecular functionalizing both single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) with tetrabromocobalt phthalocyanine (CoPc), resulting in CoPc/SWCNT and CoPc/MWCNT hybrid materials. Metal phthalocyanines (MPcs) are recognized for their tunable and redox-active properties. In CoPc, the redox-active metal centers and π-conjugated structure are uniformly attached to the CNT surface through strong π-π interactions. This synergistic combination significantly boosts the lithium-ion (Li-ion) storage capacity by offering numerous coordination sites for Li-ions and enhancing charge transfer kinetics. Electrochemical analysis shows that the CoPc-SWCNT active anode electrode material shows an impressive reversible capacity of 1216 mAh g−1 after 100 cycles at a current density of 0.1 A g−1, substantially surpassing the capacities of pristine CoPc (327 mAh g−1) and a CoPc/MWCNT hybrid (488 mAh g−1). Furthermore, the CoPc/SWCNT anode exhibited exceptional rate capability and outstanding long-term cyclability. These results underscore the effectiveness of non-covalent functionalization with SWCNTs in enhancing the electrical conductivity, structural stability, and active site utilization of CoPc, positioning CoPc/SWCNT hybrids as a highly promising anode material for high-performance Li-ion storage. Full article
Show Figures

Graphical abstract

18 pages, 4105 KB  
Article
Ion Exchange Membrane-like Deposited Electrodes for Capacitive De-Ionization: Performance Evaluation and Mechanism Study
by Siyue Xue, Chengyi Wang, Tianxiao Leng, Chenglin Zhang, Long-Fei Ren and Jiahui Shao
Membranes 2025, 15(11), 338; https://doi.org/10.3390/membranes15110338 - 11 Nov 2025
Abstract
Capacitive de-ionization (CDI) holds great promise for water desalination, while the widely used activated carbon (AC) electrodes suffer from a low salt adsorption capacity (SAC) and poor long-term stability due to the co-ion effect and electrode oxidation. Inspired by membrane-based CDI, we deposited [...] Read more.
Capacitive de-ionization (CDI) holds great promise for water desalination, while the widely used activated carbon (AC) electrodes suffer from a low salt adsorption capacity (SAC) and poor long-term stability due to the co-ion effect and electrode oxidation. Inspired by membrane-based CDI, we deposited polyethyleneimine (PEI), an ion exchange polymer with positive charge and ion selectivity, onto an AC electrode to serve as an anode for addressing these issues. Firstly, compared to traditional AC and commercial AEM-AC, the PEI-doped AC (PDAC) anode delivered a superior SAC of 36.3 mg/g, as the positively charged PEI enhanced electrostatic attraction, suppressed the co-ion effect, and offered extra sites. However, it showed poor cycling stability with 77.1% retention, owing to mass loss and anode oxidation. We further developed an electrode coated with a PEI-based membrane (PMAC), which exhibited a balanced performance with a high SAC of 33.4 mg/g and significantly improved long-term retention of 97.5%. The hydrophilic PEI membrane, strongly adhered to the AC surface, shortened the ion diffusion resistance and effectively prolonged the electrode lifespan. A systematic comparison between AC, AEM-AC, PDAC, and PMAC revealed the mechanism for PMAC’s notable enhancement. These findings establish a framework for designing novel CDI electrodes and advancing sustainable water desalination. Full article
Show Figures

Figure 1

33 pages, 4594 KB  
Review
Printed Sensors for Quantifying Electrodermal Activity and Sweat Rate: A Review
by Batoul Hosseinzadeh, Sarah Tonello, Nicola Francesco Lopomo and Emilio Sardini
Sensors 2025, 25(22), 6878; https://doi.org/10.3390/s25226878 - 11 Nov 2025
Abstract
Monitoring electrodermal activity (EDA) and sweat rate (SR) and volume hold promise for yielding neurological health insights about individuals. A combination of standard EDA monitoring with the quantitative analysis of perspired sweat volume, rate, and composition represents a promising advancement for improving the [...] Read more.
Monitoring electrodermal activity (EDA) and sweat rate (SR) and volume hold promise for yielding neurological health insights about individuals. A combination of standard EDA monitoring with the quantitative analysis of perspired sweat volume, rate, and composition represents a promising advancement for improving the understanding and reliability of EDA signals. In this picture, exploiting printed electronics to face challenges related to bulky gold-standard setups and to achieve integration in fully wearable devices represents one of the most interesting approaches addressed by recent research. In this review, we present an overview of the principal techniques, materials, and measurement methods reported for fabricating EDA and sweat monitoring electrodes. We highlight the increasing effect of printing technologies as a key enabler for scalable, low-cost, and customizable fabrication of flexible sensors suited for on-skin applications. These approaches not only support mass production but also enhance adaptability and comfort in wearable formats. Overall, the review emphasizes how printed technologies significantly improve physiological signal quality and open new opportunities for continuous, non-invasive, and personalized health monitoring. Full article
(This article belongs to the Special Issue Feature Review Papers in the Biomedical Sensors Section)
Show Figures

Figure 1

18 pages, 3046 KB  
Article
Effects of Key Factors on Lithium Dendrite Dissolution and Dead Lithium Formation: A Phase-Field Simulation Study
by Shuzeng Hou, Boyang Zeng, Jingwei Wu, Yongqi Lyu and Xiayi Sun
Batteries 2025, 11(11), 413; https://doi.org/10.3390/batteries11110413 - 11 Nov 2025
Abstract
The growth of lithium dendrites and the associated “dead lithium” issue significantly impair the performance and cycle life of lithium metal batteries. This study utilizes a phase-field model under constant-current discharge conditions to simulate the dissolution process of lithium dendrites. The results demonstrate [...] Read more.
The growth of lithium dendrites and the associated “dead lithium” issue significantly impair the performance and cycle life of lithium metal batteries. This study utilizes a phase-field model under constant-current discharge conditions to simulate the dissolution process of lithium dendrites. The results demonstrate that the non-uniform dissolution of lithium dendrites is a primary cause of their stripping and subsequent dead lithium formation. Specifically, a high charging voltage and a high reaction rate constant aggravate dendrite growth and dead lithium accumulation. Although a high discharging voltage accelerates dendrite dissolution, it readily induces stripping at the dendrite roots, generating more dead lithium. In contrast, increasing the temperature, enhancing the interface mobility, adjusting the anisotropy strength to a moderate level, and constructing semi-circular initial nuclei can effectively mitigate dead lithium by promoting a more uniform dissolution process. This research provides a theoretical foundation for optimizing battery operational parameters and electrode designs to improve capacity and safety. Full article
(This article belongs to the Collection Advances in Battery Energy Storage and Applications)
Show Figures

Figure 1

16 pages, 1876 KB  
Article
AlN Passivation-Enhanced Mg-Doped β-Ga2O3 MISIM Photodetectors for Highly Responsive Solar-Blind UV Detection
by Jiaxin Tan, Lin Yi, Mingyue Lv, Min Zhang and Suyuan Bai
Coatings 2025, 15(11), 1312; https://doi.org/10.3390/coatings15111312 - 10 Nov 2025
Abstract
Mg-doped gallium oxide films were prepared on single crystal sapphire substrates through radio frequency magnetron sputtering technology, and then AlN films of different thicknesses were deposited on them as passivation layers. Finally, Pt interdigitated electrodes were prepared through mask plate and ion sputtering [...] Read more.
Mg-doped gallium oxide films were prepared on single crystal sapphire substrates through radio frequency magnetron sputtering technology, and then AlN films of different thicknesses were deposited on them as passivation layers. Finally, Pt interdigitated electrodes were prepared through mask plate and ion sputtering technology to make metal–insulator–semiconductor–insulator–metal (MISIM) photodetectors. The influence of the AlN passivation layer on the optical properties and photodetection performance of the device was investigated using UV-Vis (ultraviolet-visible absorption spectroscopy) spectrophotometer and a Keith 4200 semiconductor tester. The device’s performance was significantly enhanced. Among them, the MISIM-structured device achieves a responsivity of 2.17 A/W, an external quantum efficiency (EQE) of 1100%, a specific detectivity (D*) of 1.09 × 1012 Jones, and a photo-to-dark current ratio (PDCR) of 2200. The results show that different thicknesses of AlN passivation layers have an effect on the detection performance of Mg-doped β-Ga2O3 films in the UV detection of the solar-blind UV region. The AlN’s thickness has little effect on the bandgap when it is 3 nm and 5 nm, and the bandgap increases at 10 nm. The transmittance of the film increases with the increase in AlN thickness and decreases when the AlN’s thickness increases to 10 nm. The photocurrent exhibits a non-monotonic dependence on AlN thickness at 10 V, and the dark current gradually decreases. The thickness of the AlN passivation layer also has a significant impact on the response characteristics of the detector, and the response characteristics of the device are best when the thickness of the AlN passivation layer is 5 nm. The responsiveness, detection rate, and external quantum efficiency of the device first increase and then decrease with the thickness of the AlN layer, and comprehensive performance is best when the thickness of the AlN passivation layer is 5 nm. The reason is that the AlN layer plays a passivating role on the surface of Ga2O3 films, reducing surface defects and inhibiting its capture of photogenerated carriers, while the appropriate thickness of the AlN layer increases the barrier height at the semiconductor interface, forming a built-in electric field and improving the response speed. Finally, the AlN layer inhibits the adsorption and desorption processes between the photogenerated electron–hole pair and O2, thereby retaining more photogenerated non-equilibrium carriers, which also helps enhance photoelectric detection performance. Full article
19 pages, 4828 KB  
Review
Toward the Adoption of a Photocatalytic Membrane Electrode Assembly (P-MEA) System for Sustainable Green Hydrogen Production
by Mang Muan Lian, Bo-Sang Kim, Su-Min Lee, Su-Ho Ahn and Jung-Ho Yun
Sustainability 2025, 17(22), 10037; https://doi.org/10.3390/su172210037 - 10 Nov 2025
Abstract
Green hydrogen production using membrane electrode assembly (MEA) has attracted significant attention due to its remarkable energy conversion efficiency. To further enhance its sustainability, MEA-based water electrolysis can be integrated with renewable solar energy by adopting a photocatalytic MEA (P-MEA) system, incorporating light-transmitting [...] Read more.
Green hydrogen production using membrane electrode assembly (MEA) has attracted significant attention due to its remarkable energy conversion efficiency. To further enhance its sustainability, MEA-based water electrolysis can be integrated with renewable solar energy by adopting a photocatalytic MEA (P-MEA) system, incorporating light-transmitting windows into MEA stacks, and employing suitable photocatalytic electrode materials. A critical challenge lies in developing cost-effective and high-performance photocatalytic electrode materials by replacing conventional noble material systems with earth-abundant photocatalytic electrode materials. This review discusses recent advances in P-MEA concepts and fabrication strategies for photoelectrodes tailored to MEA operation. Particular emphasis is placed on elucidating the mechanisms of light-induced charge dynamics that govern the P-MEA-based water electrolysis process. Overall, this review highlights the synergistic potential of integrating photocatalysis with MEA-based water electrolysis to advance sustainable green hydrogen production. Full article
Show Figures

Figure 1

17 pages, 6618 KB  
Article
Sustainable Biochar–Alumina Composites for Electroanalytical Sensing of Herbicide and Antibiotic
by Nataša Jović-Jovičić, Tatjana Novaković, Tanja Barudžija, Marija Ajduković, Natalia Czerwinska, Chiara Giosuè and Zorica Mojović
J. Xenobiot. 2025, 15(6), 191; https://doi.org/10.3390/jox15060191 - 10 Nov 2025
Abstract
The problem of water pollution by various xenobiotics has gained a lot of interest due to their persistence, bioaccumulation potential, and toxic effects on ecosystems and humans. Electrochemical sensors offer a rapid, sensitive, and cost-effective method for on-site monitoring. In this research, an [...] Read more.
The problem of water pollution by various xenobiotics has gained a lot of interest due to their persistence, bioaccumulation potential, and toxic effects on ecosystems and humans. Electrochemical sensors offer a rapid, sensitive, and cost-effective method for on-site monitoring. In this research, an electrochemical sensor for xenobiotics based on a biochar–alumina composite is developed. The biochar–alumina composites were obtained by the air-limited pyrolysis of oak sawdust in the presence of alumina. Two types of alumina were mixed with oak sawdust in three ratios and subjected to thermal treatment. The resulting composites were characterized by SEM, N2 adsorption isotherm, XRD, and electrochemical characterization. The detection of the herbicide pendimethalin and the antibiotic ciprofloxacin was investigated, and the composite with the optimal biochar/alumina ratio was selected for each of the xenobiotics studied. A linear current response was obtained for pendimethalin in the concentration range 0.7 μM to 70.0 μM with an LOD of 0.5 μM. A linear current response was obtained for ciprofloxacin in the concentration range 1.6 μM to 55.4 μM with an LOD of 0.63 μM. A comparison of the characterization results with the electroanalytical performance implied the importance of the hydrophobic/hydrophilic nature of the electrode surface for detecting the analyte under investigation. Full article
Show Figures

Graphical abstract

15 pages, 2663 KB  
Article
Carbon NanoFiber-Integrated VN@CNS Multilevel Architectures for High-Performance Zinc-Ion Batteries
by Yun Cheng, Taoyun Zhou, Jianbo Wang, Yiwen Wang and Xinyu Li
Micromachines 2025, 16(11), 1265; https://doi.org/10.3390/mi16111265 - 10 Nov 2025
Abstract
Aqueous zinc-ion batteries (AZIBs) have attracted considerable attention due to their intrinsic safety, low cost, and environmental friendliness. However, drastic volume expansion, sluggish reaction kinetics, and the insufficient structural stability of electrode materials still remain key challenges. In this work, a cascade structure-guided [...] Read more.
Aqueous zinc-ion batteries (AZIBs) have attracted considerable attention due to their intrinsic safety, low cost, and environmental friendliness. However, drastic volume expansion, sluggish reaction kinetics, and the insufficient structural stability of electrode materials still remain key challenges. In this work, a cascade structure-guided electron transport strategy was used to construct a vanadium nitride@carbon nanosheet/carbon nanofiber (VN@CNS/CNF) composite as a high-performance cathode for AZIBs. In this rationally engineered architecture, carbon-coated VN nanoparticles are uniformly anchored on a conductive carbon nanofiber network, forming a multidimensional interconnected structure that enables fast electron/ion transport and robust mechanical stability. The carbon shell effectively alleviates volume expansion and prevents VN nanoparticle agglomeration, while the continuous carbon fiber backbone reduces charge transfer resistance and enhances reaction kinetics. Benefiting from this synergistic structural design, the VN@CNS/CNF electrode delivers a high specific capacity of 564 mAh g−1 at 0.1 A g−1, maintains 99% capacity retention after 50 cycles, and retains 280 mAh g−1 even at 8 A g−1 after prolonged cycling. This study provides a new structural engineering strategy for vanadium nitride-based electrodes and provides strategic guidance for the development of fast-charging, durable aqueous zinc-ion batteries. Full article
(This article belongs to the Special Issue Advancing Energy Storage Techniques: Chemistry, Materials and Devices)
Show Figures

Figure 1

26 pages, 1028 KB  
Review
Nanofiber-Enabled Rapid and Non-Destructive Sensors for Meat Quality and Shelf-Life Monitoring: A Review
by Karna Ramachandraiah, Elizabeth M. Martin and Alya Limayem
Foods 2025, 14(22), 3842; https://doi.org/10.3390/foods14223842 - 10 Nov 2025
Abstract
The meat industry faces significant economic losses and environmental impacts due to spoilage and waste, much of which results from inadequate, delayed, or inefficient quality assessment. Traditional methods used for assessing meat quality are often time-consuming, labor-intensive, and lack the ability to provide [...] Read more.
The meat industry faces significant economic losses and environmental impacts due to spoilage and waste, much of which results from inadequate, delayed, or inefficient quality assessment. Traditional methods used for assessing meat quality are often time-consuming, labor-intensive, and lack the ability to provide real-time information, making them insufficient for modern supply chains that demand safety, freshness, and minimal waste. Recent advances in nanotechnology position nanofibers (NFs) as promising materials for addressing these challenges through smart sensing and active packaging. NFs, characterized by their high surface-to-volume ratio, tunable porosity, and small diameter, enable superior encapsulation and immobilization of sensing agents. These features improve the efficiency of colorimetric indicators, electronic noses, biosensors and time–temperature indicators. Electrospun NFs functionalized with metallic nanoparticles can detect contaminants such as antibiotics and hormones, while polymeric NFs embedded with reduced graphene oxide act as electrodes for advanced biosensing. Freshness indicators based on pH and nitrogenous compounds demonstrate real-time spoilage detection through visible color changes. This review explores nanofiber fabrication methods, their integration into sensing systems, and their potential to advance rapid, sustainable, and cost-effective meat quality monitoring. Full article
Show Figures

Graphical abstract

18 pages, 4994 KB  
Article
Parameter Optimization for Dual-Mode Operation of Unitized Regenerative Fuel Cells via Steady-State Simulation
by Yuhang Hu, Yijia Li, Yuehua Li, Fang Yang, Bin Zhang and Dan Wang
Energies 2025, 18(22), 5899; https://doi.org/10.3390/en18225899 - 10 Nov 2025
Viewed by 28
Abstract
Mathematical modeling of unitized regenerative fuel cells (URFCs) faces significant challenges in reconciling parameter conflicts between fuel cell (FC) and electrolysis cell (EC) modes. This study establishes a COMSOL-based multi-physics framework coupling water–gas–heat–electric transport for both operational states. The critical factors associated with [...] Read more.
Mathematical modeling of unitized regenerative fuel cells (URFCs) faces significant challenges in reconciling parameter conflicts between fuel cell (FC) and electrolysis cell (EC) modes. This study establishes a COMSOL-based multi-physics framework coupling water–gas–heat–electric transport for both operational states. The critical factors associated with the model were identified through a systematic sensitivity analysis of structural and operational parameters, including temperature, exchange current density, conductivity, porosity, and flow rates. FC modes exhibited strong sensitivity to exchange current density (27.8–40.5% performance variation) and conductivity of membrane (10.1–35.6%), while temperature degraded performance (−4.2% to −4.0%). Spatial analysis revealed temperature-induced membrane dehydration and accelerated gas depletion at electrodes, thus explaining the negative correlation. EC modes were dominantly governed by temperature (8.6–9.4%), exchange current density (13.0–16.4%), and conductivity (2.5–13.3%). Channel simulations revealed that elevated temperature contributed to enhanced liquid water fluidity, while high flow rates had a relatively limited effect on mitigating species concentration gradients. Parameter optimization guided by sensitivity thresholds (e.g., porosity > 0.4 in FC GDLs, conductivity > 222 S/m in EC modes) enabled dual-mode calibration. The model achieved <4% error in polarization curve validation under experimental conditions, demonstrating robust prediction of voltage–current dynamics. This work resolves key conflicts of URFC modeling through physics-informed parameterization to provide a foundation for efficient dual-mode system design. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

24 pages, 5052 KB  
Review
Enhancing Wire EDM Performance Through Ultrasonic Vibration: A Review
by Nestor Washington Solís Pinargote, Alexandra Yu. Kurmysheva, Alexander Mozhaev, Alexander Malakhinsky, Pavel A. Podrabinnik, Alexander S. Metel and Sergey N. Grigoriev
J. Manuf. Mater. Process. 2025, 9(11), 368; https://doi.org/10.3390/jmmp9110368 - 9 Nov 2025
Viewed by 130
Abstract
Wire Electrical Discharge Machining (WEDM) is a technology for processing electrically conductive materials that enables localized material removal through high-temperature plasma generated by continuous spark discharges between the tool electrode and the workpiece electrode. In recent years, researchers have focused particularly on enhancing [...] Read more.
Wire Electrical Discharge Machining (WEDM) is a technology for processing electrically conductive materials that enables localized material removal through high-temperature plasma generated by continuous spark discharges between the tool electrode and the workpiece electrode. In recent years, researchers have focused particularly on enhancing the productivity of WEDM processes. Unlike other intensification methods, vibrational assistance represents a universal and technologically efficient solution. This review systematizes studies on WEDM involving the application of vibration, whether exerted on the wire electrode or the workpiece. It has been demonstrated that vibration significantly improves machining productivity and quality. The key mechanisms include enhanced dielectric fluid circulation and more efficient debris removal, often facilitated by cavitation effects that prevent material resolidification. This ensures discharge stability, reduces short circuits and wire breakage, and promotes a more uniform distribution of discharge points. As a result, the material removal rate (MRR) is increased, while surface roughness (Ra) is substantially reduced. Additionally, geometric accuracy is improved, residual stresses are minimized, and workpiece burning is prevented. Thus, vibration-assisted WEDM presents a promising solution for enhancing the efficiency and quality of machining difficult-to-cut materials. Full article
Show Figures

Figure 1

14 pages, 1078 KB  
Article
Short-Term Practice Modulates ERP Components Without Behavioral Change in a Short-ISI Go/NoGo Task
by Yasushi Sugawara, Yuya Matsuda, Ryo Kurokawa, Rin Kosuge, Satoshi Kudoh, Mayu Akaiwa, Hidekazu Saito, Takeshi Sasaki and Kazuhiro Sugawara
Brain Sci. 2025, 15(11), 1208; https://doi.org/10.3390/brainsci15111208 - 9 Nov 2025
Viewed by 195
Abstract
Background/Objectives: Response inhibition, a core aspect of executive function, is commonly evaluated using the Go/NoGo task. While previous research has demonstrated that short-term practice can influence both behavioral and neural markers of response inhibition, the role of task difficulty—particularly when manipulated through short [...] Read more.
Background/Objectives: Response inhibition, a core aspect of executive function, is commonly evaluated using the Go/NoGo task. While previous research has demonstrated that short-term practice can influence both behavioral and neural markers of response inhibition, the role of task difficulty—particularly when manipulated through short interstimulus intervals (ISIs)—remains underexplored. This study investigated the effects of short-term repeated practice on behavioral performance and neural activity during a high-difficulty Go/NoGo task with a short ISI. Methods: Fifteen healthy young adults completed a visual Go/NoGo task in four repeated sessions within a single day. The task involved a 600 ms ISI, 100 ms stimulus duration, and a 20% NoGo stimulus frequency. Behavioral outcomes included response time (RT) and error rate (ER). Neural activity was recorded via electroencephalography (EEG), focusing on event-related potentials (ERPs) associated with response inhibition, specifically the NoGo-N2 and NoGo-P3 components. Results: No significant changes were observed in RT or ER across sessions, indicating no improvement in behavioral performance. Similarly, NoGo-N2 amplitudes remained stable. However, a significant reduction in NoGo-P3 amplitude at the Fz electrode was found in later sessions, suggesting decreased frontal cortical engagement in response inhibition. Conclusions: Although short-term repeated practice of a high-difficulty Go/NoGo task did not enhance behavioral performance, it was associated with reduced neural activity related to response inhibition. These findings suggest that neurophysiological adaptations may occur even in the absence of observable behavioral changes, particularly under high task demands. Full article
Show Figures

Figure 1

21 pages, 3170 KB  
Article
Understanding and Estimating the Electrical Resistance Between Surface Electrodes on a UD Carbon Fibre-Reinforced Composite Layer
by J. David Acosta, Meisam Jalalvand, Sheik Abdul Malik and Andrew Hamilton
J. Compos. Sci. 2025, 9(11), 615; https://doi.org/10.3390/jcs9110615 - 8 Nov 2025
Viewed by 125
Abstract
The potential for structural health monitoring (SHM) in fibre-reinforced polymers (FRPs) using electrical resistance measurements (ERMs) has gained increasing attention, particularly in carbon fibre-reinforced polymers (CFRPs). Most existing studies are limited to single-axis measurements on coupon-scale specimens, whereas industrial applications demand scalable solutions [...] Read more.
The potential for structural health monitoring (SHM) in fibre-reinforced polymers (FRPs) using electrical resistance measurements (ERMs) has gained increasing attention, particularly in carbon fibre-reinforced polymers (CFRPs). Most existing studies are limited to single-axis measurements on coupon-scale specimens, whereas industrial applications demand scalable solutions capable of monitoring large areas, with more complex sensing configurations. Structural health monitoring (SHM) of carbon fibre-reinforced polymers (CFRPs) using electrical resistance measurements offers a low-cost, scalable sensing approach. However, predicting surface resistance between arbitrarily placed electrodes on unidirectional (UD) CFRP laminates remains challenging due to anisotropic conductivity and geometric variability. This study introduces a practical analytical model based on two geometry-dependent parameters, effective width and effective distance, to estimate resistance between any two electrodes arbitrarily placed on UD CFRP laminates with 0° or 90° fibre orientations. Validation through finite element (FE) simulations and experimental testing demonstrates good matching, confirming the model’s accuracy across various configurations. Results show that the dominant electrical current path aligns with the fibre direction due to the material’s anisotropic conductivity, allowing simplification to a single-axis resistance model. The proposed model offers a reliable estimation of surface resistance and provides a valuable tool for electrode array configuration design in CFRP-based SHM. This work contributes to enabling low-cost and scalable electrical sensing solutions for the real-time monitoring of composite structures in aerospace, automotive, and other high-performance applications. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Graphical abstract

22 pages, 2412 KB  
Article
Early Detection of Dysphagia Signs in Parkinson’s Disease: An Artificial Intelligence-Based Approach Using Non-Invasive Sensors
by Michele Antonio Gazzanti Pugliese di Cotrone, Nidà Farooq Akhtar, Martina Patera, Silvia Gallo, Umberto Mosca, Marco Ghislieri, Claudia Ferraris, Antonio Suppa, Carlo Alberto Artusi, Alessandro Zampogna, Gianluca Amprimo, Gabriele Imbalzano, Serena Cerfoglio, Veronica Cimolin, Luigi Borzì, Gabriella Olmo and Fernanda Irrera
Sensors 2025, 25(22), 6834; https://doi.org/10.3390/s25226834 - 8 Nov 2025
Viewed by 291
Abstract
The present study evaluates the effectiveness of a non-invasive wearable sensor system, combining accelerometers, surface electromyography, and artificial intelligence, to objectively characterize swallowing in elderly individuals affected by Parkinson’s Disease, without clinically manifested dysphagia. A cohort of patients and healthy control subjects performed [...] Read more.
The present study evaluates the effectiveness of a non-invasive wearable sensor system, combining accelerometers, surface electromyography, and artificial intelligence, to objectively characterize swallowing in elderly individuals affected by Parkinson’s Disease, without clinically manifested dysphagia. A cohort of patients and healthy control subjects performed the same swallowing test protocol, including tasks with different viscosity boluses, positioning a commercial adhesive grid of High-Density surface Electromyography (HD-sEMG) electrodes on the submental muscle and a triaxial accelerometer over the thyroid cartilage. Relevant temporal and spectral features were extracted from electromyography data. Proper filtering and processing by machine learning and Principal Component Analysis allowed identification of two distinct clusters of subjects, one predominantly composed of controls with just a few patients, the other mostly crowded by patients. Excellent classification performances were achieved (accuracy = 83.3%, precision = 79.0%, recall = 90.7%, F1-score = 84.5%, Cohen’s kappa = 0.67), revealing consistent differences in muscle activation patterns among subjects, even in the absence of clinically diagnosed dysphagia. These results support the feasibility of wearable sensor-based assessment as a reliable and non-invasive tool for the early detection of subclinical swallowing dysfunction in Parkinson’s Disease. Full article
Show Figures

Figure 1

14 pages, 2402 KB  
Article
Characteristics of Nanosecond Bipolar Pulsed Water Electrode Dielectric Barrier Discharge for Ozone Generation
by Weitian Wu, Chenyang Jin, Yifan Wu, Xianyang Zeng, Linsheng Wei, Zhongqian Ling and Lijian Wang
Processes 2025, 13(11), 3619; https://doi.org/10.3390/pr13113619 - 8 Nov 2025
Viewed by 185
Abstract
This study investigates the ozone generation characteristics of a nanosecond bipolar pulse-excited single-water electrode (dielectric barrier discharge) DBD reactor, with a particular focus on the effects of pulse width (Tp) on discharge behavior, plasma parameters, and ozone generation efficiency. The [...] Read more.
This study investigates the ozone generation characteristics of a nanosecond bipolar pulse-excited single-water electrode (dielectric barrier discharge) DBD reactor, with a particular focus on the effects of pulse width (Tp) on discharge behavior, plasma parameters, and ozone generation efficiency. The results indicate that the bipolar pulse voltage displays a symmetric alternating waveform, and the reactor demonstrates excellent thermal stability. Rotation temperature (Trot) remains stable between 307 and 310 K (close to room temperature, which effectively suppresses O3 thermal decomposition), while vibrational temperature (Tvib) stabilizes at 3120 ± 50 K (sufficient to ensure the electron energy required for O2 dissociation). Electron excitation temperature (Texc) increases with both the specific input energy (SIE) and Tp. At SIE = 200 J/L, extending Tp from 200 ns to 1000 ns results in an increase in Texc from 2633 K to 2724 K. The ozone generation efficiency exhibits a “rise-then-decline” trend with increasing Tp. The optimal Tp is 500–600 ns, at which the maximum efficiency reaches 102 g/kWh (corresponding to SIE = 35.95 J/L), which is slightly higher than the peak efficiency of the unipolar pulse-driven water electrode reactor (99.64 ± 0.87 g/kWh, corresponding to SIE = 33.60 ± 1.53 J/L). This work innovatively applies nanosecond bipolar pulse excitation to a single-water electrode DBD reactor for ozone generation, an understudied configuration that integrates the discharge stability advantage of bipolar pulses and the superior cooling advantages of water electrodes. This study offers significant insights into the pulse power excitation of ozone generation. Full article
Show Figures

Figure 1

Back to TopTop