Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = electrochromic supercapacitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4216 KiB  
Article
Redox-Active Anthraquinone-1-Sulfonic Acid Sodium Salt-Loaded Polyaniline for Dual-Functional Electrochromic Supercapacitors
by Yi Wang, Enkai Lin, Ze Wang, Tong Feng and An Xie
Gels 2025, 11(8), 568; https://doi.org/10.3390/gels11080568 - 23 Jul 2025
Viewed by 227
Abstract
Electrochromic (EC) devices are gaining increasing attention for next-generation smart windows and low-power displays due to their reversible color modulation, low operating voltage, and flexible form factors. Recently, electrochromic energy storage devices (EESDs) have emerged as a promising class of multifunctional systems, enabling [...] Read more.
Electrochromic (EC) devices are gaining increasing attention for next-generation smart windows and low-power displays due to their reversible color modulation, low operating voltage, and flexible form factors. Recently, electrochromic energy storage devices (EESDs) have emerged as a promising class of multifunctional systems, enabling simultaneous energy storage and real-time visual monitoring. In this study, we report a flexible dual-functional EESD constructed using polyaniline (PANI) films doped with anthraquinone-1-sulfonic acid sodium salt (AQS), coupled with a redox-active PVA-based gel electrolyte also incorporating AQS. The incorporation of AQS into both the polymer matrix and the gel electrolyte introduces synergistic redox activity, facilitating bidirectional Faradaic reactions at the film–electrolyte interface and within the bulk gel phase. The resulting vertically aligned PANI-AQS nanoneedle films provide high surface area and efficient ion pathways, while the AQS-doped gel electrolyte contributes to enhanced ionic conductivity and electrochemical stability. The device exhibits rapid and reversible color switching from light green to deep black (within 2 s), along with a high areal capacitance of 194.2 mF·cm−2 at 1 mA·cm−2 and 72.1% capacitance retention over 5000 cycles—representing a 31.5% improvement over undoped systems. These results highlight the critical role of redox-functionalized gel electrolytes in enhancing both the energy storage and optical performance of EESDs, offering a scalable strategy for multifunctional, gel-based electrochemical systems in wearable and smart electronics. Full article
(This article belongs to the Special Issue Smart Gels for Sensing Devices and Flexible Electronics)
Show Figures

Graphical abstract

15 pages, 4602 KiB  
Article
Construction of Symmetric Flexible Electrochromic and Rechargeable Supercapacitors Based on a 1,3,6,8-Pyrenetetrasulfonic Acid Tetrasodium Salt-Loaded Polyaniline Nanostructured Film
by Yi Wang, Ze Wang, Zilong Zhang, Yujie Yan, An Xie, Tong Feng and Chunyang Jia
Materials 2025, 18(12), 2836; https://doi.org/10.3390/ma18122836 - 16 Jun 2025
Cited by 1 | Viewed by 423
Abstract
Electrochromic supercapacitors (ECSCs), which visually indicate their operating status through color changes, have attracted considerable attention in the field of wearable electronics. The conductive polymer polyaniline (PANI) shows great potential for integrated intelligent devices by combining bi-functional electrochromic spectral modulation and energy storage [...] Read more.
Electrochromic supercapacitors (ECSCs), which visually indicate their operating status through color changes, have attracted considerable attention in the field of wearable electronics. The conductive polymer polyaniline (PANI) shows great potential for integrated intelligent devices by combining bi-functional electrochromic spectral modulation and energy storage capabilities. In this work, a microsphere-like structured PANI-based composite film was fabricated on a porous Au/nylon 66 electrode via a one-step electrochemical copolymerization process, using 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (PTSA) as both the dopant and cross-linking agent for the PANI backbone, serving as the ECSC electrode. Compared to the pristine PANI electrode, the PANI-PTSA composite film exhibits lower intrinsic resistance and higher electrical conductivity, delivering a higher specific capacitance of 310.0 F g⁻1@1 A g⁻1 and an areal capacitance of 340.0 mF cm⁻2@1 mA cm⁻2, respectively. The dopant facilitates enhanced electrochemical performance by promoting charge transport within the PANI polymer network. Meanwhile, as a counter anion to the PANI backbone, PTSA regulates the growth of PANI chains and acts as a morphological controller. Furthermore, a symmetric ECSC based on the PANI-PTSA8:1 electrode was assembled, and its electrochemical properties were thoroughly investigated. The device demonstrated a high specific capacitance of 169.2 mF cm⁻2 at 1 mA cm⁻2, a notable energy density of 23.5 μWh cm⁻2 at a power density of 0.5 mW cm⁻2, and excellent cycling stability with 79% capacitance retention after 3000 cycles at a current density of 5 mA cm⁻2, alongside remarkable mechanical flexibility. Additionally, the working status of the ECSCs can be directly monitored through reversible color changes from yellow-green to deep blue during charge–discharge processes. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

22 pages, 9954 KiB  
Review
Recent Advances of Electrode Materials Applied in an Electrochromic Supercapacitor Device
by Qingfu Guo, Chao Sun, Yiran Li, Kaoxue Li and Xishi Tai
Molecules 2025, 30(1), 182; https://doi.org/10.3390/molecules30010182 - 5 Jan 2025
Cited by 6 | Viewed by 2305
Abstract
An electrochromic supercapacitor device (ESD) is an advanced energy storage device that combines the energy storage capability of a supercapacitor with the optical modulation properties of electrochromic materials. The electrode materials used to construct an ESD need to have both rich color variations [...] Read more.
An electrochromic supercapacitor device (ESD) is an advanced energy storage device that combines the energy storage capability of a supercapacitor with the optical modulation properties of electrochromic materials. The electrode materials used to construct an ESD need to have both rich color variations and energy storage properties. Recent advances in ESDs have focused on the preparation of novel electrochromic supercapacitor electrode materials and improving their energy storage capacity, cycling stability, and electrochromic performance. In this review, the research significance and application value of ESDs are discussed. The device structure and working principle of electrochromic devices and supercapacitors are analyzed in detail. The research progress of inorganic materials, organic materials, and inorganic/organic nanocomposite materials used for the construction of ESDs is discussed. The advantages and disadvantages of various types of materials in ESD applications are summarized. The preparation and application of ESD electrode materials in recent years are reviewed in detail. Importantly, the challenges existing in the current research and recommendations for future perspectives are suggested. This review will provide a useful reference for researchers in the field of ESD electrode material preparation and application. Full article
(This article belongs to the Special Issue Energy Storage Materials: Synthesis and Application)
Show Figures

Figure 1

30 pages, 11520 KiB  
Review
Progress in Tungsten Trioxide-Based Materials for Energy Storage and Smart Window Applications
by Khursheed Ahmad and Tae Hwan Oh
Crystals 2025, 15(1), 10; https://doi.org/10.3390/cryst15010010 - 25 Dec 2024
Cited by 1 | Viewed by 1105
Abstract
Previous years have witnessed a rapid surge in WO3-based experimental reports for the construction of energy storage devices (ESDs) and electrochromic devices (ECDs). WO3 is a highly electrochromic (EC) material with a wide band gap that has been extensively used [...] Read more.
Previous years have witnessed a rapid surge in WO3-based experimental reports for the construction of energy storage devices (ESDs) and electrochromic devices (ECDs). WO3 is a highly electrochromic (EC) material with a wide band gap that has been extensively used for the construction of working electrodes for supercapacitor (SC) and ECD applications. Previously, WO3-based hybrid composites were explored for SC and ECD applications. In this review report, we have compiled the WO3-based hybrid electrode materials for SC and ECD applications. It is believed that the present review would benefit the researchers working on the fabrication of electrode materials for SC and ECD applications. In this review article, challenges and future perspectives have been discussed for the development of WO3-based SCs and ECDs. Full article
Show Figures

Figure 1

14 pages, 4274 KiB  
Article
3,6-Dimethoxythieno[3,2-b]thiophene-Based Bifunctional Electrodes for High-Performance Electrochromic Supercapacitors Prepared by One-Step Electrodeposition
by Zhixuan Yu, Rui Wang, Huayu Tang, Ding Zheng and Junsheng Yu
Polymers 2024, 16(16), 2313; https://doi.org/10.3390/polym16162313 - 15 Aug 2024
Cited by 3 | Viewed by 1220
Abstract
An integrated visual energy system consisting of conjugated polymer electrodes is promising for combining electrochromism with energy storage. In this work, we obtained copolymer bifunctional electrodes poly(3,6-dimethoxythieno[3,2-b]thiophene-co-2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethanol)(P(TT-OMe-co-EDTM)) by one-step electrochemical copolymerization, which exhibits favorable electrochromic and capacitive energy storage [...] Read more.
An integrated visual energy system consisting of conjugated polymer electrodes is promising for combining electrochromism with energy storage. In this work, we obtained copolymer bifunctional electrodes poly(3,6-dimethoxythieno[3,2-b]thiophene-co-2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethanol)(P(TT-OMe-co-EDTM)) by one-step electrochemical copolymerization, which exhibits favorable electrochromic and capacitive energy storage properties. Because of the synergistic effect of PTT-OMe and PEDTM, the prepared copolymers show better flexibility. Moreover, the morphology and electrochemical properties of the copolymers could be adjusted by depositing different molar ratios of 3,6-dimethoxythieno[3,2-b]thiophene (TT-OMe) and 2,3-dihydrothieno[3,4-b][1,4] dioxin-3-ylmethanol (EDTM). The P(TT-OMe-co-EDTM) electrodes realized a high specific capacitance (190 F/g at 5 mV/s) and recognizable color conversion. This work provides a novel and simple way to synergistically improve electrochromic and energy storage properties and develop thiophene-based conducting polymers for electrochromic energy storage devices. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

32 pages, 15064 KiB  
Review
Atomic and Electronic Structure of Metal–Salen Complexes [M(Salen)], Their Polymers and Composites Based on Them with Carbon Nanostructures: Review of X-ray Spectroscopy Studies
by Petr M. Korusenko, Olga V. Petrova and Alexander S. Vinogradov
Appl. Sci. 2024, 14(3), 1178; https://doi.org/10.3390/app14031178 - 30 Jan 2024
Cited by 5 | Viewed by 3217
Abstract
Currently, electrically conductive polymers based on transition metal complexes [M(Salen)], as well as their composites, are among the systems showing promise as catalysts, electrochromic and electroluminescent materials, and electrodes for energy storage (for batteries and supercapacitors). The current review focuses on elucidating the [...] Read more.
Currently, electrically conductive polymers based on transition metal complexes [M(Salen)], as well as their composites, are among the systems showing promise as catalysts, electrochromic and electroluminescent materials, and electrodes for energy storage (for batteries and supercapacitors). The current review focuses on elucidating the atomic and electronic structure of metal–salen complexes, their polymers, and composites with nanostructured carbon (carbon nanotubes and graphene) using modern X-ray spectroscopy methods (X-ray photoelectron (XPS) and valence-band photoemission (VB PES) spectroscopy, as well as near-edge (NEXAFS) and extended (EXAFS) X-ray absorption fine structure spectroscopy). We trust that this review will be of valuable assistance to researchers working in the field of synthesizing and characterizing metal–salen complexes and composites based on them. Full article
Show Figures

Figure 1

13 pages, 3024 KiB  
Article
Self-Powered Dual-Band Electrochromic Supercapacitor Devices for Smart Window Based on Ternary Dielectric Triboelectric Nanogenerator
by Tianxiang Zheng, Haonan Zhang, Chen Chen, Xinbo Tu, Lin Fang, Mingjie Zhang, Wen He and Peihong Wang
Nanomaterials 2024, 14(2), 229; https://doi.org/10.3390/nano14020229 - 20 Jan 2024
Cited by 6 | Viewed by 2462
Abstract
A dual-band electrochromic supercapacitor device (DESCD) can be driven by an external power supply to modulate solar radiation, which is a promising energy-saving strategy and has broad application prospects in smart windows. However, traditional power supplies, such as batteries, supercapacitors, etc., usually face [...] Read more.
A dual-band electrochromic supercapacitor device (DESCD) can be driven by an external power supply to modulate solar radiation, which is a promising energy-saving strategy and has broad application prospects in smart windows. However, traditional power supplies, such as batteries, supercapacitors, etc., usually face limited lifetimes and potential environmental issues. Hence, we propose a self-powered DESCD based on TiO2/WO3 dual-band electrochromic material and a ternary dielectric rotating triboelectric nanogenerator (TDR-TENG). The TDR-TENG can convert mechanical energy from the environment into electrical energy to obtain a high output of 840 V, 23.9 µA, and 327 nC. The as-prepared TDR-TENG can drive the TiO2/WO3 film to store energy with a high dual-band modulation amplitude of 41.6% in the visible (VIS) region and 84% in the near-infrared (NIR) region, decreasing the indoor–outdoor light–heat interaction and thereby reducing the building energy consumption. The self-powered DESCD demonstrated in this study has multiple functions of energy harvesting, energy storage, and energy saving, providing a promising strategy for the development of self-powered smart windows. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications)
Show Figures

Figure 1

24 pages, 5464 KiB  
Review
Polyaniline-Based Ink for Inkjet Printing for Supercapacitors, Sensors, and Electrochromic Devices
by Ekta Kundra Arora, Vibha Sharma, Aravind Ravi, Akanksha Shahi, Shweta Jagtap, Arindam Adhikari, Jatis Kumar Dash, Pawan Kumar and Rajkumar Patel
Energies 2023, 16(18), 6716; https://doi.org/10.3390/en16186716 - 20 Sep 2023
Cited by 14 | Viewed by 3799
Abstract
In recent years, there has been a huge surge in interest in improving the efficiency of smart electronic and optoelectronic devices via the development of novel materials and printing technologies. Inkjet printing, known to deposit ‘ink on demand’, helps to reduce the consumption [...] Read more.
In recent years, there has been a huge surge in interest in improving the efficiency of smart electronic and optoelectronic devices via the development of novel materials and printing technologies. Inkjet printing, known to deposit ‘ink on demand’, helps to reduce the consumption of materials. Printing inks on various substrates like paper, glass, and fabric is possible, generating flexible devices that include supercapacitors, sensors, and electrochromic devices. Newer inks being tested and used include formulations of carbon nanoparticles, photochromic dyes, conducting polymers, etc. Among the conducting polymers, PANI has been well researched. It can be synthesized and doped easily and allows for the easy formation of composite conductive inks. Doping and the addition of additives like metal salts, oxidants, and halide ions tune its electrical properties. PANI has a large specific capacitance and has been researched for its applications in supercapacitors. It has been used as a sensor for pH and humidity as well as a biosensor for sweat, blood, etc. The response is generated by a change in its electrical conductivity. This review paper presents an overview of the investigations on the formulation of the inks based on conductive polymers, mainly centered around PANI, and inkjet printing of its formulations for a variety of devices, including supercapacitors, sensors, electrochromic devices, and patterning on flexible substrates. It covers their performance characteristics and also presents a future perspective on inkjet printing technology for advanced electronic, optoelectronic, and other conductive-polymer-based devices. We believe this review provides a new direction for next-generation conductive-polymer-based devices for various applications. Full article
(This article belongs to the Special Issue New Insights into Solar Cells)
Show Figures

Graphical abstract

14 pages, 4900 KiB  
Article
A Sustainable Gel Polymer Electrolyte for Solid-State Electrochemical Devices
by Serena Tombolesi, Niccolò Zanieri, Luca Bargnesi, Martina Mernini, Giampaolo Lacarbonara and Catia Arbizzani
Polymers 2023, 15(14), 3087; https://doi.org/10.3390/polym15143087 - 19 Jul 2023
Cited by 14 | Viewed by 3912
Abstract
Nowadays, solid polymer electrolytes have attracted increasing attention for their wide electrochemical stability window, low cost, excellent processability, flexibility and low interfacial impedance. Specifically, gel polymer electrolytes (GPEs) are attractive substitutes for liquid ones due to their high ionic conductivity (10−3–10 [...] Read more.
Nowadays, solid polymer electrolytes have attracted increasing attention for their wide electrochemical stability window, low cost, excellent processability, flexibility and low interfacial impedance. Specifically, gel polymer electrolytes (GPEs) are attractive substitutes for liquid ones due to their high ionic conductivity (10−3–10−2 S cm−1) at room temperature and solid-like dimensional stability with excellent flexibility. These characteristics make GPEs promising materials for electrochemical device applications, i.e., high-energy-density rechargeable batteries, supercapacitors, electrochromic displays, sensors, and actuators. The aim of this study is to demonstrate the viability of a sustainable GPE, prepared without using organic solvents or ionic liquids and with a simplified preparation route, that can substitute aqueous electrolytes in electrochemical devices operating at low voltages (up to 2 V). A polyvinyl alcohol (PVA)-based GPE has been cast from an aqueous solution and characterized with physicochemical and electrochemical methods. Its electrochemical stability has been assessed with capacitive electrodes in a supercapacitor configuration, and its good ionic conductivity and stability in the atmosphere in terms of water loss have been demonstrated. The feasibility of GPE in an electrochemical sensor configuration with a mediator embedded in an insulating polymer matrix (ferrocene/polyvinylidene difluoride system) has also been reported. Full article
Show Figures

Graphical abstract

23 pages, 12242 KiB  
Article
Building Block Engineering toward Realizing High-Performance Electrochromic Materials and Glucose Biosensing Platform
by Aliekber Karabag, Dilek Soyler, Yasemin Arslan Udum, Levent Toppare, Gorkem Gunbas and Saniye Soylemez
Biosensors 2023, 13(7), 677; https://doi.org/10.3390/bios13070677 - 25 Jun 2023
Cited by 2 | Viewed by 2018
Abstract
The molecular engineering of conjugated systems has proven to be an effective method for understanding structure–property relationships toward the advancement of optoelectronic properties and biosensing characteristics. Herein, a series of three thieno[3,4-c]pyrrole-4,6-dione (TPD)-based conjugated monomers, modified with electron-rich selenophene, 3,4-ethylenedioxythiophene (EDOT), [...] Read more.
The molecular engineering of conjugated systems has proven to be an effective method for understanding structure–property relationships toward the advancement of optoelectronic properties and biosensing characteristics. Herein, a series of three thieno[3,4-c]pyrrole-4,6-dione (TPD)-based conjugated monomers, modified with electron-rich selenophene, 3,4-ethylenedioxythiophene (EDOT), or both building blocks (Se-TPD, EDOT-TPD, and EDOT-Se-TPD), were synthesized using Stille cross-coupling and electrochemically polymerized, and their electrochromic properties and applications in a glucose biosensing platform were explored. The influence of structural modification on electrochemical, electronic, optical, and biosensing properties was systematically investigated. The results showed that the cyclic voltammograms of EDOT-containing materials displayed a high charge capacity over a wide range of scan rates representing a quick charge propagation, making them appropriate materials for high-performance supercapacitor devices. UV-Vis studies revealed that EDOT-based materials presented wide-range absorptions, and thus low optical band gaps. These two EDOT-modified materials also exhibited superior optical contrasts and fast switching times, and further displayed multi-color properties in their neutral and fully oxidized states, enabling them to be promising materials for constructing advanced electrochromic devices. In the context of biosensing applications, a selenophene-containing polymer showed markedly lower performance, specifically in signal intensity and stability, which was attributed to the improper localization of biomolecules on the polymer surface. Overall, we demonstrated that relatively small changes in the structure had a significant impact on both optoelectronic and biosensing properties for TPD-based donor–acceptor polymers. Full article
(This article belongs to the Special Issue Biosensor Nanoengineering: Design, Operation and Implementation)
Show Figures

Figure 1

11 pages, 3209 KiB  
Article
Electrochromic and Electrochemical Properties of Co3O4 Nanosheets Prepared by Hydrothermal Method
by Xinrui Yue, Gang Wang, Jing Wang, Licai Fan, Jian Hao, Shen Wang, Mingli Yang and Yang Liu
Coatings 2022, 12(11), 1682; https://doi.org/10.3390/coatings12111682 - 5 Nov 2022
Cited by 14 | Viewed by 2745
Abstract
In this paper, Co3O4 nanosheets were prepared by the hydrothermal method. The structure of the material was analyzed by morphological characterization and physical phase analysis, which confirmed the preparation of the product, Co3O4, showing a nanosheet [...] Read more.
In this paper, Co3O4 nanosheets were prepared by the hydrothermal method. The structure of the material was analyzed by morphological characterization and physical phase analysis, which confirmed the preparation of the product, Co3O4, showing a nanosheet structure. By studying the electrochromic properties of the prepared products, the results show that the transmittance modulation range of the Co3O4 nanosheet is 75% at 780 nm. The coloring response time and bleaching response time is about 3.8 s and 3.4 s, respectively. Electrochemical tests show that the Co3O4 nanosheets have good capacitive properties. Their specific capacitance reaches 1850 F/g when the current density is 1 A/g. When the current density is 5 A/g, the specific capacitance can still maintain 99.6% after 5000 cycles. In addition, Co3O4//CNTs devices can provide a maximum energy density of 79.52 Wh/kg (1 A/g) and a maximum power density of 11,000 W/kg (15 A/g), showing good energy storage capacity. The above data results indicate that the prepared Co3O4 nanosheets can be used as good candidates for supercapacitors. This paper provides a new idea and method for preparing Co3O4 materials. Full article
(This article belongs to the Special Issue Smart Coatings for Energy Saving Applications)
Show Figures

Figure 1

22 pages, 10298 KiB  
Review
Nanostructured Iridium Oxide: State of the Art
by Francesca Scarpelli, Nicolas Godbert, Alessandra Crispini and Iolinda Aiello
Inorganics 2022, 10(8), 115; https://doi.org/10.3390/inorganics10080115 - 5 Aug 2022
Cited by 9 | Viewed by 7473
Abstract
Iridium Oxide (IrO2) is a metal oxide with a rutile crystalline structure, analogous to the TiO2 rutile polymorph. Unlike other oxides of transition metals, IrO2 shows a metallic type conductivity and displays a low surface work function. IrO2 [...] Read more.
Iridium Oxide (IrO2) is a metal oxide with a rutile crystalline structure, analogous to the TiO2 rutile polymorph. Unlike other oxides of transition metals, IrO2 shows a metallic type conductivity and displays a low surface work function. IrO2 is also characterized by a high chemical stability. These highly desirable properties make IrO2 a rightful candidate for specific applications. Furthermore, IrO2 can be synthesized in the form of a wide variety of nanostructures ranging from nanopowder, nanosheets, nanotubes, nanorods, nanowires, and nanoporous thin films. IrO2 nanostructuration, which allows its attractive intrinsic properties to be enhanced, can therefore be exploited according to the pursued application. Indeed, IrO2 nanostructures have shown utility in fields that span from electrocatalysis, electrochromic devices, sensors, fuel cell and supercapacitors. After a brief description of the IrO2 structure and properties, the present review will describe the main employed synthetic methodologies that are followed to prepare selectively the various types of nanostructures, highlighting in each case the advantages brought by the nanostructuration illustrating their performances and applications. Full article
(This article belongs to the Special Issue New Advances into Nanostructured Oxides)
Show Figures

Figure 1

10 pages, 1746 KiB  
Article
Facile and Rapid Synthesis of Porous Hydrated V2O5 Nanoflakes for High-Performance Zinc Ion Battery Applications
by Kai Guo, Wenchong Cheng, Haoxiong Chen, Hanbin Li, Jinxue Chen, Haiyuan Liu, Yunliang Tu, Wenhao She, Zhengkai Huang, Yinpeng Wan, Lixia Zou, Zhuyao Li, Xing Zhong, Yongchuan Wu, Xianfu Wang and Neng Yu
Nanomaterials 2022, 12(14), 2400; https://doi.org/10.3390/nano12142400 - 14 Jul 2022
Cited by 11 | Viewed by 2694
Abstract
Hydrated V2O5 with unique physical and chemical characteristics has been widely used in various function devices, including solar cells, catalysts, electrochromic windows, supercapacitors, and batteries. Recently, it has attracted extensive attention because of the enormous potential for the high-performance aqueous [...] Read more.
Hydrated V2O5 with unique physical and chemical characteristics has been widely used in various function devices, including solar cells, catalysts, electrochromic windows, supercapacitors, and batteries. Recently, it has attracted extensive attention because of the enormous potential for the high-performance aqueous zinc ion battery cathode. Although great progress has been made in developing applications of hydrated V2O5, little research focuses on improving current synthesis methods, which have disadvantages of massive energy consumption, tedious reaction time, and/or low efficiency. Herein, an improved synthesis method is developed for hydrated V2O5 nanoflakes according to the phenomenon that the reactions between V2O5 and peroxide can be dramatically accelerated with low-temperature heating. Porous hydrated V2O5 nanoflake gel was obtained from cheap raw materials at 40 °C in 30 min. It shows a high specific capacity, of 346.6 mAh/g, at 0.1 A/g; retains 55.2% of that at 20 A/g; and retains a specific capacity of 221.0 mAh/g after 1800 charging/discharging cycles at 1 A/g as an aqueous zinc ion battery cathode material. This work provides a highly facile and rapid synthesis method for hydrated V2O5, which may favor its applications in energy storage and other functional devices. Full article
Show Figures

Graphical abstract

16 pages, 3241 KiB  
Review
Application of Tungsten-Oxide-Based Electrochromic Devices for Supercapacitors
by Muyun Li, Haoyang Yan, Honglong Ning, Xinglin Li, Jinyao Zhong, Xiao Fu, Tian Qiu, Dongxiang Luo, Rihui Yao and Junbiao Peng
Appl. Syst. Innov. 2022, 5(4), 60; https://doi.org/10.3390/asi5040060 - 23 Jun 2022
Cited by 11 | Viewed by 4313
Abstract
For making full use of the discoloration function of electrochromic (EC) devices and better show the charge and discharge states of supercapacitors (SCs), electrochromic supercapacitors (ECSCs) have attracted much attention and expectations in recent years. The research progress of tungsten-oxide-based electrochromic supercapacitors (ECSCs) [...] Read more.
For making full use of the discoloration function of electrochromic (EC) devices and better show the charge and discharge states of supercapacitors (SCs), electrochromic supercapacitors (ECSCs) have attracted much attention and expectations in recent years. The research progress of tungsten-oxide-based electrochromic supercapacitors (ECSCs) in recent years is reviewed in this paper. Nanostructured tungsten oxide is widely used to facilitate ion implantation/extraction and increase the porosity of the electrode. The low-dimensional nanostructured tungsten oxide was compared in four respects: material scale, electrode life, coloring efficiency, and specific capacitance. Due to the mechanics and ductility of nano-tungsten oxide electrodes, they are very suitable for the preparation of flexible ECSCs. With the application of an organic protective layer and metal nanowire conductive electrode, the device has higher coloring efficiency and a lower activation voltage. Finally, this paper indicates that in the future, WO3-based ECSCs will develop in the direction of self-supporting power supply to meet the needs of use. Full article
Show Figures

Figure 1

11 pages, 3743 KiB  
Article
Electrochromic and Capacitive Properties of WO3 Nanowires Prepared by One-Step Water Bath Method
by Xusong Liu, Gang Wang, Jun Wang, Xue Gong, Jiang Chang, Xiangyang Jin, Xiang Zhang, Jing Wang, Jian Hao and Baosheng Liu
Coatings 2022, 12(5), 595; https://doi.org/10.3390/coatings12050595 - 27 Apr 2022
Cited by 9 | Viewed by 2737
Abstract
In this paper, WO3 nanowires were successfully synthesized via a one-step water bath method at an appropriate temperature. The XRD (Energy Dispersive Spectrometer), SEM (Scanning electron microscope), TEM (Transmission Electron Microscope) and other characterization methods proved that the synthesized product was WO [...] Read more.
In this paper, WO3 nanowires were successfully synthesized via a one-step water bath method at an appropriate temperature. The XRD (Energy Dispersive Spectrometer), SEM (Scanning electron microscope), TEM (Transmission Electron Microscope) and other characterization methods proved that the synthesized product was WO3, and the product of water bath reaction for 9 h showed the nanowires’ structure. The nanowires were evenly distributed, and the length ranged from 2 μm to 4 μm. The results showed that the nanowires had excellent light transmittance (66%), a very short response time (1.2 s, 2 s) and excellent color rendering efficiency (115.2 cm2 C−1) at 650 nm. The electrochemical performance test showed that the specific capacity of the WO3 nanowires was up to 565 F/g at 1 A/g. Change the different current densities and cycle 100 times, then return to the initial current density, accounting for 99% of the initial specific capacity of 565 F/g. We used this method for the first time to prepare tungsten oxide nanowires and investigated the bifunctional properties of the material, namely the electrochromic and capacitive properties. All of these data indicate that WO3 nanorods have excellent electrochromic and electrochromic properties and have potential market prospects in the fields of electrochromic glass, variable glasses, advertising, and supercapacitors. Full article
(This article belongs to the Special Issue Smart Coatings for Energy Saving Applications)
Show Figures

Figure 1

Back to TopTop